## Lagrangian for the Lorentz force equation.

[Click here for a PDF of this post with nicer formatting]

## Motivation.

In my old classical mechanics notes it appears that I did covariant derivations of the Lorentz force equations a number of times, using different trial Lagrangians (relativistic and non-relativistic), and using both geometric algebra and tensor methods. However, none of these appear to have been done concisely, and a number not even coherently.

The following document has been drafted as replacement text for those incoherent classical mechanics notes. I’ll attempt to cover

• a lighting review of the geometric algebra STA (Space Time Algebra),
• relations between Dirac matrix algebra and STA,
• derivation of the relativistic form of the Euler-Lagrange equations from the covariant form of the action,
• relationship of the STA form of the Euler-Lagrange equations to their tensor equivalents,
• derivation of the Lorentz force equation from the STA Lorentz force Lagrangian,
• relationship of the STA Lorentz force equation to its equivalent in the tensor formalism,
• relationship of the STA Lorentz force equation to the traditional vector form.

Note that some of the prerequisite ideas and auxiliary details are presented as problems with solutions. If the reader has sufficient background to attempt those problems themselves, they are encouraged to do so.

The STA and geometric algebra ideas used here are not complete to learn from in isolation. The reader is referred to [1] for a more complete exposition of both STA and geometric algebra.

## Definition 1.1: Index conventions.

Latin indexes $$i, j, k, r, s, t, \cdots$$ are used to designate values in the range $$\setlr{ 1,2,3 }$$. Greek indexes are $$\alpha, \beta, \mu, \nu, \cdots$$ are used for indexes of spacetime quantities $$\setlr{0,1,2,3}$$.
The Einstein convention of implied summation for mixed upper and lower Greek indexes will be used, for example
\begin{equation*}
x^\alpha x_\alpha \equiv \sum_{\alpha = 0}^3 x^\alpha x_\alpha.
\end{equation*}

## Space Time Algebra (STA.)

In the geometric algebra literature, the Dirac algebra of quantum field theory has been rebranded Space Time Algebra (STA). The differences between STA and the Dirac theory that uses matrices ($$\gamma_\mu$$) are as follows

• STA completely omits any representation of the Dirac basis vectors $$\gamma_\mu$$. In particular, any possible matrix representation is irrelevant.
• STA provides a rich set of fundamental operations (grade selection, generalized dot and wedge products for multivector elements, rotation and reflection operations, …)
• Matrix trace, and commutator and anticommutator operations are nowhere to be found in STA, as geometrically grounded equivalents are available instead.
• The “slashed” quantities from Dirac theory, such as $$\gamma_\mu p^\mu$$ are nothing more than vectors in their entirety in STA (where the basis is no longer implicit, as is the case for coordinates.)

Our basis vectors have the following properties.

## Definition 1.2: Standard basis.

Let the four-vector standard basis be designated $$\setlr{\gamma_0, \gamma_1, \gamma_2, \gamma_3 }$$, where the basis vectors satisfy
\label{eqn:lorentzForceCovariant:1540}
\begin{aligned}
\gamma_0^2 &= -\gamma_i^2 = 1 \\
\gamma_\alpha \cdot \gamma_\beta &= 0, \forall \alpha \ne \beta.
\end{aligned}

## Problem: Commutator properties of the STA basis.

In Dirac theory, the commutator properties of the Dirac matrices is considered fundamental, namely
\begin{equation*}
\symmetric{\gamma_\mu}{\gamma_\nu} = 2 \eta_{\mu\nu}.
\end{equation*}

Show that this follows from the axiomatic assumptions of geometric algebra, and describe how the dot and wedge products are related to the anticommutator and commutator products of Dirac theory.

The anticommutator is defined as symmetric sum of products
\label{eqn:lorentzForceCovariant:1040}
\symmetric{\gamma_\mu}{\gamma_\nu}
\equiv
\gamma_\mu \gamma_\nu
+
\gamma_\nu \gamma_\mu,

but this is just twice the dot product in its geometric algebra form $$a b = (a b + ba)/2$$. Observe that the properties of the basis vectors defined in \ref{eqn:lorentzForceCovariant:1540} may be summarized as
\label{eqn:lorentzForceCovariant:1060}
\gamma_\mu \cdot \gamma_\nu = \eta_{\mu\nu},

where $$\eta_{\mu\nu} = \text{diag}(+,-,-,-) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ \end{bmatrix}$$ is the conventional metric tensor. This means
\label{eqn:lorentzForceCovariant:1080}
\gamma_\mu \cdot \gamma_\nu = \eta_{\mu\nu} = 2 \symmetric{\gamma_\mu}{\gamma_\nu},

as claimed.

Similarly, observe that the commutator, defined as the antisymmetric sum of products
\label{eqn:lorentzForceCovariant:1100}
\antisymmetric{\gamma_\mu}{\gamma_\nu} \equiv
\gamma_\mu \gamma_\nu

\gamma_\nu \gamma_\mu,

is twice the wedge product $$a \wedge b = (a b – b a)/2$$. This provides geometric identifications for the respective anti-commutator and commutator products respectively
\label{eqn:lorentzForceCovariant:1120}
\begin{aligned}
\symmetric{\gamma_\mu}{\gamma_\nu} &= 2 \gamma_\mu \cdot \gamma_\nu \\
\antisymmetric{\gamma_\mu}{\gamma_\nu} &= 2 \gamma_\mu \wedge \gamma_\nu,
\end{aligned}

## Definition 1.3: Pseudoscalar.

The pseudoscalar for the space is denoted $$I = \gamma_0 \gamma_1 \gamma_2 \gamma_3$$.

## Problem: Pseudoscalar.

Show that the STA pseudoscalar $$I$$ defined by \ref{eqn:lorentzForceCovariant:1540} satisfies
\begin{equation*}
\tilde{I} = I,
\end{equation*}
where the tilde operator designates reversion. Also show that $$I$$ has the properties of an imaginary number
\begin{equation*}
I^2 = -1.
\end{equation*}
Finally, show that, unlike the spatial pseudoscalar that commutes with all grades, $$I$$ anticommutes with any vector or trivector, and commutes with any bivector.

Since $$\gamma_\alpha \gamma_\beta = -\gamma_\beta \gamma_\alpha$$ for any $$\alpha \ne \beta$$, any permutation of the factors of $$I$$ changes the sign once. In particular
\label{eqn:lorentzForceCovariant:680}
\begin{aligned}
I &=
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&=

\gamma_1
\gamma_2
\gamma_3
\gamma_0 \\
&=

\gamma_2
\gamma_3
\gamma_1
\gamma_0 \\
&=
+
\gamma_3
\gamma_2
\gamma_1
\gamma_0
= \tilde{I}.
\end{aligned}

Using this, we have
\label{eqn:lorentzForceCovariant:700}
\begin{aligned}
I^2
&= I \tilde{I} \\
&=
(
\gamma_0
\gamma_1
\gamma_2
\gamma_3
)(
\gamma_3
\gamma_2
\gamma_1
\gamma_0
) \\
&=
\lr{\gamma_0}^2
\lr{\gamma_1}^2
\lr{\gamma_2}^2
\lr{\gamma_3}^2 \\
&=
(+1)
(-1)
(-1)
(-1) \\
&= -1.
\end{aligned}

To illustrate the anticommutation property with any vector basis element, consider the following two examples:
\label{eqn:lorentzForceCovariant:720}
\begin{aligned}
I \gamma_0 &=
\gamma_0
\gamma_1
\gamma_2
\gamma_3
\gamma_0 \\
&=

\gamma_0
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&=

\gamma_0 I,
\end{aligned}

\label{eqn:lorentzForceCovariant:740}
\begin{aligned}
I \gamma_2
&=
\gamma_0
\gamma_1
\gamma_2
\gamma_3
\gamma_2 \\
&=

\gamma_0
\gamma_1
\gamma_2
\gamma_2
\gamma_3 \\
&=

\gamma_2
\gamma_0
\gamma_1
\gamma_2
\gamma_3 \\
&= -\gamma_2 I.
\end{aligned}

A total of three sign swaps is required to “percolate” any given $$\gamma_\alpha$$ through the factors of $$I$$, resulting in an overall sign change of $$-1$$.

For any bivector basis element $$\alpha \ne \beta$$
\label{eqn:lorentzForceCovariant:760}
\begin{aligned}
I \gamma_\alpha \gamma_\beta
&=
-\gamma_\alpha I \gamma_\beta \\
&=
+\gamma_\alpha \gamma_\beta I.
\end{aligned}

Similarly for any trivector basis element $$\alpha \ne \beta \ne \sigma$$
\label{eqn:lorentzForceCovariant:780}
\begin{aligned}
I \gamma_\alpha \gamma_\beta \gamma_\sigma
&=
-\gamma_\alpha I \gamma_\beta \gamma_\sigma \\
&=
+\gamma_\alpha \gamma_\beta I \gamma_\sigma \\
&=
-\gamma_\alpha \gamma_\beta \gamma_\sigma I.
\end{aligned}

## Definition 1.4: Reciprocal basis.

The reciprocal basis $$\setlr{ \gamma^0, \gamma^1, \gamma^2, \gamma^3 }$$ is defined , such that the property $$\gamma^\alpha \cdot \gamma_\beta = {\delta^\alpha}_\beta$$ holds.

Observe that, $$\gamma^0 = \gamma_0$$ and $$\gamma^i = -\gamma_i$$.

## Theorem 1.1: Coordinates.

Coordinates are defined in terms of dot products with the standard basis, or reciprocal basis
\begin{equation*}
\begin{aligned}
x^\alpha &= x \cdot \gamma^\alpha \\
x_\alpha &= x \cdot \gamma_\alpha,
\end{aligned}
\end{equation*}

### Start proof:

Suppose that a coordinate representation of the following form is assumed
\label{eqn:lorentzForceCovariant:820}
x = x^\alpha \gamma_\alpha = x_\beta \gamma^\beta.

We wish to determine the representation of the $$x^\alpha$$ or $$x_\beta$$ coordinates in terms of $$x$$ and the basis elements. Taking the dot product with any standard basis element, we find
\label{eqn:lorentzForceCovariant:840}
\begin{aligned}
x \cdot \gamma_\mu
&= (x_\beta \gamma^\beta) \cdot \gamma_\mu \\
&= x_\beta {\delta^\beta}_\mu \\
&= x_\mu,
\end{aligned}

as claimed. Similarly, dotting with a reciprocal frame vector, we find
\label{eqn:lorentzForceCovariant:860}
\begin{aligned}
x \cdot \gamma^\mu
&= (x^\beta \gamma_\beta) \cdot \gamma^\mu \\
&= x^\beta {\delta_\beta}^\mu \\
&= x^\mu.
\end{aligned}

### End proof.

Observe that raising or lowering the index of a spatial index toggles the sign of a coordinate, but timelike indexes are left unchanged.
\label{eqn:lorentzForceCovariant:880}
\begin{aligned}
x^0 &= x_0 \\
x^i &= -x_i \\
\end{aligned}

## Definition 1.5: Spacetime gradient.

The spacetime gradient operator is
\begin{equation*}
\grad = \gamma^\mu \partial_\mu = \gamma_\nu \partial^\nu,
\end{equation*}
where
\begin{equation*}
\partial_\mu = \PD{x^\mu}{},
\end{equation*}
and
\begin{equation*}
\partial^\mu = \PD{x_\mu}{}.
\end{equation*}

This definition of gradient is consistent with the Dirac gradient (sometimes denoted as a slashed $$\partial$$).

