wave equation

Green’s function for the spacetime gradient (and solution of Maxwell’s equation)

October 28, 2025 math and physics play No comments , , , , , , , , , , , , , , , , ,

[Click here for a PDF version of this post]

Motivation

I’ve been assembling a table of all the Green’s functions that can be used in electrodynamics. There’s one set of those Green’s functions left to fill in, the Green’s functions for the spacetime gradient:
\begin{equation}\label{eqn:spacetimeGradientGreens:20}
\lr{\spacegrad + \inv{c}\PD{t}{}} G(\Bx, \Bx’, t, t’) = \delta(\Bx – \Bx’)\delta(t – t’).
\end{equation}
I’d like to compute the retarded and advanced Green’s function for this operator for the 1D, 2D and 3D cases.

In [2] I use the retarded time Green’s function for the spacetime gradient to derive the Jefimenkos equations. However, in retrospect my handling of that material is sloppy. The starting point is the retarded wave equation Green’s function, but I didn’t even derive it, instead just lazily pointing to other authors that did.
I don’t actually ever state the spacetime gradient Green’s function, instead just using a sequence of intermediate results of that would be derivation. Even worse, all of that is scattered roughshod across both chapter II and III, as well as the appendix.

The idea.

Suppose that we know the Green’s functions for the wave equation
\begin{equation}\label{eqn:spacetimeGradientGreens:40}
\lr{\spacegrad^2 – \inv{c^2}\frac{\partial^2}{\partial t^2}} G_r(\Bx, \Bx’, t, t’) = \delta(\Bx – \Bx’)\delta(t – t’).
\end{equation}
\begin{equation}\label{eqn:spacetimeGradientGreens:60}
\lr{\spacegrad + \inv{c}\frac{\partial}{\partial t}} \lr{\spacegrad – \inv{c}\frac{\partial}{\partial t}} G_r(\Bx, \Bx’, t, t’) = \delta(\Bx – \Bx’)\delta(t – t’).
\end{equation}
This means that the Green’s function for the spacetime gradient, a multivector valued entity, satisfying \ref{eqn:spacetimeGradientGreens:20}, is
\begin{equation}\label{eqn:spacetimeGradientGreens:80}
G(\Bx, \Bx’, t, t’) = \lr{\spacegrad – \inv{c}\frac{\partial}{\partial t}} G_r(\Bx, \Bx’, t, t’).
\end{equation}
So if we have a Green’s function for the wave equation, it’s just a matter of taking derivatives to figure out the Green’s function for the spacetime gradient.

Why do we care? Recall that the multivector form of Maxwell’s equations is just
\begin{equation}\label{eqn:spacetimeGradientGreens:100}
\lr{\spacegrad + \inv{c}\frac{\partial}{\partial t}} F = J,
\end{equation}
so, if we know the Green’s function for this non-homogeneous problem, we may simply invert this equation for \( F \) with a convolution. This is how we can obtain the Jefimenkos equations in one fell swoop.

Now let’s evaluate these derivatives.

3D case.

Retarded case.

I’m going to start with the 3D retarded case, since I know the answer for that, and at least nominally, have all the composite parts of that derivation at hand. Then we can move on and compute the same for the advanced case, and then the 2D and 1D variants for fun. It’s not clear to me that we necessarily care about the 1D and 2D cases. I can imagine that there are circumstances where weird geometries or constraints force 1D and 2D solutions, but perhaps the 1D and 2D solutions will be academic and not practical.

Recall that the 3D retarded Green’s function for the wave equation was found to be
\begin{equation}\label{eqn:spacetimeGradientGreens:120}
G_r = -\inv{4 \pi r} \delta\lr{ t – t’ – r/c },
\end{equation}
where \( \Br = \Bx – \Bx’, r = \Abs{\Br} \).

Lemma 1.1: Gradient of \(\Abs{\Bx – \Bx’} \).

The gradient of the scalar \( r = \Abs{\Bx – \Bx’} \) is
\begin{equation*}
\spacegrad \Abs{\Bx – \Bx’} = \frac{\Br}{r}.
\end{equation*}
This will be written as \( \spacegrad r = \rcap \), with \( \rcap = \Br/r \).

Start proof:

\begin{equation}\label{eqn:spacetimeGradientGreens:140}
\begin{aligned}
\spacegrad \Abs{\Bx – \Bx’}
&=
\sum_m \Be_m \partial_m \sqrt{ \sum_n (x_n – x_n’)^2 } \\
&=
\sum_m \Be_m \inv{2} 2 \frac{x_m – x_m’}{r} \\
&=
\sum_m \Be_m \inv{2} 2 \frac{x_m – x_m’}{r} \\
&= \frac{\Br}{r}.
\end{aligned}
\end{equation}

End proof.

This means, suppressing the arguments of the delta function, that
\begin{equation}\label{eqn:spacetimeGradientGreens:160}
\begin{aligned}
\lr{ \spacegrad -(1/c) \partial_t } G_r
&= -\inv{4 \pi} \lr{
(\spacegrad r) \frac{\partial_r \delta}{r} + (\spacegrad r) \lr{ -\frac{1}{r^2}}\delta
– \inv{c r} \partial_t \delta
} \\
&= -\inv{4 \pi} \lr{ \frac{\rcap}{r} \partial_r \delta -\frac{\rcap}{r^2} \delta – \inv{c r} \partial_t \delta} \\
&= -\inv{4 \pi r} \lr{ \rcap \partial_r \delta – \frac{\rcap}{r} \delta – \inv{c} \partial_t \delta} \\
\end{aligned}
\end{equation}

Lemma 1.2: Derivatives of the delta function.

The derivative of the delta function (with respect to a non-integration variable parameter \( u \)) is
\begin{equation*}
\frac{d}{du} \delta( a u + b – t’ ) = a \delta( a u + b – t’ ) \frac{d}{dt’},
\end{equation*}
where \( t’ \) is the integration parameter for the delta function.

Observe that this is different than the usual identity
\begin{equation}\label{eqn:spacetimeGradientGreens:200}
\frac{d}{dt’} \delta(t’) = -\delta(t’) \frac{d}{dt’}.
\end{equation}

Start proof:

As usual, we figure out the meaning of these delta function derivatives by their action on a test function in a convolution.
\begin{equation}\label{eqn:spacetimeGradientGreens:220}
\int_{-\infty}^\infty \frac{d}{du} \delta( a u + b – t’ ) f(t’) dt’.
\end{equation}

Let’s start with a change of variables \( z = a u + b – t’ \), for which we find
\begin{equation}\label{eqn:spacetimeGradientGreens:240}
\begin{aligned}
t’ &= a u + b – z \\
dz &= – dt’ \\
\frac{d}{du} &= \frac{dz}{du} \frac{d}{dz} = a \frac{d}{dz}.
\end{aligned}
\end{equation}

Substitution back into \ref{eqn:spacetimeGradientGreens:220} gives
\begin{equation}\label{eqn:spacetimeGradientGreens:260}
\begin{aligned}
\int_{-\infty}^\infty \frac{d}{du} \delta( a u + b – t’ ) f(t’) dt’
&=
a \int_{\infty}^{-\infty} \lr{ \frac{d}{dz} \delta( z ) } f( a u + b – z ) (-dz) \\
&=
a \int_{-\infty}^{\infty} \lr{ \frac{d}{dz} \delta( z ) } f( a u + b – z ) dz \\
&=
\evalrange{a \delta(z) f( a u + b – z)}{-\infty}{\infty} \\
&\qquad –
a \int_{-\infty}^{\infty} \delta( z ) \frac{d}{dz} f( a u + b – z ) dz \\
&=
– \evalbar{ a \frac{d}{dz} f( a u + b – z ) }{z = 0} \\
&=
– \evalbar{ a \frac{d}{d(au + b – t’)} f( t’ ) }{t’ = a u + b} \\
&=
+ \evalbar{ a \frac{d}{d(t’ -(au + b))} f( t’ ) }{t’ = a u + b} \\
&=
\evalbar{ a \frac{dt’}{d(t’ – (a u + b))} \frac{d}{dt’} f( t’ ) }{t’ = a u + b} \\
&=
\evalbar{ a \frac{d}{dt’} f( t’ ) }{t’ = a u + b} \\
&=
\int_{-\infty}^\infty a \delta(a u + b – t’) \frac{df(t’)}{dt’} dt’.
\end{aligned}
\end{equation}

End proof.

In particular, this means that
\begin{equation}\label{eqn:spacetimeGradientGreens:280}
\begin{aligned}
\partial_r \delta(t – t’ – r/c) &= -\frac{1}{c} \delta(t – t’ – r/c) \PD{t’}{} \\
\partial_t \delta(t – t’ – r/c) &= \delta(t – t’ – r/c) \PD{t’}{} \\
\end{aligned}
\end{equation}

Application to \ref{eqn:spacetimeGradientGreens:160} gives
\begin{equation}\label{eqn:spacetimeGradientGreens:300}
\begin{aligned}
\lr{ \spacegrad -(1/c) \partial_t } G_r
&=
\inv{4 \pi r} \delta(t – t’ – r/c)
\lr{
\frac{\rcap}{r}
+
\lr{ \rcap + 1} \inv{c} \PD{t’}{}
} \\
\end{aligned}
\end{equation}
With \( t_r = t – r/c \), \ref{eqn:spacetimeGradientGreens:80} is found to be
\begin{equation}\label{eqn:spacetimeGradientGreens:320}
G(\Bx, \Bx’, t, t’) = \inv{4 \pi r} \delta(t_r – t’)
\lr{
\frac{\rcap}{r}
+
\lr{ \rcap + 1} \inv{c} \PD{t_r}{}
}
\end{equation}

Advanced case.