## Definition 1.6: Timelike and spacelike components of a four-vector.

Given a four vector $$x = \gamma_\mu x^\mu$$, that would be designated $$x^\mu = \setlr{ x^0, \Bx}$$ in conventional special relativity, we write
\begin{equation*}
x^0 = x \cdot \gamma_0,
\end{equation*}
and
\begin{equation*}
\Bx = x \wedge \gamma_0,
\end{equation*}
or
\begin{equation*}
x = (x^0 + \Bx) \gamma_0.
\end{equation*}

The spacetime split of a four-vector $$x$$ is relative to the frame. In the relativistic lingo, one would say that it is “observer dependent”, as the same operations with $${\gamma_0}’$$, the timelike basis vector for a different frame, would yield a different set of coordinates.

While the dot and wedge products above provide an effective mechanism to split a four vector into a set of timelike and spacelike quantities, the spatial component of a vector has a bivector representation in STA. Consider the following coordinate expansion of a spatial vector
\label{eqn:lorentzForceCovariant:1000}
\Bx =
x \wedge \gamma_0
=
\lr{ x^\mu \gamma_\mu } \wedge \gamma_0
=
\sum_{k = 1}^3 x^k \gamma_k \gamma_0.

## Definition 1.7: Spatial basis.

We designate
\label{eqn:lorentzForceCovariant:1560}
\Be_i = \gamma_i \gamma_0,

as the standard basis vectors for $$\mathbb{R}^3$$.

In the literature, this bivector representation of the spatial basis may be designated $$\sigma_i = \gamma_i \gamma_0$$, as these bivectors have the properties of the Pauli matrices $$\sigma_i$$. Because I intend to expand these notes to include purely non-relativistic applications, I won’t use the Pauli notation here.

## Problem: Orthonormality of the spatial basis.

Show that the spatial basis $$\setlr{ \Be_1, \Be_2, \Be_3 }$$, defined by \ref{eqn:lorentzForceCovariant:1560}, is orthonormal.

\label{eqn:lorentzForceCovariant:620}
\begin{aligned}
\Be_i \cdot \Be_j
&= \gpgradezero{ \gamma_i \gamma_0 \gamma_j \gamma_0 } \\
&= -\gpgradezero{ \gamma_i \gamma_j } \\
&= – \gamma_i \cdot \gamma_j.
\end{aligned}

This is zero for all $$i \ne j$$, and unity for any $$i = j$$.

## Problem: Spatial pseudoscalar.

Show that the STA pseudoscalar $$I = \gamma_0 \gamma_1 \gamma_2 \gamma_3$$ equals the spatial pseudoscalar $$I = \Be_1 \Be_2 \Be_3$$.

The spatial pseudoscalar, expanded in terms of the STA basis vectors, is
\label{eqn:lorentzForceCovariant:1020}
\begin{aligned}
I
&= \Be_1 \Be_2 \Be_3 \\
&= \lr{ \gamma_1 \gamma_0 }
\lr{ \gamma_2 \gamma_0 }
\lr{ \gamma_3 \gamma_0 } \\
&= \lr{ \gamma_1 \gamma_0 } \gamma_2 \lr{ \gamma_0 \gamma_3 } \gamma_0 \\
&= \lr{ -\gamma_0 \gamma_1 } \gamma_2 \lr{ -\gamma_3 \gamma_0 } \gamma_0 \\
&= \gamma_0 \gamma_1 \gamma_2 \gamma_3 \lr{ \gamma_0 \gamma_0 } \\
&= \gamma_0 \gamma_1 \gamma_2 \gamma_3,
\end{aligned}

as claimed.

## Problem: Characteristics of the Pauli matrices.

The Pauli matrices obey the following anticommutation relations:
\label{eqn:lorentzForceCovariant:660}
\symmetric{ \sigma_a}{\sigma_b } = 2 \delta_{a b},

and commutation relations:
\label{eqn:lorentzForceCovariant:640}
\antisymmetric{ \sigma_a}{ \sigma_b } = 2 i \epsilon_{a b c}\,\sigma_c,

Show how these relate to the geometric algebra dot and wedge products, and determine the geometric algebra representation of the imaginary $$i$$ above.

## Euler-Lagrange equations.

I’ll start at ground zero, with the derivation of the relativistic form of the Euler-Lagrange equations from the action. A relativistic action for a single particle system has the form
\label{eqn:lorentzForceCovariant:20}
S = \int d\tau L(x, \dot{x}),

where $$x$$ is the spacetime coordinate, $$\dot{x} = dx/d\tau$$ is the four-velocity, and $$\tau$$ is proper time.

## Theorem 1.2: Relativistic Euler-Lagrange equations.

Let $$x \rightarrow x + \delta x$$ be any variation of the Lagrangian four-vector coordinates, where $$\delta x = 0$$ at the boundaries of the action integral. The variation of the action is
\label{eqn:lorentzForceCovariant:1580}
\delta S = \int d\tau \delta x \cdot \delta L(x, \dot{x}),

where
\label{eqn:lorentzForceCovariant:1600}
\delta L = \grad L – \frac{d}{d\tau} (\grad_v L),

where $$\grad = \gamma^\mu \partial_\mu$$, and where we construct a similar velocity-gradient with respect to the proper-time derivatives of the coordinates $$\grad_v = \gamma^\mu \partial/\partial \dot{x}^\mu$$.The action is extremized when $$\delta S = 0$$, or when $$\delta L = 0$$. This latter condition is called the Euler-Lagrange equations.

### Start proof:

Let $$\epsilon = \delta x$$, and expand the Lagrangian in Taylor series to first order
\label{eqn:lorentzForceCovariant:60}
\begin{aligned}
S &\rightarrow S + \delta S \\
&= \int d\tau L( x + \epsilon, \dot{x} + \dot{\epsilon})
&=
\int d\tau \lr{
L(x, \dot{x}) + \epsilon \cdot \grad L + \dot{\epsilon} \cdot \grad_v L
}.
\end{aligned}

Subtracting off $$S$$ and integrating by parts, leaves
\label{eqn:lorentzForceCovariant:80}
\delta S =
\int d\tau \epsilon \cdot \lr{
}
+
\int d\tau \frac{d}{d\tau} (\grad_v L ) \cdot \epsilon.

The boundary integral
\label{eqn:lorentzForceCovariant:100}
\int d\tau \frac{d}{d\tau} (\grad_v L ) \cdot \epsilon
=
\evalbar{(\grad_v L ) \cdot \epsilon}{\Delta \tau} = 0,

is zero since the variation $$\epsilon$$ is required to vanish on the boundaries. So, if $$\delta S = 0$$, we must have
\label{eqn:lorentzForceCovariant:120}
0 =
\int d\tau \epsilon \cdot \lr{
},

for all variations $$\epsilon$$. Clearly, this requires that
\label{eqn:lorentzForceCovariant:140}
\delta L = \grad L – \frac{d}{d\tau} (\grad_v L) = 0,

or
\label{eqn:lorentzForceCovariant:145}

which is the coordinate free statement of the Euler-Lagrange equations.

## Problem: Coordinate form of the Euler-Lagrange equations.

Working in coordinates, use the action argument show that the Euler-Lagrange equations have the form
\begin{equation*}
\PD{x^\mu}{L} = \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}
\end{equation*}
Observe that this is identical to the statement of \ref{eqn:lorentzForceCovariant:1600} after contraction with $$\gamma^\mu$$.

In terms of coordinates, the first order Taylor expansion of the action is
\label{eqn:lorentzForceCovariant:180}
\begin{aligned}
S &\rightarrow S + \delta S \\
&= \int d\tau L( x^\alpha + \epsilon^\alpha, \dot{x}^\alpha + \dot{\epsilon}^\alpha) \\
&=
\int d\tau \lr{
L(x^\alpha, \dot{x}^\alpha) + \epsilon^\mu \PD{x^\mu}{L} + \dot{\epsilon}^\mu \PD{\dot{x}^\mu}{L}
}.
\end{aligned}

As before, we integrate by parts to separate out a pure boundary term
\label{eqn:lorentzForceCovariant:200}
\delta S =
\int d\tau \epsilon^\mu
\lr{
\PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}
}
+
\int d\tau \frac{d}{d\tau} \lr{
\epsilon^\mu \PD{\dot{x}^\mu}{L}
}.

The boundary term is killed since $$\epsilon^\mu = 0$$ at the end points of the action integral. We conclude that extremization of the action ($$\delta S = 0$$, for all $$\epsilon^\mu$$) requires
\label{eqn:lorentzForceCovariant:220}
\PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L} = 0.

## Theorem 1.3: Lorentz force.

The relativistic Lagrangian for a charged particle is
\label{eqn:lorentzForceCovariant:1640}
L = \inv{2} m v^2 + q A \cdot v/c.

Application of the Euler-Lagrange equations to this Lagrangian yields the Lorentz-force equation
\label{eqn:lorentzForceCovariant:1660}
\frac{dp}{d\tau} = q F \cdot v/c,

where $$p = m v$$ is the proper momentum, $$F$$ is the Faraday bivector $$F = \grad \wedge A$$, and $$c$$ is the speed of light.

### Start proof:

To make life easier, let’s take advantage of the linearity of the Lagrangian, and break it into the free particle Lagrangian $$L_0 = (1/2) m v^2$$ and a potential term $$L_1 = q A \cdot v/c$$. For the free particle case we have
\label{eqn:lorentzForceCovariant:240}
\begin{aligned}
\delta L_0
&= \grad L_0 – \frac{d}{d\tau} (\grad_v L_0) \\
&= – \frac{d}{d\tau} (m v) \\
&= – \frac{dp}{d\tau}.
\end{aligned}

For the potential contribution we have
\label{eqn:lorentzForceCovariant:260}
\begin{aligned}
\delta L_1
&= \grad L_1 – \frac{d}{d\tau} (\grad_v L_1) \\
&= \frac{q}{c} \lr{ \grad (A \cdot v) – \frac{d}{d\tau} \lr{ \grad_v (A \cdot v)} } \\
&= \frac{q}{c} \lr{ \grad (A \cdot v) – \frac{dA}{d\tau} }.
\end{aligned}

The proper time derivative can be evaluated using the chain rule
\label{eqn:lorentzForceCovariant:280}
\frac{dA}{d\tau}
=
\frac{\partial x^\mu}{\partial \tau} \partial_\mu A
= (v \cdot \grad) A.

Putting all the pieces back together we have
\label{eqn:lorentzForceCovariant:300}
\begin{aligned}
0
&= \delta L \\
&=
-\frac{dp}{d\tau} + \frac{q}{c} \lr{ \grad (A \cdot v) – (v \cdot \grad) A } \\
&=
-\frac{dp}{d\tau} + \frac{q}{c} \lr{ \grad \wedge A } \cdot v.
\end{aligned}

## Problem: Gradient of a squared position vector.

Show that
\begin{equation*}
\grad (a \cdot x) = a,
\end{equation*}
and
\begin{equation*}
\grad x^2 = 2 x.
\end{equation*}
It should be clear that the same ideas can be used for the velocity gradient, where we obtain $$\grad_v (v^2) = 2 v$$, and $$\grad_v (A \cdot v) = A$$, as used in the derivation above.

The first identity follows easily by expansion in coordinates
\label{eqn:lorentzForceCovariant:320}
\begin{aligned}
\grad (a \cdot x)
&=
\gamma^\mu \partial_\mu a_\alpha x^\alpha \\
&=
\gamma^\mu a_\alpha \delta_\mu^\alpha \\
&=
\gamma^\mu a_\mu \\
&=
a.
\end{aligned}

The second identity follows by linearity of the gradient
\label{eqn:lorentzForceCovariant:340}
\begin{aligned}
&=
\grad (x \cdot x) \\
&=
\evalbar{\lr{\grad (x \cdot a)}}{a = x}
+
\evalbar{\lr{\grad (b \cdot x)}}{b = x} \\
&=
\evalbar{a}{a = x}
+
\evalbar{b}{b = x} \\
&=
2x.
\end{aligned}

It is desirable to put this relativistic Lorentz force equation into the usual vector and tensor forms for comparison.

## Theorem 1.4: Tensor form of the Lorentz force equation.

The tensor form of the Lorentz force equation is
\label{eqn:lorentzForceCovariant:1620}
\frac{dp^\mu}{d\tau} = \frac{q}{c} F^{\mu\nu} v_\nu,

where the antisymmetric Faraday tensor is defined as $$F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu$$.

### Start proof:

We have only to dot both sides with $$\gamma^\mu$$. On the left we have
\label{eqn:lorentzForceCovariant:380}
\gamma^\mu \cdot \frac{dp}{d\tau}
=
\frac{dp^\mu}{d\tau}.

On the right, we have
\label{eqn:lorentzForceCovariant:400}
\begin{aligned}
\gamma^\mu \cdot \lr{ \frac{q}{c} F \cdot v }
&=
\frac{q}{c} (( \grad \wedge A ) \cdot v ) \cdot \gamma^\mu \\
&=
\frac{q}{c} ( \grad ( A \cdot v ) – (v \cdot \grad) A ) \cdot \gamma^\mu \\
&=
\frac{q}{c} \lr{ (\partial^\mu A^\nu) v_\nu – v_\nu \partial^\nu A^\mu } \\
&=
\frac{q}{c} F^{\mu\nu} v_\nu.
\end{aligned}

## Problem: Tensor expansion of $$F$$.

An alternate way to demonstrate \ref{eqn:lorentzForceCovariant:1620} is to first expand $$F = \grad \wedge A$$ in terms of coordinates, an expansion that can be expressed in terms of a second rank tensor antisymmetric tensor $$F^{\mu\nu}$$. Find that expansion, and re-evaluate the dot products of \ref{eqn:lorentzForceCovariant:400} using that.

\label{eqn:lorentzForceCovariant:900}
\begin{aligned}
F &=
\grad \wedge A \\
&=
\lr{ \gamma_\mu \partial^\mu } \wedge \lr{ \gamma_\nu A^\nu } \\
&=
\lr{ \gamma_\mu \wedge \gamma_\nu } \partial^\mu A^\nu.
\end{aligned}

To this we can use the usual tensor trick (add self to self, change indexes, and divide by two), to give
\label{eqn:lorentzForceCovariant:920}
\begin{aligned}
F &=
\inv{2} \lr{
\lr{ \gamma_\mu \wedge \gamma_\nu } \partial^\mu A^\nu
+
\lr{ \gamma_\nu \wedge \gamma_\mu } \partial^\nu A^\mu
} \\
&=
\inv{2}
\lr{ \gamma_\mu \wedge \gamma_\nu } \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
},
\end{aligned}

which is just
\label{eqn:lorentzForceCovariant:940}
F =
\inv{2} \lr{ \gamma_\mu \wedge \gamma_\nu } F^{\mu\nu}.

Now, let’s expand $$(F \cdot v) \cdot \gamma^\mu$$ to compare to the earlier expansion in terms of $$\grad$$ and $$A$$.
\label{eqn:lorentzForceCovariant:960}
\begin{aligned}
(F \cdot v) \cdot \gamma^\mu
&=
\inv{2}
F^{\alpha\nu}
\lr{ \lr{ \gamma_\alpha \wedge \gamma_\nu } \cdot \lr{ \gamma^\beta v_\beta } } \cdot \gamma^\mu \\
&=
\inv{2}
F^{\alpha\nu} v_\beta
\lr{
{\delta_\nu}^\beta {\gamma_\alpha}^\mu

{\delta_\alpha}^\beta {\gamma_\nu}^\mu
} \\
&=
\inv{2}
\lr{
F^{\mu\beta} v_\beta

F^{\beta\mu} v_\beta
} \\
&=
F^{\mu\nu} v_\nu.
\end{aligned}

This alternate expansion illustrates some of the connectivity between the geometric algebra approach and the traditional tensor formalism.

## Problem: Lorentz force direct tensor derivation.

Instead of using the geometric algebra form of the Lorentz force equation as a stepping stone, we may derive the tensor form from the Lagrangian directly, provided the Lagrangian is put into tensor form
\begin{equation*}
L = \inv{2} m v^\mu v_\mu + q A^\mu v_\mu /c.
\end{equation*}
Evaluate the Euler-Lagrange equations in coordinate form and compare to \ref{eqn:lorentzForceCovariant:1620}.

Let $$\delta_\mu L = \gamma_\mu \cdot \delta L$$, so that we can write the Euler-Lagrange equations as
\label{eqn:lorentzForceCovariant:460}
0 = \delta_\mu L = \PD{x^\mu}{L} – \frac{d}{d\tau} \PD{\dot{x}^\mu}{L}.

Operating on the kinetic term of the Lagrangian, we have
\label{eqn:lorentzForceCovariant:480}
\delta_\mu L_0 = – \frac{d}{d\tau} m v_\mu.

For the potential term
\label{eqn:lorentzForceCovariant:500}
\begin{aligned}
\delta_\mu L_1
&=
\frac{q}{c} \lr{
v_\nu \PD{x^\mu}{A^\nu} – \frac{d}{d\tau} A_\mu
} \\
&=
\frac{q}{c} \lr{
v_\nu \PD{x^\mu}{A^\nu} – \frac{dx_\alpha}{d\tau} \PD{x_\alpha}{ A_\mu }
} \\
&=
\frac{q}{c} v^\nu \lr{
\partial_\mu A_\nu – \partial_\nu A_\mu
} \\
&=
\frac{q}{c} v^\nu F_{\mu\nu}.
\end{aligned}

Putting the pieces together gives
\label{eqn:lorentzForceCovariant:520}
\frac{d}{d\tau} (m v_\mu) = \frac{q}{c} v^\nu F_{\mu\nu},

which is identical\footnote{Some minor index raising and lowering gymnastics are required.} to the tensor form that we found by expanding the geometric algebra form of Maxwell’s equation in coordinates.

## Theorem 1.5: Vector Lorentz force equation.

Relative to a fixed observer’s frame, the Lorentz force equation of \ref{eqn:lorentzForceCovariant:1660} splits into a spatial rate of change of momentum, and (timelike component) rate of change of energy, as follows
\label{eqn:lorentzForceCovariant:1680}
\begin{aligned}
\ddt{(\gamma m \Bv)} &= q \lr{ \BE + \Bv \cross \BB } \\
\ddt{(\gamma m c^2)} &= q \Bv \cdot \BE,
\end{aligned}

where $$F = \BE + I c \BB$$, $$\gamma = 1/\sqrt{1 – \Bv^2/c^2 }$$.

### Start proof:

The first step is to eliminate the proper time dependencies in the Lorentz force equation. Consider first the coordinate representation of an arbitrary position four-vector $$x$$
\label{eqn:lorentzForceCovariant:1140}
x = c t \gamma_0 + x^k \gamma_k.

The corresponding four-vector velocity is
\label{eqn:lorentzForceCovariant:1160}
v = \ddtau{x} = c \ddtau{t} \gamma_0 + \ddtau{t} \ddt{x^k} \gamma_k.

By construction, $$v^2 = c^2$$ is a Lorentz invariant quantity (this is one of the relativistic postulates), so the LHS of \ref{eqn:lorentzForceCovariant:1160} must have the same square. That is
\label{eqn:lorentzForceCovariant:1240}
c^2 = \lr{ \ddtau{t} }^2 \lr{ c^2 – \Bv^2 },

where $$\Bv = v \wedge \gamma_0$$. This shows that we may make the identification
\label{eqn:lorentzForceCovariant:1260}
\gamma = \ddtau{t} = \inv{1 – \Bv^2/c^2 },

and
\label{eqn:lorentzForceCovariant:1280}
\ddtau{} = \ddtau{t} \ddt{} = \gamma \ddt{}.

We may now factor the four-velocity $$v$$ into its spacetime split
\label{eqn:lorentzForceCovariant:1300}
v = \gamma \lr{ c + \Bv } \gamma_0.

In particular the LHS of the Lorentz force equation can be rewritten as
\label{eqn:lorentzForceCovariant:1320}
\ddtau{p} = \gamma \ddt{}\lr{ \gamma \lr{ c + \Bv } } \gamma_0,

and the RHS of the Lorentz force equation can be rewritten as
\label{eqn:lorentzForceCovariant:1340}
\frac{q}{c} F \cdot v
=
\frac{\gamma q}{c} F \cdot \lr{ (c + \Bv) \gamma_0 }.

Equating timelike and spacelike components leaves us
\label{eqn:lorentzForceCovariant:1380}
\ddt{ (m \gamma c) } = \frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \cdot \gamma_0,

\label{eqn:lorentzForceCovariant:1400}
\ddt{ (m \gamma \Bv) } = \frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \wedge \gamma_0,

Evaluating these products requires some care, but is an essentially manual process. The reader is encouraged to do so once, but the end result may also be obtained easily using software (see lorentzForce.nb in [2]). One finds
\label{eqn:lorentzForceCovariant:1440}
F = \BE + I c \BB
=
E^1 \gamma_{10} +
+ E^2 \gamma_{20} +
+ E^3 \gamma_{30} +
– c B^1 \gamma_{23} +
– c B^2 \gamma_{31} +
– c B^3 \gamma_{12},

\label{eqn:lorentzForceCovariant:1460}
\frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \cdot \gamma_0
= \frac{q}{c} \BE \cdot \Bv,

\label{eqn:lorentzForceCovariant:1480}
\frac{q}{c} \lr{ F \cdot \lr{ (c + \Bv) \gamma_0 } } \wedge \gamma_0
= q \lr{ \BE + \Bv \cross \BB }.