The advanced Green’s function for the wave equation is
\begin{equation}\label{eqn:spacetimeGradientGreens:340}
G_a(\Bx, \Bx’, t, t’) = -\inv{4 \pi r} \delta\lr{ t’ – t – r/c },
\end{equation}
so with \( t_a = t + r/c \), we must evaluate the delta function derivatives
\begin{equation}\label{eqn:spacetimeGradientGreens:360}
\begin{aligned}
\partial_r \delta\lr{ t’ – t – r/c } &= -\inv{c} \delta\lr{ t’ – t_a } \frac{d}{dt_a} \\
\partial_t \delta\lr{ t’ – t – r/c } &= – \delta\lr{ t’ – t_a } \frac{d}{dt_a}.
\end{aligned}
\end{equation}
So the Green’s function for the space time gradient is
\begin{equation}\label{eqn:spacetimeGradientGreens:380}
\begin{aligned}
G(\Bx, \Bx’, t, t’)
&= -\inv{4 \pi r} \lr{ \rcap \partial_r \delta – \frac{\rcap}{r} \delta – \inv{c} \partial_t \delta} \\
&= \inv{4 \pi r} \delta\lr{t’ – t_a} \lr{ \frac{\rcap}{r} + \lr{ \rcap – 1} \inv{c} \frac{d}{d t_a}}.
\end{aligned}
\end{equation}

Application: Maxwell’s equation.

Let’s use this to solve Maxwell’s equation. Finding a specific solution is now trivial. The retarded solution is
\begin{equation}\label{eqn:spacetimeGradientGreens:400}
\begin{aligned}
F(\Bx, t)
&= \int dV’ dt’ \gpgrade{
G(\Bx, \Bx’, t, t’) J(\Bx’, t’)
}{1,2} \\
&= \inv{ 4 \pi } \int d^3 \Bx’ dt’
\delta(t_r – t’)
\gpgrade{
\inv{r}
\lr{
\frac{\rcap}{r}
+
\lr{ \rcap + 1} \inv{c} \PD{t_r}{}
}
J(\Bx’, t’)
}{1,2} \\
&=
\inv{ 4 \pi } \int d^3 \Bx’
\gpgrade{
\inv{r}
\lr{
\frac{\rcap}{r} J(\Bx’, t_r)
+
\lr{ \rcap + 1} \inv{c} J'(\Bx’, t_r)
}
}{1,2},
\end{aligned}
\end{equation}
where \( J'(\Bx’, t_r) = \PDi{t_r}{J(\Bx’, t_r)} \).
Similarly, the advanced solution is
\begin{equation}\label{eqn:spacetimeGradientGreens:520}
F(\Bx, t) =
\inv{ 4 \pi } \int d^3 \Bx’
\gpgrade{
\inv{r}
\lr{
\frac{\rcap}{r} J(\Bx’, t_a)
+
\lr{ \rcap – 1} \inv{c} J'(\Bx’, t_a)
}
}{1,2},
\end{equation}
where derivatives are with respect to \( t_a \). In general, we are free to form a superposition of both the retarded and advanced solutions, as well as any solution of the homogeneous equation for charge and current free space \( \lr{ \spacegrad + (1/c) \partial_t } F = 0 \).

There’s a lot of abstraction baked into these solutions. One is the multivector charge and current density \( J \)
\begin{equation}\label{eqn:spacetimeGradientGreens:420}
J = \eta \lr{ c \rho – \BJ } + I \lr{ c \rho_\txtm – \BM },
\end{equation}
where \( \rho_\txtm, \BM \) are the fictitious magnetic sources that are used in engineering antenna and microwave circuit theory. We can ignore those if we choose. We also have the abstraction of the multivector field \( F = \BE + I \eta \BH = \BE + I c \BB \) itself on LHS.

Let’s unpack this solution into it’s constituent electric and magnetic field components, to see if the result looks more familiar. First note that
\begin{equation}\label{eqn:spacetimeGradientGreens:440}
\begin{aligned}
\gpgrade{\rcap J}{1}
&=
\gpgrade{
\rcap \eta \lr{ c \rho – \BJ } + \rcap I \lr{ c \rho_\txtm – \BM }
}{1} \\
&=
\eta c \rho \rcap
– I \rcap \wedge \BM \\
&=
\frac{\rho}{\epsilon} \rcap
+ \rcap \cross \BM,
\end{aligned}
\end{equation}
and
\begin{equation}\label{eqn:spacetimeGradientGreens:460}
\begin{aligned}
\gpgrade{\rcap J}{2}
&=
\gpgrade{
\rcap \eta \lr{ c \rho – \BJ } + \rcap I \lr{ c \rho_\txtm – \BM }
}{2} \\
&=
I \lr{
– \eta \rcap \cross \BJ
+ \rcap c \rho_\txtm
} \\
&=
I \eta \lr{
\BJ \cross \rcap
+ \rcap \frac{\rho_\txtm}{\mu}
}
\end{aligned}
\end{equation}
Selecting the vector and bivector components of the field \( F = \BE + I \eta \BH \), we have
\begin{equation}\label{eqn:spacetimeGradientGreens:480}
\BE(\Bx, t)
=
\inv{4 \pi \epsilon}
\int d^3 \Bx’
\lr{
\frac{\rho}{r^2} \rcap
+ \frac{\rho’}{c r} \rcap
+ \epsilon \frac{\rcap}{r^2} \cross \BM
+ \frac{\epsilon \rcap}{c r} \cross \BM’
\mp \frac{1}{c^2 r} \BJ’
}
\end{equation}
and
\begin{equation}\label{eqn:spacetimeGradientGreens:500}
\BH(\Bx, t)
=
\inv{4 \pi \mu}
\int d^3 \Bx’
\lr{
\frac{\rho_\txtm}{r^2} \rcap
+ \frac{\rho_\txtm}{c r} \rcap
+ \mu \BJ \cross \frac{\rcap}{r^2}
+ \mu \BJ’ \cross \frac{\rcap}{c r}
\mp \inv{c^2 r} \BM’
},
\end{equation}
where the negative sign is for the retarded solution, with times and derivatives with respect to the retarded time \( t_r = t – \Abs{\Bx – \Bx’}/c \), and the positive case for the advanced solutions where times are evaluated at the advanced time \( t_a = t + \Abs{\Bx – \Bx’}/c \).
For the retarded case, if we zero the fictitious sources, setting \( \rho_\txtm = 0, \BM = 0 \), these are Jefimenko’s equations, as seen in [1]. Griffiths derives them by first solving for the potential functions that solve the 2nd order scalar wave equation problem, and then computing all the derivatives.

1D case.

The Green’s function for the 1D spacetime gradient is easy to compute
\begin{equation}\label{eqn:spacetimeGradientGreens:540}
\begin{aligned}
G
&= -\frac{c}{2} \lr{ \spacegrad – \inv{c} \partial_t } \Theta(\pm (t – t’) – r/c) \\
&=
-\frac{c}{2} \lr{
-\inv{c} \rcap – \inv{c} (\pm 1)
}
\delta(\pm (t – t’) – r/c) \\
&=
\inv{2} \lr{ \rcap \pm 1 } \delta(\pm (t – t’) – r/c).
\end{aligned}
\end{equation}

2D case.

The Green’s function for the 2D spacetime gradient is
\begin{equation}\label{eqn:spacetimeGradientGreens:560}
G = -\inv{2 \pi}
\lr{ \spacegrad – \inv{c} \partial_t }
\frac{\Theta(\pm (t – t’) – r/c) }{
\sqrt{\lr{ \tau^2 – r^2/c^2 }}
}.
\end{equation}

The derivatives of the step are
\begin{equation}\label{eqn:spacetimeGradientGreens:580}
\begin{aligned}
\lr{ \spacegrad – \inv{c} \partial_t } \Theta(\pm (t – t’) – r/c)
&=
\lr{
-\inv{c} \rcap -\inv{c} (\pm 1)
}
\delta(\pm (t – t’) – r/c) \\
&=
-\inv{c} \lr{ \rcap \pm 1 }
\delta(\pm \tau – r/c).
\end{aligned}
\end{equation}
and the derivatives of the denominator is
\begin{equation}\label{eqn:spacetimeGradientGreens:600}
\begin{aligned}
\lr{ \spacegrad – \inv{c} \partial_t }
\lr{(t – t’)^2 – r^2/c^2}^{-1/2}
&=
-\inv{2}(2) \lr{ -\inv{c^2} r \rcap -\inv{c} (t – t’) }
\lr{(t – t’)^2 – r^2/c^2}^{-3/2} \\
&=
\inv{c^2} \lr{ \Br + c \tau }
\lr{\tau^2 – r^2/c^2}^{-3/2}.
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:spacetimeGradientGreens:620}
G(r, \tau) =
\frac{
\lr{\tau^2 – r^2/c^2}^{-3/2}
}{2 \pi c^2}
\lr{
c \lr{ \rcap \pm 1 }
\lr{\tau^2 – r^2/c^2}
\delta(\pm \tau – r/c)
-\lr{ \Br + c \tau }
\Theta(\pm \tau – r/c)
}.
\end{equation}

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[2] Peeter Joot. Geometric Algebra for Electrical Engineers. Kindle Direct Publishing, Toronto, 2019.