## Problem: Algebraic spacetime split of the Lorentz force equation.

Derive the results of \ref{eqn:lorentzForceCovariant:1440} through \ref{eqn:lorentzForceCovariant:1480} algebraically.

## Problem: Spacetime split of the Lorentz force tensor equation.

Show that \ref{eqn:lorentzForceCovariant:1680} also follows from the tensor form of the Lorentz force equation (\ref{eqn:lorentzForceCovariant:1620}) provided we identify
\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,

and
\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t.

Also verify that the identifications of \ref{eqn:lorentzForceCovariant:1500} and \ref{eqn:lorentzForceCovariant:1520} is consistent with the geometric algebra Faraday bivector $$F = \BE + I c \BB$$, and the associated coordinate expansion of the field $$F = (1/2) (\gamma_\mu \wedge \gamma_\nu) F^{\mu\nu}$$.

# References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Mathematica modules for Geometric Algebra’s GA(2,0), GA(3,0), and GA(1,3), 2017. URL https://github.com/peeterjoot/gapauli. [Online; accessed 24-Oct-2020].

## Solving Maxwell’s equation in freespace: Multivector plane wave representation

[Click here for a PDF of this post with nicer formatting]

The geometric algebra form of Maxwell’s equations in free space (or source free isotopic media with group velocity $$c$$) is the multivector equation
\label{eqn:planewavesMultivector:20}
\lr{ \spacegrad + \inv{c}\PD{t}{} } F(\Bx, t) = 0.

Here $$F = \BE + I c \BB$$ is a multivector with grades 1 and 2 (vector and bivector components). The velocity $$c$$ is called the group velocity since $$F$$, or its components $$\BE, \BH$$ satisfy the wave equation, which can be seen by pre-multiplying with $$\spacegrad – (1/c)\PDi{t}{}$$ to find
\label{eqn:planewavesMultivector:n}
\lr{ \spacegrad^2 – \inv{c^2}\PDSq{t}{} } F(\Bx, t) = 0.

Let’s look at the frequency domain solution of this equation with a presumed phasor representation
\label{eqn:planewavesMultivector:40}
F(\Bx, t) = \textrm{Re} \lr{ F(\Bk) e^{-j \Bk \cdot \Bx + j \omega t} },

where $$j$$ is a scalar imaginary, not necessarily with any geometric interpretation.

Maxwell’s equation reduces to just
\label{eqn:planewavesMultivector:60}
0
=
-j \lr{ \Bk – \frac{\omega}{c} } F(\Bk).

If $$F(\Bk)$$ has a left multivector factor
\label{eqn:planewavesMultivector:80}
F(\Bk) =
\lr{ \Bk + \frac{\omega}{c} } \tilde{F},

where $$\tilde{F}$$ is a multivector to be determined, then
\label{eqn:planewavesMultivector:100}
\begin{aligned}
\lr{ \Bk – \frac{\omega}{c} }
F(\Bk)
&=
\lr{ \Bk – \frac{\omega}{c} }
\lr{ \Bk + \frac{\omega}{c} } \tilde{F} \\
&=
\lr{ \Bk^2 – \lr{\frac{\omega}{c}}^2 } \tilde{F},
\end{aligned}

which is zero if $$\Norm{\Bk} = \ifrac{\omega}{c}$$.

Let $$\kcap = \ifrac{\Bk}{\Norm{\Bk}}$$, and $$\Norm{\Bk} \tilde{F} = F_0 + F_1 + F_2 + F_3$$, where $$F_0, F_1, F_2,$$ and $$F_3$$ are respectively have grades 0,1,2,3. Then
\label{eqn:planewavesMultivector:120}
\begin{aligned}
F(\Bk)
&= \lr{ 1 + \kcap } \lr{ F_0 + F_1 + F_2 + F_3 } \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap F_1 + \kcap F_2 + \kcap F_3 \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap \cdot F_1 + \kcap \cdot F_2 + \kcap \cdot F_3
+
\kcap \wedge F_1 + \kcap \wedge F_2 \\
&=
\lr{
F_0 + \kcap \cdot F_1
}
+
\lr{
F_1 + \kcap F_0 + \kcap \cdot F_2
}
+
\lr{
F_2 + \kcap \cdot F_3 + \kcap \wedge F_1
}
+
\lr{
F_3 + \kcap \wedge F_2
}.
\end{aligned}

Since the field $$F$$ has only vector and bivector grades, the grades zero and three components of the expansion above must be zero, or
\label{eqn:planewavesMultivector:140}
\begin{aligned}
F_0 &= – \kcap \cdot F_1 \\
F_3 &= – \kcap \wedge F_2,
\end{aligned}

so
\label{eqn:planewavesMultivector:160}
\begin{aligned}
F(\Bk)
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap \cdot F_1 +
F_2 – \kcap \wedge F_2
} \\
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap F_1 + \kcap \wedge F_1 +
F_2 – \kcap F_2 + \kcap \cdot F_2
}.
\end{aligned}

The multivector $$1 + \kcap$$ has the projective property of gobbling any leading factors of $$\kcap$$
\label{eqn:planewavesMultivector:180}
\begin{aligned}
(1 + \kcap)\kcap
&= \kcap + 1 \\
&= 1 + \kcap,
\end{aligned}

so for $$F_i \in F_1, F_2$$
\label{eqn:planewavesMultivector:200}
(1 + \kcap) ( F_i – \kcap F_i )
=
(1 + \kcap) ( F_i – F_i )
= 0,

leaving
\label{eqn:planewavesMultivector:220}
F(\Bk)
=
\lr{ 1 + \kcap } \lr{
\kcap \cdot F_2 +
\kcap \wedge F_1
}.

For $$\kcap \cdot F_2$$ to be non-zero $$F_2$$ must be a bivector that lies in a plane containing $$\kcap$$, and $$\kcap \cdot F_2$$ is a vector in that plane that is perpendicular to $$\kcap$$. On the other hand $$\kcap \wedge F_1$$ is non-zero only if $$F_1$$ has a non-zero component that does not lie in along the $$\kcap$$ direction, but $$\kcap \wedge F_1$$, like $$F_2$$ describes a plane that containing $$\kcap$$. This means that having both bivector and vector free variables $$F_2$$ and $$F_1$$ provide more degrees of freedom than required. For example, if $$\BE$$ is any vector, and $$F_2 = \kcap \wedge \BE$$, then
\label{eqn:planewavesMultivector:240}
\begin{aligned}
\lr{ 1 + \kcap }
\kcap \cdot F_2
&=
\lr{ 1 + \kcap }
\kcap \cdot \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\lr{
\BE

\kcap \lr{ \kcap \cdot \BE }
} \\
&=
\lr{ 1 + \kcap }
\kcap \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\kcap \wedge \BE,
\end{aligned}

which has the form $$\lr{ 1 + \kcap } \lr{ \kcap \wedge F_1 }$$, so the solution of the free space Maxwell’s equation can be written
\label{eqn:planewavesMultivector:260}
\boxed{
F(\Bx, t)
=
\textrm{Re} \lr{
\lr{ 1 + \kcap }
\BE\,
e^{-j \Bk \cdot \Bx + j \omega t}
}
,
}

where $$\BE$$ is any vector for which $$\BE \cdot \Bk = 0$$.

## A derivation of the quaternion Maxwell’s equations using geometric algebra.

[Click here for a PDF of this post with nicer formatting]

## Motivation.

The quaternion form of Maxwell’s equations as stated in [2] is nearly indecipherable. The modern quaternionic form of these equations can be found in [1]. Looking for this representation was driven by the question of whether or not the compact geometric algebra representations of Maxwell’s equations $$\grad F = J$$, was possible using a quaternion representation of the fields.

As quaternions may be viewed as the even subalgebra of GA(3,0), it is possible to the quaternion representation of Maxwell’s equations using only geometric algebra, including source terms and independent of the heat considerations discussed in [1]. Such a derivation will be performed here. Examination of the results appears to answer the question about the compact representation in the negative.

## Quaternions as multivectors.

Quaternions are vector plus scalar sums, where the vector basis $$\setlr{ \Bi, \Bj, \Bk }$$ are subject to the complex like multiplication rules
\label{eqn:complex:240}
\begin{aligned}
\Bi^2 &= \Bj^2 = \Bk^2 = -1 \\
\Bi \Bj &= \Bk = -\Bj \Bi \\
\Bj \Bk &= \Bi = -\Bk \Bj \\
\Bk \Bi &= \Bj = -\Bi \Bk.
\end{aligned}

We can represent these basis vectors in terms of the $$\mathbb{R}^{3}$$ unit bivectors
\label{eqn:quaternion2maxwellWithGA:260}
\begin{aligned}
\Bi &= \Be_{3} \Be_{2} = -I \Be_1 \\
\Bj &= \Be_{1} \Be_{3} = -I \Be_2 \\
\Bk &= \Be_{2} \Be_{1} = -I \Be_3,
\end{aligned}

where $$I = \Be_1 \Be_2 \Be_3$$ is the ordered product of the $$\mathbb{R}^{3}$$ basis elements. Within geometric algebra, the quaternion basis “vectors” are more properly viewed as a bivector space basis that happens to have dimension three.

Similar to [1] (which used $$d/dr$$, whereas $$d/dX$$ is used here to invoke the connection to a relativistic four vector $$X = (c t, \mathbf{x})$$), we may introduce a quaternionic spacetime gradient, and express that in terms of geometric algebra
\label{eqn:quaternion2maxwellWithGA:280}
\frac{d}{dX} = \inv{c} \PD{t}{}
+ \Bi \PD{x}{}
+ \Bj \PD{y}{}
+ \Bk \PD{z}{}
=

Of particular interest is how do we write the curl, divergence and time partials in terms of the quaternionic spacetime gradient or its components. Like [1], we will use modern commutator notation for an antisymmetric difference of products
\label{eqn:quaternion2maxwellWithGA:600}
\antisymmetric{a}{b} = a b – b a,

and anticommutator notation for a symmetric difference of products
\label{eqn:quaternion2maxwellWithGA:620}
\symmetric{a}{b} = a b + b a.

The curl of a vector $$\Bf$$ in terms of vector products with the gradient is
\label{eqn:quaternion2maxwellWithGA:300}
\begin{aligned}
&= -I(\spacegrad \wedge \Bf) \\
&= -\frac{I}{2} \lr{ \spacegrad \Bf – \Bf \spacegrad } \\
&= \frac{1}{2} \lr{ (-I \spacegrad) \Bf – \Bf (-I\spacegrad) } \\
&= \inv{2} \antisymmetric{ -I \spacegrad }{ \Bf } \\
&= \inv{2} \antisymmetric{ \frac{d}{dX} }{ \Bf },
\end{aligned}

where the last step takes advantage of the fact that the timelike contribution of the spacetime gradient commutes with any vector $$\Bf$$ due to its scalar nature, so cancels out of the commutator. In a similar fashion, the dot product may be written as an anticommutator
\label{eqn:quaternion2maxwellWithGA:480}
=
\inv{2} \lr{ \spacegrad \Bf + \Bf \spacegrad }
=
\inv{2} \symmetric{ \spacegrad}{ \Bf },

as can the scalar time derivative
\label{eqn:quaternion2maxwellWithGA:500}
\PD{t}{\Bf}
= \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \Bf }.

## Quaternionic form of Maxwell’s equations.

Using geometric algebra as an intermediate transformation, let’s see directly how to express Maxwell’s equations in terms of this quaternionic operator. Our starting point is Maxwell’s equations in their standard macroscopic form

\label{eqn:ece2500report:20}
\spacegrad \cross \BH = \BJ + \PD{t}{\BD}

\label{eqn:quaternion2maxwellWithGA:340}
\spacegrad \cdot \BD = \rho

\label{eqn:quaternion2maxwellWithGA:360}
\spacegrad \cross \BE = – \PD{t}{\BB}

\label{eqn:quaternion2maxwellWithGA:380}
\spacegrad \cdot \BB = 0.

Inserting these into Maxwell-Faraday and into Gauss’s law for magnetism we have
\label{eqn:quaternion2maxwellWithGA:400}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BE } &= – \symmetric{ \inv{c}\PD{t}{} }{ c \BB } \\
\inv{2} \symmetric{ \spacegrad }{ c \BB } &= 0,
\end{aligned}

or
\label{eqn:quaternion2maxwellWithGA:420}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BE } + \symmetric{ \inv{c}\PD{t}{} }{ -I c \BB } &= 0 \\
\inv{2} \symmetric{ -I \spacegrad }{ -I c \BB } &= 0
\end{aligned}

We can introduce quaternionic electric and magnetic field “vectors” (really bivectors)
\label{eqn:quaternion2maxwellWithGA:440}
\begin{aligned}
\boldsymbol{\mathcal{E}} &= -I \BE = \Bi E_x + \Bj E_y + \Bk E_z \\
\boldsymbol{\mathcal{B}} &= -I \BB = \Bi B_x + \Bj B_y + \Bk B_z,
\end{aligned}

and substitute these and sum to find the quaternionic representation of the two source free Maxwell’s equations
\label{eqn:quaternion2maxwellWithGA:460}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{E}} } + \inv{2} \symmetric{ \frac{d}{dX} }{ c \boldsymbol{\mathcal{B}} } = 0.
}

Inserting the quaternion curl, div and time derivative representations into Ampere-Maxwell’s law and Gauss’s law, gives
\label{eqn:quaternion2maxwellWithGA:520}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BH } &= \BJ + \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \BD } \\
\inv{2} \symmetric{ \spacegrad }{ c \BD } &= c \rho,
\end{aligned}

\label{eqn:quaternion2maxwellWithGA:540}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BH } – \inv{2} \symmetric{ \inv{c} \PD{t}{} } { -I c \BD } &= -I \BJ \\
-\inv{2} \symmetric{ -I \spacegrad }{ -I c \BD } &= c \rho.
\end{aligned}

With quaternionic displacement vector and magnetization, and current densities
\label{eqn:quaternion2maxwellWithGA:580}
\begin{aligned}
\boldsymbol{\mathcal{D}} &= -I \BD = \Bi D_x + \Bj D_y + \Bk D_z \\
\boldsymbol{\mathcal{H}} &= -I \BH = \Bi H_x + \Bj H_y + \Bk H_z \\
\boldsymbol{\mathcal{J}} &= -I \BJ = \Bi J_x + \Bj J_y + \Bk J_z,
\end{aligned}

and summing yields the two remaining two Maxwell equations in their quaternionic form
\label{eqn:quaternion2maxwellWithGA:560}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{H}} } – \inv{2} \symmetric{ \frac{d}{dX} } { c \boldsymbol{\mathcal{D}} } = c \rho + \boldsymbol{\mathcal{J}}.
}

## Conclusions.

Maxwell’s equations in the quaternion representation have a structure that is not apparent in the Heaviside-Gibbs notation. There is some elegance to this result, but comes with the cost of having to use commutator and anticommutator operators, which are arguably non-intuitive. The compact geometric algebra representation of Maxwell’s equation does not appear possible with a quaternion representation, as an additional complex degree of freedom would be required (biquaternions?) Such a degree of freedom may also allow a quaternion representation of the (fictitious) magnetic sources that are useful in antenna theory with a quaternion model. Magnetic sources are easily incorporated into the current multivector in geometric algebra, but if done so in the derivation above, yield an odd grade multivector source which has no quaternion representation.

# References

[1] Peter Michael Jack. Physical space as a quaternion structure, i: Maxwell equations. a brief note. arXiv preprint math-ph/0307038, 2003. URL https://arxiv.org/abs/math-ph/0307038.

[2] James Clerk Maxwell. A treatise on electricity and magnetism, volume II. Merchant Books, 1881.

## A comparison of Geometric Algebra electrodynamic potential methods

[Click here for a PDF of this post with nicer formatting]

## Motivation

Geometric algebra (GA) allows for a compact description of Maxwell’s equations in either an explicit 3D representation or a STA (SpaceTime Algebra [2]) representation. The 3D GA and STA representations Maxwell’s equation both the form

\label{eqn:potentialMethods:1280}
L \boldsymbol{\mathcal{F}} = J,

where $$J$$ represents the sources, $$L$$ is a multivector gradient operator that includes partial derivative operator components for each of the space and time coordinates, and

\label{eqn:potentialMethods:1020}
\boldsymbol{\mathcal{F}} = \boldsymbol{\mathcal{E}} + \eta I \boldsymbol{\mathcal{H}},

is an electromagnetic field multivector, $$I = \Be_1 \Be_2 \Be_3$$ is the \R{3} pseudoscalar, and $$\eta = \sqrt{\mu/\epsilon}$$ is the impedance of the media.

When Maxwell’s equations are extended to include magnetic sources in addition to conventional electric sources (as used in antenna-theory [1] and microwave engineering [3]), they take the form

\label{eqn:chapter3Notes:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \boldsymbol{\mathcal{M}} – \PD{t}{\boldsymbol{\mathcal{B}}}

\label{eqn:chapter3Notes:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:chapter3Notes:60}
\spacegrad \cdot \boldsymbol{\mathcal{D}} = q_{\textrm{e}}

\label{eqn:chapter3Notes:80}
\spacegrad \cdot \boldsymbol{\mathcal{B}} = q_{\textrm{m}}.

The corresponding GA Maxwell equations in their respective 3D and STA forms are

\label{eqn:potentialMethods:300}
\lr{ \spacegrad + \inv{v} \PD{t}{} } \boldsymbol{\mathcal{F}}
=
\eta
\lr{ v q_{\textrm{e}} – \boldsymbol{\mathcal{J}} }
+ I \lr{ v q_{\textrm{m}} – \boldsymbol{\mathcal{M}} }

\label{eqn:potentialMethods:320}
\grad \boldsymbol{\mathcal{F}} = \eta J – I M,

where the wave group velocity in the medium is $$v = 1/\sqrt{\epsilon\mu}$$, and the medium is isotropic with
$$\boldsymbol{\mathcal{B}} = \mu \boldsymbol{\mathcal{H}}$$, and $$\boldsymbol{\mathcal{D}} = \epsilon \boldsymbol{\mathcal{E}}$$. In the STA representation, $$\grad, J, M$$ are all four-vectors, the specific meanings of which will be spelled out below.

How to determine the potential equations and the field representation using the conventional distinct Maxwell’s \ref{eqn:chapter3Notes:20}, … is well known. The basic procedure is to consider the electric and magnetic sources in turn, and observe that in each case one of the electric or magnetic fields must have a curl representation. The STA approach is similar, except that it can be observed that the field must have a four-curl representation for each type of source. In the explicit 3D GA formalism
\ref{eqn:potentialMethods:300} how to formulate a natural potential representation is not as obvious. There is no longer an reason to set any component of the field equal to a curl, and the representation of the four curl from the STA approach is awkward. Additionally, it is not obvious what form gauge invariance takes in the 3D GA representation.

### Ideas explored in these notes

• GA representation of Maxwell’s equations including magnetic sources.
• STA GA formalism for Maxwell’s equations including magnetic sources.
• Explicit form of the GA potential representation including both electric and magnetic sources.
• Demonstration of exactly how the 3D and STA potentials are related.
• Explore the structure of gauge transformations when magnetic sources are included.
• Explore the structure of gauge transformations in the 3D GA formalism.
• Specify the form of the Lorentz gauge in the 3D GA formalism.

## Traditional vector algebra

### No magnetic sources

When magnetic sources are omitted, it follows from \ref{eqn:chapter3Notes:80} that there is some $$\boldsymbol{\mathcal{A}}^{\mathrm{e}}$$ for which

\label{eqn:potentialMethods:20}
\boxed{
\boldsymbol{\mathcal{B}} = \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}},
}

Substitution into Faraday’s law \ref{eqn:chapter3Notes:20} gives

\label{eqn:potentialMethods:40}
\spacegrad \cross \boldsymbol{\mathcal{E}} = – \PD{t}{}\lr{ \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}} },

or
\label{eqn:potentialMethods:60}
\spacegrad \cross \lr{ \boldsymbol{\mathcal{E}} + \PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } = 0.

A gradient representation of this curled quantity, say $$-\spacegrad \phi$$, will provide the required zero

\label{eqn:potentialMethods:80}
\boxed{
\boldsymbol{\mathcal{E}} = -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }.
}

The final two Maxwell equations yield

\label{eqn:potentialMethods:100}
\begin{aligned}
-\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \spacegrad \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} } &= \mu \lr{ \boldsymbol{\mathcal{J}} + \epsilon \PD{t}{} \lr{ -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } } \\
\spacegrad \cdot \lr{ -\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} } } &= q_e/\epsilon,
\end{aligned}

or
\label{eqn:potentialMethods:120}
\boxed{
\begin{aligned}
\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{e}} – \inv{v^2} \PDSq{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
\inv{v^2} \PD{t}{\phi}
}
&= -\mu \boldsymbol{\mathcal{J}} \\
\spacegrad^2 \phi + \PD{t}{} \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} } &= -q_e/\epsilon.
\end{aligned}
}

Note that the Lorentz condition $$\PDi{t}{(\phi/v^2)} + \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} = 0$$ can be imposed to decouple these, leaving non-homogeneous wave equations for the vector and scalar potentials respectively.

### No electric sources

Without electric sources, a curl representation of the electric field can be assumed, satisfying Gauss’s law

\label{eqn:potentialMethods:140}
\boxed{
\boldsymbol{\mathcal{D}} = – \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}}.
}

Substitution into the Maxwell-Faraday law gives
\label{eqn:potentialMethods:160}
\spacegrad \cross \lr{ \boldsymbol{\mathcal{H}} + \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}} } = 0.