Derivation of the 2D Green’s function for the wave equation operator.

October 22, 2025 math and physics play , , , , , , ,

[Click here for a PDF version of this post]

While it was difficult to attempt to verify the 2D Green’s function, it actually turns out to be fairly easy to derive it, provided we pick an alternate pole displacement from the 1D evaluation to make our lives easier.

With \( \Br = \Bx – \Bx’ \), and \( \tau = t – t’ \), and \( \epsilon > 0 \), we can form
\begin{equation}\label{eqn:waveEquationGreens:1340}
G_\epsilon(\Br, \tau) = \frac{c^2}{\lr{2 \pi}^3} \int d^2 \Bk d\omega \frac{ e^{j \Bk \cdot \Br + j \omega \tau}}{\lr{\omega -j \epsilon}^2 – \Bk^2 c^2 }
\end{equation}
This pole displacement has the nice property that both poles live in the upper half plane, so for \( \tau > 0 \), we have
\begin{equation}\label{eqn:waveEquationGreens:1360}
\begin{aligned}
G_\epsilon(\Br, \tau)
&= \frac{c^2}{\lr{2 \pi}^3} \int d^2 \Bk d\omega \frac{ e^{j \Bk \cdot \Br + j \omega \tau}}{
\lr{\omega -\lr{ \Abs{\Bk} c – j \epsilon}}
\lr{\omega -\lr{ -\Abs{\Bk} c – j \epsilon}}
} \\
&=
\Theta(\tau) \frac{c^2 j}{\lr{2 \pi}^2} \int d^2 \Bk e^{j \Bk \cdot \Br}
\lr{
\evalbar{
\frac{e^{ j \omega \tau}}{ \lr{\omega -\lr{ -\Abs{\Bk} c – j \epsilon}} }
}
{\omega = \Abs{\Bk} c – j \epsilon}
+
\evalbar{
\frac{e^{ j \omega \tau}}{ \lr{\omega -\lr{ \Abs{\Bk} c – j \epsilon}} }
}
{\omega = -\Abs{\Bk} c – j \epsilon}
}
\\
&=
\Theta(\tau) \frac{c^2 j}{\lr{2 \pi}^2} \int d^2 \Bk e^{j \Bk \cdot \Br} e^{ -j \epsilon \tau }
\lr{
\frac{e^{ j \Abs{\Bk} c \tau}}{ 2 \Abs{\Bk} c }
+
\frac{e^{ -j \Abs{\Bk} c \tau}}{ -2 \Abs{\Bk} c }
} \\
&=
\Theta(\tau) \frac{j^2 c}{\lr{2 \pi}^2} \int_{k=0}^\infty k dk \int_{\phi=0}^{2 \pi} d\phi e^{j k\Abs{\Br} \cos\phi } e^{ -j \epsilon \tau } \frac{\sin\lr{ k c \tau }}{k}.
\end{aligned}
\end{equation}
We’ve now successfully removed the singularity, and can evaluate the \(\epsilon \rightarrow 0 \) limit. We may also evaluate the \( \phi \) integral, remembering that
\begin{equation}\label{eqn:waveEquationGreens:1380}
\int_0^{2 \pi} e^{j \Abs{a} \cos\phi} d\phi = 2 \pi J_0(\Abs{a}),
\end{equation}
to find
\begin{equation}\label{eqn:waveEquationGreens:1400}
G(\Br, \tau) = -\Theta(\tau) \frac{c}{2 \pi} \int_{k=0}^\infty dk J_0(k\Abs{\Br}) \sin\lr{ k c \tau }.
\end{equation}
This integral yields easily to Mathematica, and we find
\begin{equation}\label{eqn:waveEquationGreens:1420}
G(\Br, \tau) = -\Theta(\tau) \frac{c}{2 \pi} \frac{\Theta(c \tau – \Abs{\Br})}{\sqrt{(c\tau)^2 – \Br^2}}.
\end{equation}
However, since \( \Theta(c \tau – \Abs{\Br}) = 1 \) only for \( \tau > \Abs{\Br}/c \), the \( \Theta(\tau) \) factor is redundant, and we find
\begin{equation}\label{eqn:waveEquationGreens:1440}
\boxed{
G(\Br, \tau) = – \frac{1}{2 \pi} \frac{\Theta(c \tau – \Abs{\Br})}{\sqrt{\tau^2 – \Br^2/c^2}},
}
\end{equation}
which matches the retarded Green’s function claimed by Grok.

Repeating this analysis for \( \tau < 0, \epsilon < 0 \), we find
\begin{equation}\label{eqn:waveEquationGreens:1460}
G(\Br, \tau) = -\Theta(-\tau) \frac{c}{2 \pi} \frac{\Theta(-c \tau – \Abs{\Br})}{\sqrt{(c\tau)^2 – \Br^2}},
\end{equation}
which we also see matches the Grok result for the advanced Green’s function. Both of these computations can be trivially performed in Mathematica following the same steps (taking all the fun from the story.) The advanced integral evaluation is shown in fig. 1 as an example.

fig. 1. Advanced 2D Green’s function for wave equation operator.

Deriving the Green’s functions for the 1D wave equation.

October 13, 2025 math and physics play , , , , , , , , ,

[Click here for a PDF version of this (and previous) post]

Having had trouble verifying the 2D Green’s function, let’s try deriving them ourselves.

Setup.

Let’s try solving the forced wave equation
\begin{equation}\label{eqn:waveEquationGreens:860}
\lr{ \spacegrad^2 – \inv{c^2}\frac{\partial^2}{\partial t^2} } f(x,t) = g(x,t),
\end{equation}
using Fourier transform pairs
\begin{equation}\label{eqn:waveEquationGreens:880}
\begin{aligned}
F(\Bx, t) &= \inv{\lr{\sqrt{2 \pi}}^{N+1}} \int e^{j \Bk \cdot \Bx + j \omega t} \hat{F}(\Bk, \omega) d^N \Bk d\omega \\
\hat{F}(\Bk, \omega) &= \inv{\lr{\sqrt{2 \pi}}^{N+1}} \int e^{-j \Bk \cdot \Bx – j \omega t} F(\Bx, t) d^N \Bx dt.
\end{aligned}
\end{equation}
We can now transform \ref{eqn:waveEquationGreens:860}, expressing \(f, g\) in terms of their transforms
\begin{equation}\label{eqn:waveEquationGreens:900}
\lr{ \lr{ j \Bk}^2 – \lr{ j \omega }^2/c^2 } \hat{f} = \hat{g},
\end{equation}
or
\begin{equation}\label{eqn:waveEquationGreens:920}
\hat{f} = \frac{\hat{g}}{(\omega/c)^2 – \Bk^2},
\end{equation}
or
\begin{equation}\label{eqn:waveEquationGreens:940}
\begin{aligned}
f(\Bx, t)
&= \inv{\lr{\sqrt{2 \pi}}^{N+1}} \int e^{j \Bk \cdot \Bx + j \omega t} \frac{\hat{g}(\Bk, \omega)}{(\omega/c)^2 – \Bk^2} d^N \Bk d\omega \\
&= \inv{\lr{2 \pi}^{N+1}} \int e^{j \Bk \cdot \Bx + j \omega t} \frac{g(\Bx’, t’)}{(\omega/c)^2 – \Bk^2} d^N \Bk d\omega e^{-j \Bk \cdot \Bx’ – j \omega t’} d^N \Bx’ dt’ \\
&=
\int d^N \Bx’ dt’ g(\Bx’, t’) G(\Bx, \Bx’, t, t’),
\end{aligned}
\end{equation}
where
\begin{equation}\label{eqn:waveEquationGreens:960}
G(\Bx, \Bx’, t, t’)
=
\inv{\lr{2 \pi}^{N+1}} \int d^N \Bk d\omega \frac{e^{j \Bk \cdot (\Bx-\Bx’) + j \omega (t- t’)}}{(\omega/c)^2 – \Bk^2}.
\end{equation}

Evaluating the 1D Green’s function

For the 1D case we have
\begin{equation}\label{eqn:waveEquationGreens:980}
G(\Bx, \Bx’, t, t’)
=
\inv{\lr{2 \pi}^2} \int dk d\omega \frac{e^{j k (x-x’) + j \omega (t- t’)}}{(\omega/c)^2 – k^2}
\end{equation}
Let’s write \( u = x – x’ \), and \( \tau = t – t’ \), and displace the poles by an imaginary offset \( j \epsilon \)
\begin{equation}\label{eqn:waveEquationGreens:1000}
G_\epsilon(u, \tau)
=
-\inv{\lr{2 \pi}^2} \int dk d\omega \frac{e^{j k u + j \omega \tau }}{\lr{ k – \lr{ \omega/c + j \epsilon}}\lr{ k + \lr{ \omega/c + j \epsilon }}}.
\end{equation}