This is satisfied with any gradient, say, $$-\spacegrad \phi_m$$, providing a potential representation for the magnetic field

\label{eqn:potentialMethods:180}
\boxed{
\boldsymbol{\mathcal{H}} = -\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}.
}

The remaining Maxwell equations provide the required constraints on the potentials

\label{eqn:potentialMethods:220}
-\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{m}} + \spacegrad \lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } = -\epsilon
\lr{
-\boldsymbol{\mathcal{M}} – \mu \PD{t}{}
\lr{
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}
}

\label{eqn:potentialMethods:240}
\lr{
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}
= \inv{\mu} q_m,

or
\label{eqn:potentialMethods:260}
\boxed{
\begin{aligned}
\spacegrad^2 \boldsymbol{\mathcal{A}}^{\mathrm{m}} – \inv{v^2} \PDSq{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}} – \spacegrad \lr{ \inv{v^2} \PD{t}{\phi_m} + \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } &= -\epsilon \boldsymbol{\mathcal{M}} \\
\spacegrad^2 \phi_m + \PD{t}{}\lr{ \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} } &= -\inv{\mu} q_m.
\end{aligned}
}

The general solution to Maxwell’s equations is therefore
\label{eqn:potentialMethods:280}
\begin{aligned}
\boldsymbol{\mathcal{E}} &=
-\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \inv{\epsilon} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
\boldsymbol{\mathcal{H}} &=
\inv{\mu} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}}
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}},
\end{aligned}

subject to the constraints \ref{eqn:potentialMethods:120} and \ref{eqn:potentialMethods:260}.

### Potential operator structure

Knowing that there is a simple underlying structure to the potential representation of the electromagnetic field in the STA formalism inspires the question of whether that structure can be found directly using the scalar and vector potentials determined above.

Specifically, what is the multivector representation \ref{eqn:potentialMethods:1020} of the electromagnetic field in terms of all the individual potential variables, and can an underlying structure for that field representation be found? The composite field is

\label{eqn:potentialMethods:280b}
\boldsymbol{\mathcal{F}}
=
-\spacegrad \phi -\PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \inv{\epsilon} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
+ I \eta
\lr{
\inv{\mu} \spacegrad \cross \boldsymbol{\mathcal{A}}^{\mathrm{e}}
-\spacegrad \phi_m – \PD{t}{\boldsymbol{\mathcal{A}}^{\mathrm{m}}}
}.

Can this be factored into into multivector operator and multivector potentials? Expanding the cross products provides some direction

\label{eqn:potentialMethods:1040}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
– \PD{t}{ \boldsymbol{\mathcal{A}}^{\mathrm{e}} }
– \eta \PD{t}{I \boldsymbol{\mathcal{A}}^{\mathrm{m}}}
– \spacegrad \lr{ \phi – \eta I \phi_m } \\
&\quad + \frac{\eta}{2 \mu} \lr{ \rspacegrad \boldsymbol{\mathcal{A}}^{\mathrm{e}} – \boldsymbol{\mathcal{A}}^{\mathrm{e}} \lspacegrad }
+ \frac{1}{2 \epsilon} \lr{ \rspacegrad I \boldsymbol{\mathcal{A}}^{\mathrm{m}} – I \boldsymbol{\mathcal{A}}^{\mathrm{m}} \lspacegrad }.
\end{aligned}

Observe that the
gradient and the time partials can be grouped together

\label{eqn:potentialMethods:1060}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
– \PD{t}{ } \lr{\boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \boldsymbol{\mathcal{A}}^{\mathrm{m}}}
– \spacegrad \lr{ \phi + \eta I \phi_m }
+ \frac{v}{2} \lr{ \rspacegrad (\boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \boldsymbol{\mathcal{A}}^{\mathrm{m}}) – (\boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \boldsymbol{\mathcal{A}}^{\mathrm{m}}) \lspacegrad } \\
&=
\inv{2} \lr{
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} } \lr{ v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}} }

\lr{ v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}} \lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
} \\
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} } \lr{ -\phi – \eta I \phi_m }
– \lr{ \phi + \eta I \phi_m } \lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
}
,
\end{aligned}

or

\label{eqn:potentialMethods:1080}
\boxed{
\boldsymbol{\mathcal{F}}
=
\inv{2} \Biglr{
\lr{ \rspacegrad – \inv{v} {\stackrel{ \rightarrow }{\partial_t}} }
\lr{
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
}

\lr{
\phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
+ \eta I \phi_m
}
\lr{ \lspacegrad + \inv{v} {\stackrel{ \leftarrow }{\partial_t}} }
}
.
}

There’s a conjugate structure to the potential on each side of the curl operation where we see a sign change for the scalar and pseudoscalar elements only. The reason for this becomes more clear in the STA formalism.

## Potentials in the STA formalism.

Maxwell’s equation in its explicit 3D form \ref{eqn:potentialMethods:300} can be
converted to STA form, by introducing a four-vector basis $$\setlr{ \gamma_\mu }$$, where the spatial basis
$$\setlr{ \Be_k = \gamma_k \gamma_0 }$$
is expressed in terms of the Dirac basis $$\setlr{ \gamma_\mu }$$.
By multiplying from the left with $$\gamma_0$$ a STA form of Maxwell’s equation
\ref{eqn:potentialMethods:320}
is obtained,
where
\label{eqn:potentialMethods:340}
\begin{aligned}
J &= \gamma^\mu J_\mu = ( v q_e, \boldsymbol{\mathcal{J}} ) \\
M &= \gamma^\mu M_\mu = ( v q_m, \boldsymbol{\mathcal{M}} ) \\
\grad &= \gamma^\mu \partial_\mu = ( (1/v) \partial_t, \spacegrad ) \\
I &= \gamma_0 \gamma_1 \gamma_2 \gamma_3,
\end{aligned}

Here the metric choice is $$\gamma_0^2 = 1 = -\gamma_k^2$$. Note that in this representation the electromagnetic field $$\boldsymbol{\mathcal{F}} = \boldsymbol{\mathcal{E}} + \eta I \boldsymbol{\mathcal{H}}$$ is a bivector, not a multivector as it is explicit (frame dependent) 3D representation of \ref{eqn:potentialMethods:300}.

A potential representation can be obtained as before by considering electric and magnetic sources in sequence and using superposition to assemble a complete potential.

### No magnetic sources

Without magnetic sources, Maxwell’s equation splits into vector and trivector terms of the form

\label{eqn:potentialMethods:380}
\grad \cdot \boldsymbol{\mathcal{F}} = \eta J

\label{eqn:potentialMethods:400}
\grad \wedge \boldsymbol{\mathcal{F}} = 0.

A four-vector curl representation of the field will satisfy \ref{eqn:potentialMethods:400} allowing an immediate potential solution

\label{eqn:potentialMethods:560}
\boxed{
\begin{aligned}
&\boldsymbol{\mathcal{F}} = \grad \wedge {A^{\mathrm{e}}} \\
&\grad^2 {A^{\mathrm{e}}} – \grad \lr{ \grad \cdot {A^{\mathrm{e}}} } = \eta J.
\end{aligned}
}

This can be put into correspondence with \ref{eqn:potentialMethods:120} by noting that

\label{eqn:potentialMethods:460}
\begin{aligned}
\grad^2 &= (\gamma^\mu \partial_\mu) \cdot (\gamma^\nu \partial_\nu) = \inv{v^2} \partial_{tt} – \spacegrad^2 \\
\gamma_0 {A^{\mathrm{e}}} &= \gamma_0 \gamma^\mu {A^{\mathrm{e}}}_\mu = {A^{\mathrm{e}}}_0 + \Be_k {A^{\mathrm{e}}}_k = {A^{\mathrm{e}}}_0 + \BA^{\mathrm{e}} \\
\gamma_0 \grad &= \gamma_0 \gamma^\mu \partial_\mu = \inv{v} \partial_t + \spacegrad \\
\grad \cdot {A^{\mathrm{e}}} &= \partial_\mu {A^{\mathrm{e}}}^\mu = \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}},
\end{aligned}

so multiplying from the left with $$\gamma_0$$ gives

\label{eqn:potentialMethods:480}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \lr{ {A^{\mathrm{e}}}_0 + \BA^{\mathrm{e}} } – \lr{ \inv{v} \partial_t + \spacegrad }\lr{ \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}} } = \eta( v q_e – \boldsymbol{\mathcal{J}} ),

or

\label{eqn:potentialMethods:520}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \BA^{\mathrm{e}} – \spacegrad \lr{ \inv{v} \partial_t {A^{\mathrm{e}}}_0 – \spacegrad \cdot \BA^{\mathrm{e}} } = -\eta \boldsymbol{\mathcal{J}}

\label{eqn:potentialMethods:540}
\spacegrad^2 {A^{\mathrm{e}}}_0 – \inv{v} \partial_t \lr{ \spacegrad \cdot \BA^{\mathrm{e}} } = -q_e/\epsilon.

So $${A^{\mathrm{e}}}_0 = \phi$$ and $$-\ifrac{\BA^{\mathrm{e}}}{v} = \boldsymbol{\mathcal{A}}^{\mathrm{e}}$$, or

\label{eqn:potentialMethods:600}
\boxed{
{A^{\mathrm{e}}} = \gamma_0\lr{ \phi – v \boldsymbol{\mathcal{A}}^{\mathrm{e}} }.
}

### No electric sources

Without electric sources, Maxwell’s equation now splits into

\label{eqn:potentialMethods:640}
\grad \cdot \boldsymbol{\mathcal{F}} = 0

\label{eqn:potentialMethods:660}
\grad \wedge \boldsymbol{\mathcal{F}} = -I M.

Here the dual of an STA curl yields a solution

\label{eqn:potentialMethods:680}
\boxed{
\boldsymbol{\mathcal{F}} = I ( \grad \wedge {A^{\mathrm{m}}} ).
}

Substituting this gives

\label{eqn:potentialMethods:720}
\begin{aligned}
0
&=
\grad \cdot (I ( \grad \wedge {A^{\mathrm{m}}} ) ) \\
&=
\gpgradeone{ \grad I ( \grad \wedge {A^{\mathrm{m}}} ) } \\
&=
-I \grad \wedge ( \grad \wedge {A^{\mathrm{m}}} ).
\end{aligned}

\label{eqn:potentialMethods:740}
\begin{aligned}
-I M
&=
\grad \wedge (I ( \grad \wedge {A^{\mathrm{m}}} ) ) \\
&=
\gpgradethree{ \grad I ( \grad \wedge {A^{\mathrm{m}}} ) } \\
&=
-I \grad \cdot ( \grad \wedge {A^{\mathrm{m}}} ).
\end{aligned}

The $$\grad \cdot \boldsymbol{\mathcal{F}}$$ relation \ref{eqn:potentialMethods:720} is identically zero as desired, leaving

\label{eqn:potentialMethods:760}
\boxed{
=
M.
}

So the general solution with both electric and magnetic sources is

\label{eqn:potentialMethods:800}
\boxed{
\boldsymbol{\mathcal{F}} = \grad \wedge {A^{\mathrm{e}}} + I (\grad \wedge {A^{\mathrm{m}}}),
}

subject to the constraints of \ref{eqn:potentialMethods:560} and \ref{eqn:potentialMethods:760}. As before the four-potential $${A^{\mathrm{m}}}$$ can be put into correspondence with the conventional scalar and vector potentials by left multiplying with $$\gamma_0$$, which gives

\label{eqn:potentialMethods:820}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \lr{ {A^{\mathrm{m}}}_0 + \BA^{\mathrm{m}} } – \lr{ \inv{v} \partial_t + \spacegrad }\lr{ \inv{v} \partial_t {A^{\mathrm{m}}}_0 – \spacegrad \cdot \BA^{\mathrm{m}} } = v q_m – \boldsymbol{\mathcal{M}},

or
\label{eqn:potentialMethods:860}
\lr{ \inv{v^2} \partial_{tt} – \spacegrad^2 } \BA^{\mathrm{m}} – \spacegrad \lr{ \inv{v} \partial_t {A^{\mathrm{m}}}_0 – \spacegrad \cdot \BA^{\mathrm{m}} } = – \boldsymbol{\mathcal{M}}

\label{eqn:potentialMethods:880}
\spacegrad^2 {A^{\mathrm{m}}}_0 – \inv{v} \partial_t \spacegrad \cdot \BA^{\mathrm{m}} = -v q_m.

Comparing with \ref{eqn:potentialMethods:260} shows that $${A^{\mathrm{m}}}_0/v = \mu \phi_m$$ and $$-\ifrac{\BA^{\mathrm{m}}}{v^2} = \mu \boldsymbol{\mathcal{A}}^{\mathrm{m}}$$, or

\label{eqn:potentialMethods:900}
\boxed{
{A^{\mathrm{m}}} = \gamma_0 \eta \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} }.
}

### Potential operator structure

Observe that there is an underlying uniform structure of the differential operator that acts on the potential to produce the electromagnetic field. Expressed as a linear operator of the
gradient and the potentials, that is

$$\boldsymbol{\mathcal{F}} = L(\lrgrad, {A^{\mathrm{e}}}, {A^{\mathrm{m}}})$$

\label{eqn:potentialMethods:980}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
L(\grad, {A^{\mathrm{e}}}, {A^{\mathrm{m}}}) \\
&= \grad \wedge {A^{\mathrm{e}}} + I (\grad \wedge {A^{\mathrm{m}}}) \\
&=
\inv{2} \lr{ \rgrad {A^{\mathrm{e}}} – {A^{\mathrm{e}}} \lgrad }
+ \frac{I}{2} \lr{ \rgrad {A^{\mathrm{m}}} – {A^{\mathrm{m}}} \lgrad } \\
&=
\inv{2} \lr{ \rgrad {A^{\mathrm{e}}} – {A^{\mathrm{e}}} \lgrad }
+ \frac{1}{2} \lr{ -\rgrad I {A^{\mathrm{m}}} – I {A^{\mathrm{m}}} \lgrad } \\
&=
\inv{2} \lr{ \rgrad ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}}) – ({A^{\mathrm{e}}} + I {A^{\mathrm{m}}}) \lgrad }
,
\end{aligned}

or
\label{eqn:potentialMethods:1000}
\boxed{
\boldsymbol{\mathcal{F}}
=
\inv{2} \lr{ \rgrad ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}}) – ({A^{\mathrm{e}}} – I {A^{\mathrm{m}}})^\dagger \lgrad }
.
}

Observe that \ref{eqn:potentialMethods:1000} can be
put into correspondence with \ref{eqn:potentialMethods:1080} using a factoring of unity $$1 = \gamma_0 \gamma_0$$

\label{eqn:potentialMethods:1100}
\boldsymbol{\mathcal{F}}
=
\inv{2} \lr{ (-\rgrad \gamma_0) (-\gamma_0 ({A^{\mathrm{e}}} -I {A^{\mathrm{m}}})) – (({A^{\mathrm{e}}} + I {A^{\mathrm{m}}}) \gamma_0)(\gamma_0 \lgrad) },

where

\label{eqn:potentialMethods:1140}
\begin{aligned}
&=
-(\gamma^0 \partial_0 + \gamma^k \partial_k) \gamma_0 \\
&=
-\partial_0 – \gamma^k \gamma_0 \partial_k \\
&=
-\inv{v} \partial_t
,
\end{aligned}

\label{eqn:potentialMethods:1160}
\begin{aligned}
&=
\gamma_0 (\gamma^0 \partial_0 + \gamma^k \partial_k) \\
&=
\partial_0 – \gamma^k \gamma_0 \partial_k \\
&=
+ \inv{v} \partial_t
,
\end{aligned}

and
\label{eqn:potentialMethods:1200}
\begin{aligned}
-\gamma_0 ( {A^{\mathrm{e}}} – I {A^{\mathrm{m}}} )
&=
-\gamma_0 \gamma_0 \lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \\
&=
-\lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \phi_m – \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}} } \\
&=
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
\end{aligned}

\label{eqn:potentialMethods:1220}
\begin{aligned}
( {A^{\mathrm{e}}} + I {A^{\mathrm{m}}} )\gamma_0
&=
\lr{ \gamma_0 \lr{ \phi -v \boldsymbol{\mathcal{A}}^{\mathrm{e}} } + I \gamma_0 \eta \lr{ \phi_m – v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \gamma_0 \\
&=
\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + I \eta \phi_m + I \eta v \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
&=
\phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta v I \boldsymbol{\mathcal{A}}^{\mathrm{m}}
+ \eta I \phi_m
,
\end{aligned}

This recovers \ref{eqn:potentialMethods:1080} as desired.

## Potentials in the 3D Euclidean formalism

In the conventional scalar plus vector differential representation of Maxwell’s equations \ref{eqn:chapter3Notes:20}…, given electric(magnetic) sources the structure of the electric(magnetic) potential follows from first setting the magnetic(electric) field equal to the curl of a vector potential. The procedure for the STA GA form of Maxwell’s equation was similar, where it was immediately evident that the field could be set to the four-curl of a four-vector potential (or the dual of such a curl for magnetic sources).

In the 3D GA representation, there is no immediate rationale for introducing a curl or the equivalent to a four-curl representation of the field. Reconciliation of this is possible by recognizing that the fact that the field (or a component of it) may be represented by a curl is not actually fundamental. Instead, observe that the two sided gradient action on a potential to generate the electromagnetic field in the STA representation of \ref{eqn:potentialMethods:1000} serves to select the grade two component product of the gradient and the multivector potential $${A^{\mathrm{e}}} – I {A^{\mathrm{m}}}$$, and that this can in fact be written as
a single sided gradient operation on a potential, provided the multivector product is filtered with a four-bivector grade selection operation

\label{eqn:potentialMethods:1240}
\boxed{
\boldsymbol{\mathcal{F}} = \gpgradetwo{ \grad \lr{ {A^{\mathrm{e}}} – I {A^{\mathrm{m}}} } }.
}

Similarly, it can be observed that the
specific function of the conjugate structure in the two sided potential representation of
\ref{eqn:potentialMethods:1080}
is to discard all the scalar and pseudoscalar grades in the multivector product. This means that a single sided potential can also be used, provided it is wrapped in a grade selection operation

\label{eqn:potentialMethods:1260}
\boxed{
\boldsymbol{\mathcal{F}} =
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} }
\lr{
– \phi
+ v \boldsymbol{\mathcal{A}}^{\mathrm{e}}
+ \eta I v \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \eta I \phi_m
} }{1,2}.
}

It is this grade selection operation that is really the fundamental defining action in the potential of the STA and conventional 3D representations of Maxwell’s equations. So, given Maxwell’s equation in the 3D GA representation, defining a potential representation for the field is really just a demand that the field have the structure

\label{eqn:potentialMethods:1320}
\boldsymbol{\mathcal{F}} = \gpgrade{ (\alpha \spacegrad + \beta \partial_t)( A_0 + A_1 + I( A_0′ + A_1′ ) }{1,2}.

This is a mandate that the electromagnetic field is the grades 1 and 2 components of the vector product of space and time derivative operators on a multivector field $$A = \sum_{k=0}^3 A_k = A_0 + A_1 + I( A_0′ + A_1′ )$$ that can potentially have any grade components. There are more degrees of freedom in this specification than required, since the multivector can absorb one of the $$\alpha$$ or $$\beta$$ coefficients, so without loss of generality, one of these (say $$\alpha$$) can be set to 1.

Expanding \ref{eqn:potentialMethods:1320} gives

\label{eqn:potentialMethods:1340}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
+ \beta \partial_t A_1
– \spacegrad \cross A_1′
+ I (\spacegrad \cross A_1
+ \beta \partial_t A_1′
+ \spacegrad A_0′) \\
&=
\boldsymbol{\mathcal{E}} + I \eta \boldsymbol{\mathcal{H}}.
\end{aligned}

This naturally has all the right mixes of curls, gradients and time derivatives, all following as direct consequences of applying a grade selection operation to the action of a “spacetime gradient” on a general multivector potential.

The conclusion is that the potential representation of the field is

\label{eqn:potentialMethods:1360}
\boldsymbol{\mathcal{F}} =
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2},

where $$A$$ is a multivector potentially containing all grades, where grades 0,1 are required for electric sources, and grades 2,3 are required for magnetic sources. When it is desirable to refer back to the conventional scalar and vector potentials this multivector potential can be written as $$A = -\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ -\phi_m + v \boldsymbol{\mathcal{A}}^{\mathrm{m}} }$$.

## Gauge transformations

Recall that for electric sources the magnetic field is of the form

\label{eqn:potentialMethods:1380}
\boldsymbol{\mathcal{B}} = \spacegrad \cross \boldsymbol{\mathcal{A}},

so adding the gradient of any scalar field to the potential $$\boldsymbol{\mathcal{A}}’ = \boldsymbol{\mathcal{A}} + \spacegrad \psi$$
does not change the magnetic field

\label{eqn:potentialMethods:1400}
\begin{aligned}
\boldsymbol{\mathcal{B}}’
&= \spacegrad \cross \lr{ \boldsymbol{\mathcal{A}} + \spacegrad \psi } \\
&= \spacegrad \cross \boldsymbol{\mathcal{A}} \\
&= \boldsymbol{\mathcal{B}}.
\end{aligned}

The electric field with this changed potential is

\label{eqn:potentialMethods:1420}
\begin{aligned}
\boldsymbol{\mathcal{E}}’
&= -\spacegrad \phi – \partial_t \lr{ \BA + \spacegrad \psi} \\
&= -\spacegrad \lr{ \phi + \partial_t \psi } – \partial_t \BA,
\end{aligned}

so if
\label{eqn:potentialMethods:1440}
\phi = \phi’ – \partial_t \psi,

the electric field will also be unaltered by this transformation.