Let’s start by assuming that \( \epsilon > 0 \). When \( u > 0 \), we can use a upper half plane contour in the k-plane, enclosing \( \omega/c + j \epsilon \), to find
\begin{equation}\label{eqn:waveEquationGreens:1020}
\begin{aligned}
G_\epsilon(u, \tau)
&=
-\frac{2 \pi j}{\lr{2 \pi}^2} \int d\omega \evalbar{\frac{e^{j k u + j \omega \tau }}{k + \lr{ \omega/c + j \epsilon }}}{k = \omega/c + j \epsilon} \\
&=
\frac{1}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau + u/c)}}{\omega/c + j \epsilon }.
\end{aligned}
\end{equation}
However, for \( u < 0 \) we need the lower half plane contour that encloses \( -\omega/c - j \epsilon \). Our residue calculation is \begin{equation}\label{eqn:waveEquationGreens:1040} \begin{aligned} G_\epsilon(u, \tau) &= -\frac{-2 \pi j}{\lr{2 \pi}^2} \int d\omega \evalbar{\frac{e^{j k u + j \omega \tau }}{k - \lr{ \omega/c + j \epsilon }}}{k = -\omega/c - j \epsilon} \\ &= \frac{1}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau - u/c)}}{\omega/c + j \epsilon }. \end{aligned} \end{equation} Merging the two cases, we have \begin{equation}\label{eqn:waveEquationGreens:1060} \begin{aligned} G_\epsilon(u, \tau) &= \frac{1}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau + \Abs{u}/c)}}{\omega/c + j \epsilon } \\ &= \frac{c}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau + \Abs{u}/c)}}{\omega + j \epsilon c } \\ \end{aligned} \end{equation} This can be integrated in the \(\omega\)-plane, with the pole at \( -j \epsilon c \). For \( \tau + \Abs{u}/c > 0 \), we need an upper half plane infinite semicircular contour, but have no enclosed pole. For \( \tau + \Abs{u}/c < 0 \), we have \begin{equation}\label{eqn:waveEquationGreens:1080} \begin{aligned} G_\epsilon(u, \tau) &= \frac{c (-2 \pi j)}{4 \pi j} \evalbar{ e^{j \omega (\tau + \Abs{u}/c)}}{\omega = -j \epsilon c} \\ &= -\frac{c}{2}, \end{aligned} \end{equation} (in the limit.) Putting both pieces together, we have found the advanced Green's function for the 1D wave equation \begin{equation}\label{eqn:waveEquationGreens:1100} \boxed{ G(u, \tau) = -\frac{c}{2} \Theta(-\tau - \Abs{u}/c). } \end{equation} Having found the advanced solution with a positive pole displacement, it is reasonable to assume that we will get the retarded solution, with a negative pole displacement \( \epsilon < 0 \). This time, the upper half plane infinite semicircular contour encloses the \( -\omega/c -j \epsilon \) pole, and the lower half plane contour encloses the \( \omega/c + j \epsilon \) pole. This gives, us, for \( u > 0 \)
\begin{equation}\label{eqn:waveEquationGreens:1120}
\begin{aligned}
G_\epsilon(u, \tau)
&=
-\frac{2 \pi j}{\lr{2 \pi}^2} \int d\omega \evalbar{\frac{e^{j k u + j \omega \tau }}{k – \lr{ \omega/c + j \epsilon }}}{k = -\omega/c – j \epsilon} \\
&=
-\frac{1}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau – u/c)}}{\omega/c + j \epsilon } \\
&=
-\frac{c}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau – u/c)}}{\omega – (-j \epsilon c) } \\
&=
-\frac{2 \pi j c}{4 \pi j} \evalbar{e^{j \omega (\tau – u/c)}}{\omega = -j \epsilon c } \Theta(\tau – u/c) \\
&=
-\frac{c}{2} \Theta(\tau – u/c),
\end{aligned}
\end{equation}
and for \( u < 0 \) \begin{equation}\label{eqn:waveEquationGreens:1140} \begin{aligned} G_\epsilon(u, \tau) &= -\frac{-2 \pi j}{\lr{2 \pi}^2} \int d\omega \evalbar{\frac{e^{j k u + j \omega \tau }}{k + \lr{ \omega/c + j \epsilon }}}{k = \omega/c + j \epsilon} \\ &= \frac{1}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau + u/c)}}{\omega/c + j \epsilon } \\ &= \frac{c}{4 \pi j} \int d\omega \frac{e^{j \omega (\tau + u/c)}}{\omega - (-j \epsilon c) } \\ &= -\frac{-2 \pi j c}{4 \pi j} \evalbar{e^{j \omega (\tau + u/c)}}{\omega = -j \epsilon c } \Theta(\tau + u/c) \\ &= -\frac{c}{2} \Theta(\tau + u/c). \end{aligned} \end{equation} Combining the two cases, we've found the retarded solution \begin{equation}\label{eqn:waveEquationGreens:1160} \boxed{ G(u, \tau) = -\frac{c}{2} \Theta(\tau - \Abs{u}/c). } \end{equation} This matches Grok's claim (which we also verified.)

The convolution integrals.

Let’s write out the convolution integrals for fun. They are
\begin{equation}\label{eqn:waveEquationGreens:1180}
f(x,t) = -\frac{c}{2}
\int_{-\infty}^\infty dt’
\int_{-\infty}^\infty dx’
\Theta(\pm(t – t’) – \Abs{x – x’}/c) g(x’, t’).
\end{equation}

For the retarded case, we need only evaluate the step over the region
\begin{equation}\label{eqn:waveEquationGreens:1220}
t – t’ – \Abs{x – x’}/c > 0,
\end{equation}
or
\begin{equation}\label{eqn:waveEquationGreens:1240}
t – \Abs{x – x’}/c > t’.
\end{equation}
For the advanced case, we want the restriction
\begin{equation}\label{eqn:waveEquationGreens:1260}
-t + t’ – \Abs{x – x’}/c > 0,
\end{equation}
or
\begin{equation}\label{eqn:waveEquationGreens:1280}
t’ > t + \Abs{x – x’}/c,
\end{equation}
so the retarded convolution is
\begin{equation}\label{eqn:waveEquationGreens:1300}
f(x,t) = -\frac{c}{2}
\int_{-\infty}^\infty dx’
\int_{-\infty}^{t – \Abs{x – x’}/c} dt’
g(x’, t’),
\end{equation}
and the advanced convolution is
\begin{equation}\label{eqn:waveEquationGreens:1320}
f(x,t) = -\frac{c}{2}
\int_{-\infty}^\infty dx’
\int_{t + \Abs{x – x’}/c}^\infty dt’
g(x’, t’).
\end{equation}

TODO.

Next up will be an attempt to find the 2D Green’s function, and then for good measure, we should try to find the 3D case ourselves.

Green’s function for the wave equation: 1D and 2D cases.

October 4, 2025 math and physics play , , , , , , , , , ,

[Click here for a PDF version of this post]

The Green’s function(s) \( G(\Br, \tau) \) for the 3D wave equation
\begin{equation}\label{eqn:waveEquationGreens:40}
\lr{ \spacegrad^2 – \inv{c^2}\frac{\partial^2}{\partial t^2} } G(\Br, \tau) = \delta(\Br) \delta(\tau),
\end{equation}
where
\begin{equation}\label{eqn:waveEquationGreens:20}
\begin{aligned}
\Br &= \Bx – \Bx’ \\
r &= \Abs{\Br} \\
\tau &= t – t’,
\end{aligned}
\end{equation}
is
\begin{equation}\label{eqn:waveEquationGreens:60}
G(\Br, \tau) = -\inv{4 \pi r} \delta( \pm \tau – r/c ).
\end{equation}
Here the positive case is the retarded solution, and negative the advanced solution. The derivation of these Green’s functions can be found derived in many places, including [1], [2], and [3]

I wasn’t familiar with the 1D and 2D Green’s functions for the wave equation. Grok says they are, respectively
\begin{equation}\label{eqn:waveEquationGreens:80}
\begin{aligned}
G(\Br, \tau) &= -\frac{c}{2} \Theta( \pm \tau – r/c ) \\
G(\Br, \tau) &= -\inv{2 \pi \sqrt{ \tau^2 – r^2/c^2 } } \Theta( \pm \tau – r/c ).
\end{aligned}
\end{equation}
At least for the time being, I thought that I’ll attempt to verify these, instead of deriving them. For the 1D case, this turns out to be fairly straightforward. Perhaps unexpectedly, that isn’t true for the 2D case, and I’ll have to revisit that case in other ways. In this post, I’ll show the verification of the 1D Green’s function, and my partial attempt to verify the 2D case.

1D Green’s function verification.

We will use the Heaviside theta representation of the absolute value.
\begin{equation}\label{eqn:waveEquationGreens:100}
\Abs{x} = x \Theta(x) – x \Theta(-x).
\end{equation}
Recall that the derivative of the absolute value function is a sign function
\begin{equation}\label{eqn:waveEquationGreens:120}
\begin{aligned}
\Abs{x}’
&= \Theta(x) – \Theta(-x) + x \delta(x) + x \delta(-x) \\
&= \Theta(x) – \Theta(-x) + 2 x \delta(x) \\
&= \Theta(x) – \Theta(-x) \\
&= \textrm{sgn}(x),
\end{aligned}
\end{equation}
where \( x \delta(x) \) is zero in a distributional sense (zero if applied to a test function.)
\begin{equation}\label{eqn:waveEquationGreens:140}
\begin{aligned}
\textrm{sgn}(x)’
&= \Theta(x)’ – \Theta(-x)’ \\
&= \delta(x) + \delta(-x) \\
&= 2 \delta(x).
\end{aligned}
\end{equation}

Now let’s evaluate the \( x \) partials.
\begin{equation}\label{eqn:waveEquationGreens:160}
\begin{aligned}
\PD{x}{} \Theta(\tau – r/c)
&=
-\inv{c} \delta\lr{ \tau – r/c } \PD{x}{} \Abs{x – x’} \\
&=
-\inv{c} \delta\lr{ \tau – r/c } \textrm{sgn}(x – x’).
\end{aligned}
\end{equation}
The second derivative is
\begin{equation}\label{eqn:waveEquationGreens:180}
\begin{aligned}
\frac{\partial^2}{\partial x^2} \Theta(\tau – r/c)
&=
-\inv{c}
\lr{
-\inv{c} \delta’\lr{ \tau – r/c } (\textrm{sgn}(x – x’))^2
+
\delta\lr{ \tau – r/c } 2 \delta(x – x’)
} \\
&=
\inv{c^2} \delta’\lr{ \tau – r/c } – \frac{2}{c} \delta\lr{ \tau} \delta(x – x’).
\end{aligned}
\end{equation}
The transformation above from \( \delta\lr{ \tau – r/c } \rightarrow \delta(\tau) \) is because the spatial delta function \( \delta(x – x’) \) is zero unless \( x = x’ \), and \( r = 0 \) at that point.

The time derivatives are easier to compute
\begin{equation}\label{eqn:waveEquationGreens:200}
\begin{aligned}
\frac{\partial^2}{\partial t^2} \Theta(\tau – r/c)
&=
\PD{t}{} \delta(\tau – r/c) \\
&=
\delta'(\tau – r/c).
\end{aligned}
\end{equation}

Putting the pieces together, we have
\begin{equation}\label{eqn:waveEquationGreens:220}
\begin{aligned}
\lr{ \spacegrad^2 – \inv{c^2}\frac{\partial^2}{\partial t^2} } \Theta(\tau – r/c)
&=
\inv{c^2} \delta’\lr{ \tau – r/c } – \frac{2}{c} \delta\lr{ \tau} \delta(x – x’)
– \inv{c^2} \delta'(\tau – r/c)
\\
&=
– \frac{2}{c} \delta\lr{ \tau} \delta(x – x’).
\end{aligned}
\end{equation}
Dividing through by \( -2/c \) gives us
\begin{equation}\label{eqn:waveEquationGreens:240}
\lr{ \spacegrad^2 – \inv{c^2}\frac{\partial^2}{\partial t^2} } G(\Bx – \Bx’, t – t’) = \delta\lr{t – t’} \delta\lr{\Bx – \Bx’},
\end{equation}
as desired. The \( \delta \) derivative terms can be given meaning, but they conveniently cancel out, so we don’t have to think about that this time.

It’s easy to see that the advanced Green’s function has the same behaviour, since the two time partials will bring down a factor of \( (\pm 1)^2 = 1 \) in general, which does not change anything above.

Attempted verification of the claimed 2D Green’s function.

Now let’s try to verify Grok’s claim for the 2D Green’s function, starting with a few helpful side calculations.

\begin{equation}\label{eqn:waveEquationGreens:260}
\begin{aligned}
\spacegrad \Abs{r}
&= \sum_m \Be_m \partial_m \sqrt{ \sum_n \lr{x_n – x_n’}^2 } \\
&= \inv{2} 2 \frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}} \\
&= \rcap
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:waveEquationGreens:280}
\begin{aligned}
\spacegrad \lr{ \tau^2 – r^2/c^2 }^{-1/2}
&=
-\inv{2} \lr{ \tau^2 – r^2/c^2 }^{-3/2} \lr{-\frac{2 r}{c^2}} \spacegrad r \\
&=
-\inv{2} \lr{ \tau^2 – r^2/c^2 }^{-3/2} \lr{-\frac{2 r}{c^2}} \rcap \\
&=
\frac{r}{c^2} \lr{ \tau^2 – r^2/c^2 }^{-3/2} \rcap
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:waveEquationGreens:300}
\begin{aligned}
\spacegrad \lr{ \tau^2 – r^2/c^2 }^{-3/2}
&=
-\frac{3}{2} \lr{ \tau^2 – r^2/c^2 }^{-5/2} \lr{-\frac{2 r}{c^2}} \spacegrad r \\
&=
-\frac{3}{2} \lr{ \tau^2 – r^2/c^2 }^{-5/2} \lr{-\frac{2 r}{c^2}} \rcap \\
&=
\frac{3 r}{c^2} \lr{ \tau^2 – r^2/c^2 }^{-5/2} \rcap
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:waveEquationGreens:320}
\begin{aligned}
\spacegrad \Theta\lr{ \pm \tau – r/c }
&=
-\inv{c} \delta\lr{ \pm \tau – r/c } \spacegrad r \\
&=
-\inv{c} \delta\lr{ \pm \tau – r/c } \rcap
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:waveEquationGreens:340}
\begin{aligned}
\spacegrad \delta\lr{ \pm \tau – r/c }
&=
-\inv{c} \delta’\lr{ \pm \tau – r/c } \spacegrad r \\
&=
-\inv{c} \delta’\lr{ \pm \tau – r/c } \rcap
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:waveEquationGreens:360}
\begin{aligned}
\spacegrad \cdot \rcap
&=
\spacegrad \cdot \frac{\Bx – \Bx’}{r} \\
&=
\inv{r} \spacegrad \cdot \lr{\Bx – \Bx’} + \lr{\Bx – \Bx’} \cdot \spacegrad \inv{r} \\
&=
\frac{2}{r} + \lr{\Bx – \Bx’} \cdot \lr{ -\inv{r^2} \rcap } \\
&=
\frac{2}{r} – \inv{r} \\
&=
\frac{1}{r}.
\end{aligned}
\end{equation}
In summary, with \( X = \tau^2 – r^2/c^2 \)
\begin{equation}\label{eqn:waveEquationGreens:540}
\begin{aligned}
\spacegrad \Abs{r} &= \rcap \\
\spacegrad X^{-1/2} &= \inv{c^2} r \rcap X^{-3/2} \\
\spacegrad X^{-3/2} &= \inv{c^2} 3 r \rcap X^{-5/2} \\
\spacegrad \Theta &= – \inv{c} \delta \rcap \\
\spacegrad \delta &= – \inv{c} \rcap \delta’ \\
\spacegrad \cdot \rcap &= \frac{1}{r}.
\end{aligned}
\end{equation}

We will want a couple helper Laplacian operations, including
\begin{equation}\label{eqn:waveEquationGreens:580}
\begin{aligned}
\spacegrad^2 X^{-1/2}
&=
\spacegrad \cdot \lr{ \inv{c^2} r \rcap X^{-3/2} } \\
&=
\inv{c^2} \lr{ \spacegrad \cdot \rcap} \lr{ r X^{-3/2} }
+ \inv{c^2} \lr{ \rcap \cdot \spacegrad r } X^{-3/2}
+ \frac{r}{c^2} \lr{ \rcap \cdot \spacegrad X^{-3/2} } \\
&=
\inv{c^2} X^{-3/2}
+ \inv{c^2} X^{-3/2}
+ \frac{r}{c^2} \lr{ \inv{c^2} 3 r X^{-5/2} } \\
&=
\frac{2}{c^2} X^{-3/2}
+ \frac{3 r^2}{c^4} X^{-5/2}.
\end{aligned}
\end{equation}

The Laplacian of the step is
\begin{equation}\label{eqn:waveEquationGreens:600}
\begin{aligned}
\spacegrad^2 \Theta
&=
\spacegrad \cdot \lr{ – \inv{c} \delta \rcap } \\
&=
-\inv{c}
\lr{ \spacegrad \cdot \rcap } \delta
-\inv{c}
\rcap \cdot \spacegrad \delta \\
&=
-\inv{r c} \delta
-\inv{c}
\rcap \cdot \lr{
– \inv{c} \rcap \delta’
}
&=
-\inv{r c} \delta
+\inv{c^2} \delta’.
\end{aligned}
\end{equation}