In the STA representation, the field can similarly be altered by adding any (four)gradient to the potential. For example with only electric sources

\label{eqn:potentialMethods:1460}
\boldsymbol{\mathcal{F}} = \grad \wedge (A + \grad \psi) = \grad \wedge A

and for electric or magnetic sources

\label{eqn:potentialMethods:1480}

In the 3D GA representation, where the field is given by \ref{eqn:potentialMethods:1360}, there is no field that is being curled to add a gradient to. However, if the scalar and vector potentials transform as

\label{eqn:potentialMethods:1500}
\begin{aligned}
\boldsymbol{\mathcal{A}} &\rightarrow \boldsymbol{\mathcal{A}} + \spacegrad \psi \\
\phi &\rightarrow \phi – \partial_t \psi,
\end{aligned}

then the multivector potential transforms as
\label{eqn:potentialMethods:1520}
-\phi + v \boldsymbol{\mathcal{A}}
\rightarrow -\phi + v \boldsymbol{\mathcal{A}} + \partial_t \psi + v \spacegrad \psi,

so the electromagnetic field is unchanged when the multivector potential is transformed as

\label{eqn:potentialMethods:1540}
A \rightarrow A + \lr{ \spacegrad + \inv{v} \partial_t } \psi,

where $$\psi$$ is any field that has scalar or pseudoscalar grades. Viewed in terms of grade selection, this makes perfect sense, since the transformed field is

\label{eqn:potentialMethods:1560}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&\rightarrow
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } \lr{ A + \lr{ \spacegrad + \inv{v} \partial_t } \psi } }{1,2} \\
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A + \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi }{1,2} \\
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2}.
\end{aligned}

The $$\psi$$ contribution to the grade selection operator is killed because it has scalar or pseudoscalar grades.

## Lorenz gauge

Maxwell’s equations are completely decoupled if the potential can be found such that

\label{eqn:potentialMethods:1580}
\begin{aligned}
\boldsymbol{\mathcal{F}}
&=
\gpgrade{ \lr{ \spacegrad – \inv{v} \PD{t}{} } A }{1,2} \\
&=
\lr{ \spacegrad – \inv{v} \PD{t}{} } A.
\end{aligned}

When this is the case, Maxwell’s equations are reduced to four non-homogeneous potential wave equations

\label{eqn:potentialMethods:1620}
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } A = J,

that is

\label{eqn:potentialMethods:1600}
\begin{aligned}
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \phi &= – \inv{\epsilon} q_e \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \boldsymbol{\mathcal{A}}^{\mathrm{e}} &= – \mu \boldsymbol{\mathcal{J}} \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \phi_m &= – \frac{I}{\mu} q_m \\
\lr{ \spacegrad^2 – \inv{v^2} \PDSq{t}{} } \boldsymbol{\mathcal{A}}^{\mathrm{m}} &= – I \epsilon \boldsymbol{\mathcal{M}}.
\end{aligned}

There should be no a-priori assumption that such a field representation has no scalar, nor no pseudoscalar components. That explicit expansion in grades is

\label{eqn:potentialMethods:1640}
\begin{aligned}
\lr{ \spacegrad – \inv{v} \PD{t}{} } A
&=
\lr{ \spacegrad – \inv{v} \PD{t}{} } \lr{ -\phi + v \boldsymbol{\mathcal{A}}^{\mathrm{e}} + \eta I \lr{ -\phi_m + v \boldsymbol{\mathcal{A}}^{\mathrm{m}} } } \\
&=
\inv{v} \partial_t \phi
+ v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
+ I \eta v \spacegrad \wedge \boldsymbol{\mathcal{A}}^{\mathrm{m}}
– \partial_t \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
&+ v \spacegrad \wedge \boldsymbol{\mathcal{A}}^{\mathrm{e}}
– \eta I \spacegrad \phi_m
– I \eta \partial_t \boldsymbol{\mathcal{A}}^{\mathrm{m}} \\
&+ \eta I \inv{v} \partial_t \phi_m
+ I \eta v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}},
\end{aligned}

so if this potential representation has only vector and bivector grades, it must be true that

\label{eqn:potentialMethods:1660}
\begin{aligned}
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} &= 0 \\
\inv{v} \partial_t \phi_m + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{m}} &= 0.
\end{aligned}

The first is the well known Lorenz gauge condition, whereas the second is the dual of that condition for magnetic sources.

Should one of these conditions, say the Lorenz condition for the electric source potentials, be non-zero, then it is possible to make a potential transformation for which this condition is zero

\label{eqn:potentialMethods:1680}
\begin{aligned}
0
&\ne
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}} \\
&=
\inv{v} \partial_t (\phi’ – \partial_t \psi) + v \spacegrad \cdot (\boldsymbol{\mathcal{A}}’ + \spacegrad \psi) \\
&=
\inv{v} \partial_t \phi’ + v \spacegrad \boldsymbol{\mathcal{A}}’
+ v \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi,
\end{aligned}

so if $$\inv{v} \partial_t \phi’ + v \spacegrad \boldsymbol{\mathcal{A}}’$$ is zero, $$\psi$$ must be found such that
\label{eqn:potentialMethods:1700}
\inv{v} \partial_t \phi + v \spacegrad \cdot \boldsymbol{\mathcal{A}}^{\mathrm{e}}
= v \lr{ \spacegrad^2 – \inv{v^2} \partial_{tt} } \psi.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] David M Pozar. Microwave engineering. John Wiley \& Sons, 2009.

## Maxwell equation boundary conditions

[Click here for a PDF of this post with nicer formatting]

## Motivation

fig 1. Two surfaces normal to the interface.

Most electrodynamics textbooks either start with or contain a treatment of boundary value conditions. These typically involve evaluating Maxwell’s equations over areas or volumes of decreasing height, such as those illustrated in fig. 1, and fig. 2. These represent surfaces and volumes where the height is allowed to decrease to infinitesimal levels, and are traditionally used to find the boundary value constraints of the normal and tangential components of the electric and magnetic fields.

fig 2. A pillbox volume encompassing the interface.

More advanced topics, such as evaluation of the Fresnel reflection and transmission equations, also rely on similar consideration of boundary value constraints. I’ve wondered for a long time how the Fresnel equations could be attacked by looking at the boundary conditions for the combined field $$F = \BE + I c \BB$$, instead of the considering them separately.

## A unified approach.

The Geometric Algebra (and relativistic tensor) formulations of Maxwell’s equations put the electric and magnetic fields on equal footings. It is in fact possible to specify the boundary value constraints on the fields without first separating Maxwell’s equations into their traditional forms. The starting point in Geometric Algebra is Maxwell’s equation, premultiplied by a stationary observer’s timelike basis vector

\label{eqn:maxwellBoundaryConditions:20}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,

or

\label{eqn:maxwellBoundaryConditions:40}
\lr{ \partial_0 + \spacegrad} F = \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0}.

The electrodynamic field $$F = \BE + I c \BB$$ is a multivector in this spatial domain (whereas it is a bivector in the spacetime algebra domain), and has vector and bivector components. The product of the spatial gradient and the field can still be split into dot and curl components $$\spacegrad M = \spacegrad \cdot M + \spacegrad \wedge M$$. If $$M = \sum M_i$$, where $$M_i$$ is an grade $$i$$ blade, then we give this the Hestenes’ [1] definitions

\label{eqn:maxwellBoundaryConditions:60}
\begin{aligned}
\end{aligned}

With that said, Maxwell’s equation can be rearranged into a pair of multivector equations

\label{eqn:maxwellBoundaryConditions:80}
\begin{aligned}
\spacegrad \cdot F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{0,1} \\
\spacegrad \wedge F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{2,3},
\end{aligned}

The latter equation can be integrated with Stokes theorem, but we need to apply a duality transformation to the latter in order to apply Stokes to it

\label{eqn:maxwellBoundaryConditions:120}
\begin{aligned}
&=
-I^2 \spacegrad \cdot F \\
&=
&=
&=
-I \spacegrad \wedge (IF),
\end{aligned}

so

\label{eqn:maxwellBoundaryConditions:100}
\begin{aligned}
\spacegrad \wedge (I F) &= I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } \\
\spacegrad \wedge F &= -I \partial_t \BB.
\end{aligned}

Integrating each of these over the pillbox volume gives

\label{eqn:maxwellBoundaryConditions:140}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\int_{V} d^3 \Bx \cdot \lr{ I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } } \\
\oint_{\partial V} d^2 \Bx \cdot F
&=
– \partial_t \int_{V} d^3 \Bx \cdot \lr{ I \BB }.
\end{aligned}

In the absence of charges and currents on the surface, and if the height of the volume is reduced to zero, the volume integrals vanish, and only the upper surfaces of the pillbox contribute to the surface integrals.

\label{eqn:maxwellBoundaryConditions:200}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F) &= 0 \\
\oint_{\partial V} d^2 \Bx \cdot F &= 0.
\end{aligned}

With a multivector $$F$$ in the mix, the geometric meaning of these integrals is not terribly clear. They do describe the boundary conditions, but to see exactly what those are, we can now resort to the split of $$F$$ into its electric and magnetic fields. Let’s look at the non-dual integral to start with

\label{eqn:maxwellBoundaryConditions:160}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot F
&=
\oint_{\partial V} d^2 \Bx \cdot \lr{ \BE + I c \BB } \\
&=
\oint_{\partial V} d^2 \Bx \cdot \BE + I c d^2 \Bx \wedge \BB \\
&=
0.
\end{aligned}

No component of $$\BE$$ that is normal to the surface contributes to $$d^2 \Bx \cdot \BE$$, whereas only components of $$\BB$$ that are normal contribute to $$d^2 \Bx \wedge \BB$$. That means that we must have tangential components of $$\BE$$ and the normal components of $$\BB$$ matching on the surfaces

\label{eqn:maxwellBoundaryConditions:180}
\begin{aligned}
\lr{\BE_2 \wedge \ncap} \ncap – \lr{\BE_1 \wedge (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \cdot \ncap} \ncap – \lr{\BB_1 \cdot (-\ncap)} (-\ncap) &= 0 .
\end{aligned}

Similarly, for the dot product of the dual field, this is

\label{eqn:maxwellBoundaryConditions:220}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\oint_{\partial V} d^2 \Bx \cdot (I \BE – c \BB) \\
&=
\oint_{\partial V} I d^2 \Bx \wedge \BE – c d^2 \Bx \cdot \BB.
\end{aligned}

For this integral, only the normal components of $$\BE$$ contribute, and only the tangential components of $$\BB$$ contribute. This means that

\label{eqn:maxwellBoundaryConditions:240}
\begin{aligned}
\lr{\BE_2 \cdot \ncap} \ncap – \lr{\BE_1 \cdot (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \wedge \ncap} \ncap – \lr{\BB_1 \wedge (-\ncap)} (-\ncap) &= 0.
\end{aligned}

This is why we end up with a seemingly strange mix of tangential and normal components of the electric and magnetic fields. These constraints can be summarized as

\label{eqn:maxwellBoundaryConditions:260}
\begin{aligned}
( \BE_2 – \BE_1 ) \cdot \ncap &= 0 \\
( \BE_2 – \BE_1 ) \wedge \ncap &= 0 \\
( \BB_2 – \BB_1 ) \cdot \ncap &= 0 \\
( \BB_2 – \BB_1 ) \wedge \ncap &= 0
\end{aligned}

These relationships are usually expressed in terms of all of $$\BE, \BD, \BB$$ and $$\BH$$. Because I’d started with Maxwell’s equations for free space, I don’t have the $$\epsilon$$ and $$\mu$$ factors that produce those more general relationships. Those more general boundary value relationships are usually the starting point for the Fresnel interface analysis. It is also possible to further generalize these relationships to include charges and currents on the surface.

# References

[1] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.