We are now ready to compute the Laplacian of \( \Theta X^{-1/2} \). Let’s expand the chain rule for that, so that the rest of the job is just algebra
\begin{equation}\label{eqn:waveEquationGreens:620}
\begin{aligned}
\spacegrad^2 \lr{ f g }
&=
\spacegrad \cdot \lr{ f \spacegrad g }
+
\spacegrad \cdot \lr{ g \spacegrad f } \\
&=
f \spacegrad^2 g + \spacegrad f \cdot \spacegrad g
+
g \spacegrad^2 f + \spacegrad g \cdot \spacegrad f \\
&=
f \spacegrad^2 g + 2 \spacegrad f \cdot \spacegrad g + g \spacegrad^2 f.
\end{aligned}
\end{equation}
We want to sub in
\begin{equation}\label{eqn:waveEquationGreens:640}
\begin{aligned}
\spacegrad^2 \Theta &= -\inv{r c} \delta +\inv{c^2} \delta’ \\
\spacegrad^2 X^{-1/2} &= \frac{2}{c^2} X^{-3/2} + \frac{3 r^2}{c^4} X^{-5/2} \\
\spacegrad X^{-1/2} &= \inv{c^2} r \rcap X^{-3/2} \\
\spacegrad \Theta &= – \inv{c} \delta \rcap.
\end{aligned}
\end{equation}
We get
\begin{equation}\label{eqn:waveEquationGreens:660}
\begin{aligned}
\spacegrad^2 \lr{ \Theta X^{-1/2} }
&=
\lr{ -\inv{r c} \delta +\inv{c^2} \delta’ } X^{-1/2}
+ \lr{ \frac{2}{c^2} X^{-3/2} + \frac{3 r^2}{c^4} X^{-5/2} } \Theta
– 2 \inv{c^2} r X^{-3/2} \inv{c} \delta \\
&=
\inv{c^2} X^{-1/2} \delta’
+ \inv{c^2} \lr{ 2 \lr{\tau^2 – r^2/c^2} + \frac{3 r^2}{c^2} } X^{-5/2} \Theta
– \inv{r c} \lr{ \tau^2 – r^2/c^2 + 2 r^2/c^2 } X^{-3/2} \delta \\
&=
\inv{c^2} X^{-1/2} \delta’
+ \inv{c^2} \lr{ 2 \tau^2 + \frac{r^2}{c^2} } X^{-5/2} \Theta
– \inv{r c} \lr{ \tau^2 + \frac{r^2}{c^2} } X^{-3/2} \delta
\end{aligned}
\end{equation}

We are ready to evaluate the time derivatives now. Let’s try it the same way with
\begin{equation}\label{eqn:waveEquationGreens:680}
\begin{aligned}
\partial_{tt} \lr{ f g }
&=
\partial_t \lr{ f \partial_t g + g \partial_t f } \\
&=
g \partial_{tt} f
+
f \partial_{tt} g
+ 2 \lr{ \partial_t f } \lr{ \partial_t g }.
\end{aligned}
\end{equation}
A couple of the time partials can be computed by inspection
\begin{equation}\label{eqn:waveEquationGreens:700}
\begin{aligned}
\partial_t \Theta &= \pm \delta \\
\partial_{tt} \Theta &= \lr{\pm 1}^2 \delta’,
\end{aligned}
\end{equation}
and for the rest, we have
\begin{equation}\label{eqn:waveEquationGreens:720}
\begin{aligned}
\partial_t X^{-1/2}
&=
-\inv{2} X^{-3/2} \partial_t X \\
&=
-\inv{2} X^{-3/2} 2 \tau \\
&=
-\tau X^{-3/2},
\end{aligned}
\end{equation}
and
\begin{equation}\label{eqn:waveEquationGreens:740}
\begin{aligned}
\partial_{tt} X^{-1/2}
&=
– X^{-3/2}
– \tau \partial_t X^{-3/2} \\
&=
– X^{-3/2}
+ 3 \tau^2 X^{-5/2}.
\end{aligned}
\end{equation}
Assembling the pieces, we have
\begin{equation}\label{eqn:waveEquationGreens:760}
\begin{aligned}
\partial_{tt} \lr{ \Theta X^{-1/2} }
&=
\lr{
– X^{-3/2}
+ 3 \tau^2 X^{-5/2}
} \Theta
+
\delta’ X^{-1/2}
+ 2 \lr{ \pm \delta } \lr{ -\tau X^{-3/2} } \\
&=
\delta’ X^{-1/2}
+ \lr{ -\lr{ \tau^2 – r^2/c^2 } + 3 \tau^2 } X^{-5/2} \Theta
\mp 2 \tau X^{-3/2} \delta \\
&=
\delta’ X^{-1/2}
+ \lr{ 2 \tau^2 + r^2/c^2 } X^{-5/2} \Theta
\mp 2 \tau X^{-3/2} \delta.
\end{aligned}
\end{equation}

The wave equation operation on \( \Theta X^{-1/2} \) is
\begin{equation}\label{eqn:waveEquationGreens:780}
\begin{aligned}
\lr{ \spacegrad^2 – (1/c^2) \partial_{tt} } \Theta X^{-1/2}
&=
\inv{c^2} \lr{ 2 \tau^2 + \frac{r^2}{c^2} } X^{-5/2} \Theta
– \inv{r c} \lr{ \tau^2 + \frac{r^2}{c^2} } X^{-3/2} \delta \\
&- \inv{c^2} \lr{ 2 \tau^2 + r^2/c^2 } X^{-5/2} \Theta
\pm \frac{2}{c^2} \tau X^{-3/2} \delta \\
&=
– \inv{r c} \lr{ \tau^2 + \frac{r^2}{c^2} } X^{-3/2} \delta
\pm \frac{2}{c^2} \tau X^{-3/2} \delta \\
&=
\inv{c^2} \lr{
– \frac{c \tau^2}{r}
– \frac{r}{c}
\pm 2 \tau
}
X^{-3/2} \delta.
\end{aligned}
\end{equation}

So, after all that we have
\begin{equation}\label{eqn:waveEquationGreens:800}
\lr{ \spacegrad^2 – (1/c^2) \partial_{tt} } G =
-\inv{2 \pi c^2} \lr{
– \frac{c \tau^2}{r}
– \frac{r}{c}
\pm 2 \tau
}
\frac{\delta(\pm \tau – r/c)}{\lr{\tau^2 – r^2/c^2}^{3/2}}.
\end{equation}

This is a very problematic expression. The delta function is zero everywhere but \( \pm \tau = r/c \), but the denominator blows up at \( \pm \tau = r/c \), and the leading factor is also zero at that point:
\begin{equation}\label{eqn:waveEquationGreens:820}
\begin{aligned}
\evalbar{ \lr{ -\frac{c}{r} \tau^2 – \frac{r}{c} \pm 2 \tau }}{\pm \tau = r/c}
&=
-\frac{c}{r} \lr{ \frac{r}{c} }^2 – \frac{r}{c} + 2 \frac{r}{c} \\
&=
0.
\end{aligned}
\end{equation}
So, we’ve computed something that has a \( 0 \times \infty / 0 \) structure at \( \pm \tau = r/c \). Presumably, this has the infinite value \( \delta(x – x’) \delta(y – y’) \delta(t – t’) \) at that point.

I think that the root problem here is that the derivatives of \( \lr{ \tau^2 – r^2/c^2 }^{-1/2} \) are not defined where \( \tau = \pm r/c \), so we have a zero result for any region of spacetime where that is not the case, but can’t say much about it at other points without additional work.

Attempting to describe this physically, I think that we’d say that we have discovered that a constant velocity wave of this form has to propagate on the “light cone”. We see something like that for the 3D Green’s function too, which is explicitly zero off the light cone, not just after application of the wave equation operator.

Followup:

  1. Is there a better representation of the 2D Green’s function than this one? I think it’s time to look up some more advanced handling of Green’s function to get a better handle on this. I’d guess that there’s a Green’s function for the 2D wave equation related to Bessel functions, like that of the 2D Helmholtz operator.
  2. It should also be possible to perform a limiting convolution verification, in the neighbourhood of the light cone, and then look at the limit of that convolution. I’d expect that to be better behaved, as it should avoid the singularity itself.

References

[1] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics. Dover Publications, 1992.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[3] J Schwinger, LL DeRaad Jr, KA Milton, and W-Y Tsai. Classical electrodynamics, perseus. 1998.

Correcting the errors: Green’s functions for the 1D Helmholtz and Laplacian operators.

September 28, 2025 math and physics play , , , , , , , , , , , , , , , ,

[Click here for a PDF version of this post, and others in this series]

The following recent posts explored 1D Green’s functions for the Helmholtz and Laplacian operators.  There was a sign error (wrong residue sign for a negatively oriented contour) that I made near the beginning that caused a lot of trouble.  Having found the error, I’ve now reworked all that exploratory content into a more coherent form.  That reworked content can be found in today’s blog post below (or in the PDF above, which includes all of this, plus the 2D and 3D derivations.)

Part 1. Green’s functions for the Helmholtz (wave equation) operator in various dimensions.

 

A trilogy in five+ parts: Confirming an error in the derived 1D Helmholtz Green’s function.

 

A trilogy in six+ parts: 1D Laplacian Green’s function

A trilogy in 7+ parts: A better check of the 1D Helmholtz Green’s function.

 

 

Helmholtz Green’s function in 1D.

Evaluating the integral.

For the one dimensional case, we want to evaluate
\begin{equation}\label{eqn:helmholtzGreensV2:200}
G(r) = -\inv{2 \pi} \int \inv{p^2 – k^2} e^{j p r} dp,
\end{equation}
an integral which is unfortunately non-convergent. Since we are dealing with delta functions, it is not surprising that we have convergence problems. The technique used in the book is to displace the pole slightly by a small imaginary amount, and then take the limit.

That is
\begin{equation}\label{eqn:helmholtzGreensV2:220}
G(r) = \lim_{\epsilon \rightarrow 0} G_\epsilon(r),
\end{equation}
where
\begin{equation}\label{eqn:helmholtzGreensV2:240}
\begin{aligned}
G_\epsilon(r)
&= -\inv{2 \pi} \int_{-\infty}^\infty \inv{p^2 – \lr{k + j \epsilon}^2} e^{j p r} dp \\
&= -\inv{2 \pi} \int_{-\infty}^\infty \frac{e^{j p r}}{\lr{ p – k -j \epsilon}\lr{p + k + j \epsilon}} dp.
\end{aligned}
\end{equation}
Our contours, for \( \epsilon > 0 \), are illustrated in fig 1.

fig 1. Contours for 3D Green’s function evaluation

For \( r > 0 \) we can use an upper half plane infinite semicircular contour integral, with \( R \rightarrow \infty \).

The residue calculation for this contour gives
\begin{equation}\label{eqn:helmholtzGreensV2:260}
\begin{aligned}
G_\epsilon(r)
&= -\frac{(+2 \pi j)}{2 \pi} \evalbar{\frac{e^{j p r}}{p + k + j \epsilon} }{p = k + j \epsilon} \\
&= -j \frac{e^{j \lr{k + j \epsilon} r}}{2\lr{k + j \epsilon}} \\
&= -j \frac{e^{j k r} e^{-\epsilon r}}{2\lr{k + j \epsilon}} \\
&\rightarrow -\frac{j}{2k} e^{j k r}.
\end{aligned}
\end{equation}

For \( r < 0 \) we use the lower half plane infinite semicircular contour For this contour, we find \begin{equation}\label{eqn:helmholtzGreensV2:280} \begin{aligned} G_\epsilon(r) &= -\frac{2 \pi j}{(-2 \pi)} \evalbar{\frac{e^{j p r}}{p – k – j \epsilon} }{p = -k – j \epsilon} \\ &= -j \frac{e^{-j \lr{k + j \epsilon} r}}{2\lr{k + j \epsilon}} \\ &= -j \frac{e^{-j k r} e^{\epsilon r}}{2\lr{k + j \epsilon}} \\ &\rightarrow -\frac{j}{2k} e^{-j k r}. \end{aligned} \end{equation} Combining both results, our Green’s function, after a positive pole displacement \( \epsilon > 0 \), is
\begin{equation}\label{eqn:helmholtzGreensV2:300}
G(r) = \frac{1}{2 j k} e^{j k \Abs{r}}.
\end{equation}

Similarly, should we pick \( \epsilon < 0 \), the same sort of calculation yields an incoming wave solution \begin{equation}\label{eqn:helmholtzGreensV2:2240} G(r) = -\frac{1}{2 j k} e^{-j k \Abs{r}}. \end{equation} Allowing for either, we have Green’s functions for both the incoming and outgoing wave cases \begin{equation}\label{eqn:helmholtzGreensV2:2260} \boxed{ G_{\pm}(x – x’) = \pm \frac{1}{2 j k} e^{ \pm j k \Abs{x – x’}}. } \end{equation} With two Green’s functions, we can also make a linear combination. Specifically \begin{equation}\label{eqn:helmholtzGreensV2:2280} \begin{aligned} G(r) &= \inv{2}\lr{ G_{+}(r) + G_{-}(r) } \\ &= \inv{4 j k}\lr{ e^{ j k \Abs{r}} – e^{ – j k \Abs{r}} } \\ &= \inv{2 k} \sin\lr{ k \Abs{r} } \end{aligned} \end{equation} This real valued Green’s function is plotted in fig. 2.

fig. 2. Green’s function for 1D Helmholtz operator.

The convolution is now fully specified, providing a specific solution to the non-homogeneous equation \begin{equation}\label{eqn:helmholtzGreensV2:400} U(x) = \inv{2k} \int_{-\infty}^\infty \sin( k\Abs{r} ) V(x + r) dr. \end{equation}

The general solution may also include any solutions to the homogeneous Helmholtz equation \begin{equation}\label{eqn:helmholtzGreensV2:2300} U(x) = A e^{j k x} + B e^{-j k x} + \inv{2k} \int_{-\infty}^\infty \sin( k\Abs{r} ) V(x + r) dr. \end{equation}

A strictly causal solution.

We can split the convolution kernel a “causal” part, where only the spatially-“past” values of \( V \) contribute, and an “acausal” part \begin{equation}\label{eqn:helmholtzGreensV2:2320} U(x) = \inv{2k} \int_{-\infty}^0 \sin( k\Abs{r} ) V(x + r) dr + \inv{2k} \int_{0}^\infty \sin( k\Abs{r} ) V(x + r) dr. \end{equation} In a sense, we are averaging causal and acausal portions of the convolution. Suppose that we form a convolution with a built in cut-off, so that values of \( V(x’), x’ > x \) do not contribute to \( U(x) \). That is
\begin{equation}\label{eqn:helmholtzGreensV2:440}
f(x) = \int_{-\infty}^x \frac{\sin\lr{k \lr{x – x’}}}{k} V(x’) dx’.
\end{equation}
Here the one-half factor has been dropped, since we are no longer performing a QFT like average of causal and acausal terms.

Intuition suggests this should be a solution to the Helmholtz equation, but let’s test that guess. We start with the identity
\begin{equation}\label{eqn:helmholtzGreensV2:460}
\frac{d}{dx} \int_a^x g(x, x’) dx’
=
\evalbar{g(x, x’) }{x’ = x} + \int_a^x \frac{\partial g(x,x’)}{dx} dx’.
\end{equation}
Taking the first derivative of \( f(x) \), we find
\begin{equation}\label{eqn:helmholtzGreensV2:480}
\begin{aligned}
\frac{df}{dx}
&= \evalbar{ \frac{\sin\lr{k \lr{x – x’}}}{k} V(x’) }{x’ = x} + k \int_{-\infty}^x \frac{\cos\lr{k \lr{x – x’}}}{k} V(x’) dx’ \\
&= k \int_{-\infty}^x \frac{\cos\lr{k \lr{x – x’}}}{k} V(x’) dx’,
\end{aligned}
\end{equation}
where we have, somewhat lazily, treated the infinite limit as a constant. Effectively, this requires that the forcing function \( V(x) \) is zero at \( -\infty \). Taking the second derivative, we have
\begin{equation}\label{eqn:helmholtzGreensV2:500}
\begin{aligned}
\frac{d^2f}{dx^2}
&=
\evalbar{ k \frac{\cos\lr{k \lr{x – x’}}}{k} V(x’) }{x’ = x} – k^2 \int_{-\infty}^x \frac{\sin\lr{k \lr{x – x’}}}{k} V(x’) dx’ \\
&= V(x) – k^2 f(x),
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:helmholtzGreensV2:520}
\frac{d^2}{dx^2} f(x) + k^2 f(x) = V(x).
\end{equation}
This verifies that \ref{eqn:helmholtzGreensV2:440} is also a specific solution to the wave equation, as expected and desired.

It appears that the general solution is likely of the following form
\begin{equation}\label{eqn:helmholtzGreensV2:380b}
U(x) =
A’ \cos\lr{ k x } +
B’ \sin\lr{ k x }
+\alpha \int_{-\infty}^x \frac{\sin\lr{k \lr{x – x’}}}{k} V(x’) dx’
+(1-\alpha)\int_x^\infty \frac{\sin\lr{k \lr{x – x’}}}{k} V(x’) dx’,
\end{equation}
with \( \alpha \in [0,1] \).

It’s pretty cool that we can completely solve the 1D forced wave equation, for any forcing function, from first principles. Yes, I took liberties that would make a mathematician cringe, but we are telling a story, and leaving the footnotes to somebody else.

Verification of the 1D Helmholtz Green’s function.

Let’s show that the outgoing Green’s function has the desired delta function semantics. That is
\begin{equation}\label{eqn:helmholtzGreensV2:2060}
\lr{ \spacegrad^2 + k^2 } G(x, x’) = \delta(x – x’),
\end{equation}
where
\begin{equation}\label{eqn:helmholtzGreensV2:2080}
G(x, x’) = \frac{e^{j k \Abs{x – x’}}}{2 j k}.
\end{equation}
Making a \( r = x – x’ \) change of variables gives
\begin{equation}\label{eqn:helmholtzGreensV2:2120}
\spacegrad^2 e^{j k \Abs{x – x’}} = \frac{d^2}{dr^2} e^{j k \Abs{r}}
\end{equation}

The function \( \Abs{r} \) formally has no derivative at the origin, but we may use the physics trick, rewriting the absolute in terms of the Heaviside theta function
\begin{equation}\label{eqn:helmholtzGreensV2:2340}
\Abs{r} = r \Theta(r) – r \Theta(-r).
\end{equation}
We then use the delta function identification for the derivative
\begin{equation}\label{eqn:helmholtzGreensV2:2360}
\Theta'(r) = \delta(r).
\end{equation}
In particular
\begin{equation}\label{eqn:helmholtzGreensV2:2380}
\begin{aligned}
\frac{d}{dr} \Abs{r}
&= \Theta(r) – \Theta(-r) + r \delta(r) – (-1)\delta(-r) \\
&= \Theta(r) – \Theta(-r) + 2 r \delta(r),
\end{aligned}
\end{equation}
using the symmetric property of the delta function \( \delta(-r) = \delta(r) \). The delta function contribution to this derivative is actually zero, as seen when we operate with \( r \delta(r) \) against a test function
\begin{equation}\label{eqn:helmholtzGreensV2:2400}
\begin{aligned}
\int r \delta(r) f(r) dr
&=
\evalbar{r f(r)}{r = 0} \\
&= 0.
\end{aligned}
\end{equation}
We’ve now found that
\begin{equation}\label{eqn:helmholtzGreensV2:2420}
\frac{d}{dr} \Abs{r} = \Theta(r) – \Theta(-r) = \mathrm{sgn}(r),
\end{equation}
the sign function. The derivative of the sign function is
\begin{equation}\label{eqn:helmholtzGreensV2:2440}
\begin{aligned}
\mathrm{sgn}'(r)
&= \lr{ \Theta(r) – \Theta(-r) }’ \\
&= \delta(r) -(-1)\delta(-r) \\
&= 2 \delta(r).
\end{aligned}
\end{equation}

The derivatives are
\begin{equation}\label{eqn:helmholtzGreensV2:2140}
\begin{aligned}
\frac{d}{dr} e^{j k \Abs{r} }
&=
j k e^{j k \Abs{r} } \frac{d\Abs{r}}{dr} \\
&=
j k e^{j k \Abs{r} } \mathrm{sgn}(r).
\end{aligned}
\end{equation}
and
\begin{equation}\label{eqn:helmholtzGreensV2:2160}
\frac{d^2}{dr^2} e{j k \Abs{r}}
=
\lr{ j k \mathrm{sgn}(r) }^2 e^{j k \Abs{r} } + 2 j k e^{j k \Abs{r} } \delta(r).
\end{equation}

We can identify \( e^{j k \Abs{r} } \delta(r) = \delta(r) \), just as we identified \( r \delta(r) = 0 \), by application to a test function. That is
\begin{equation}\label{eqn:helmholtzGreensV2:2180}
\begin{aligned}
\int e^{j k \Abs{r} } \delta(r) f(r) dr
&=
\evalbar{e^{j k \Abs{r} } f(r)}{r = 0} \\
&=
f(0) \\
&=
\int \delta(r) f(r) dr.
\end{aligned}
\end{equation}
With that identification
\begin{equation}\label{eqn:helmholtzGreensV2:2200}
\spacegrad^2 e^{j k \Abs{r} } = -k^2 e^{j k \Abs{r} } + 2 j k \delta(r),
\end{equation}
or
\begin{equation}\label{eqn:helmholtzGreensV2:2220}
\boxed{
\lr{ \spacegrad^2 + k^2 } \frac{e^{j k \Abs{x – x’} }}{2 j k} = \delta(x – x’).
}
\end{equation}

Verifying the Green’s function with convolution.

Avoiding the physics tricks, we may use a limiting argument to validate our Green’s function.

We first want to show that at points \( x’ \ne x \) the Helmholtz operator applied to the Green’s function is zero:
\begin{equation}\label{eqn:helmholtzGreensV2:1220}
\lr{ \spacegrad^2 + k^2} G(x,x’) = 0,
\end{equation}
Since we are avoiding the origin
\begin{equation}\label{eqn:helmholtzGreensV2:1240}
\lr{ k^2 + \frac{d^2}{dx^2} } e^{j k \Abs{x – x’}}.
\end{equation}
We expect that this will be zero. Making a change of variables \( r = x’ – x \), we want to evaluate
\begin{equation}\label{eqn:helmholtzGreensV2:1260}
\lr{ k^2 + \frac{d^2}{dr^2} } e^{j k \Abs{r}},
\end{equation}
assuming that we are omitting a neighbourhood around \( r = 0 \) where the absolute value causes trouble. For \( r > 0 \)
\begin{equation}\label{eqn:helmholtzGreensV2:1280}
\begin{aligned}
\frac{d}{dr} e^{j k \Abs{r}}
&= \frac{d}{dr} e^{j k r} \\
&= j k e^{j k r},
\end{aligned}
\end{equation}
and
\begin{equation}\label{eqn:helmholtzGreensV2:1300}
\begin{aligned}
\frac{d^2}{dr^2} e^{j k \Abs{r}}
&= \frac{d}{dr} j k e^{j k r} \\
&= (j k)^2 e^{j k r}.
\end{aligned}
\end{equation}
Similarly, for \( r < 0 \), we have
\begin{equation}\label{eqn:helmholtzGreensV2:1320}
\frac{d^2}{dr^2} e^{j k \Abs{r}} = (-jk)^2 e^{j k \Abs{r}}.
\end{equation}
In both cases, provided we are in a neighbourhood that omits \( r \ne 0 \), we have
\begin{equation}\label{eqn:helmholtzGreensV2:1340}
\lr{ k^2 + \frac{d^2}{dr^2} } e^{j k \Abs{r}} = 0,
\end{equation}
as desired.

The takeaway is that we have
\begin{equation}\label{eqn:helmholtzGreensV2:1360}
\begin{aligned}
\lr{ \spacegrad^2 + k^2 }\int_{-\infty}^\infty G(x, x’) V(x’) dx’
&=
\int_{\Abs{x’ – x} \le \epsilon} V(x’) \lr{ \frac{d^2}{d{x’}^2} + k^2 } G(x, x’) dx’ \\
&=
\int_{-\epsilon}^\epsilon V(x + r) \lr{ \frac{d^2}{dr^2} + k^2 } G(r) dr \\
\end{aligned}
\end{equation}
for some arbitrarily small value of \( \epsilon \). Observe that after bringing the operator into the integral, we also made a change of variables, first to \( x’ \) for the Laplacian, and then to \( r = x’ – x \).

We’d like the 1D equivalent of Green’s theorem to reduce this, so let’s work that out first.
\begin{equation}\label{eqn:helmholtzGreensV2:1380}
\begin{aligned}
\int dx\, v \frac{d^2 u}{dx^2} – \int dx\, u \frac{d^2 v}{dx^2}
&=
\int dx\,
\lr{
\frac{d}{dx} \lr{
v \frac{du}{dx}
}
– \frac{dv}{dx} \frac{du}{dx}
}

\int dx\,
\lr{
\frac{d}{dx} \lr{
u \frac{dv}{dx}
}

\frac{du}{dx} \frac{dv}{dx}
}
\\
&=
\int dx\,
\frac{d}{dx}
\lr{
v \frac{du}{dx}
}

\int dx\,
\frac{d}{dx} \lr{
u \frac{dv}{dx}
}
\\
&=
v \frac{du}{dx}

u \frac{dv}{dx},
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:helmholtzGreensV2:1400}
\boxed{
\int_a^b dx\, v \frac{d^2 u}{dx^2}
=
\int_a^b dx\, u \frac{d^2 v}{dx^2}
+
\evalrange{v \frac{du}{dx}}{a}{b}

\evalrange{u \frac{dv}{dx}}{a}{b}.
}
\end{equation}

This gives us
\begin{equation}\label{eqn:helmholtzGreensV2:1420}
\begin{aligned}
\lr{ \spacegrad^2 + k^2 }\int_{\Abs{x’- x} \le \epsilon} e^{j k \Abs{x – x’}} V(x’) dx’
&=
\int_{-\epsilon}^\epsilon e^{j k \Abs{r}} \lr{ k^2 + \frac{d^2}{dr^2} } V(x + r) dr \\
&\quad +
\evalrange{ V(x + r) \frac{d}{dr} e^{j k \Abs{r}} }{-\epsilon}{\epsilon}

\evalrange{ e^{j k \Abs{r}} \frac{d}{dr} V(x+r) }{-\epsilon}{\epsilon}.
\end{aligned}
\end{equation}
If we can assume that \( V \) and it’s first and second derivatives are all continuous over this small interval, then the first integral is approximately
\begin{equation}\label{eqn:helmholtzGreensV2:1440}
\begin{aligned}
\int_{-\epsilon}^\epsilon e^{j k \Abs{r}} \lr{ k^2 + \frac{d^2}{dr^2} } V(x + r) dr
&\sim
\lr{ \lr{ k^2 + \frac{d^2}{dr^2} } V(x + r) }
\int_{-\epsilon}^\epsilon e^{j k \Abs{r}} dr \\
&=
\frac{2 j}{k} \lr{ 1 – e^{ j k \epsilon} }
\lr{ \lr{ k^2 + \frac{d^2}{dr^2} } V(x + r) } \\
&\rightarrow 0.
\end{aligned}
\end{equation}
Similarly, with \( dV/dr \) continuity condition, that last term is also zero. We are left, for \( \epsilon \) sufficiently small, we are left with
\begin{equation}\label{eqn:helmholtzGreensV2:1460}
\lr{ \spacegrad^2 + k^2 }\int_{\Abs{x’- x} \le \epsilon} e^{j k \Abs{x – x’}} V(x’) dx’
=
V(x)
\evalrange{ \frac{d}{dr} e^{j k \Abs{r}} }{-\epsilon}{\epsilon}.
\end{equation}
Because we are evaluating this derivative only at points \( r = \pm \epsilon \ne 0 \), that derivative is
\begin{equation}\label{eqn:helmholtzGreensV2:2460}
\frac{d}{dr} e^{j k \Abs{r}}
=
j k e^{j k \Abs{r}} \mathrm{sgn}(r),
\end{equation}
leaving us with
\begin{equation}\label{eqn:helmholtzGreensV2:2480}
\begin{aligned}
\evalrange{ \frac{d}{dr} e^{j k \Abs{r}} }{-\epsilon}{\epsilon}
&=
j k e^{j k \Abs{\epsilon}} \mathrm{sgn}(\epsilon) – j k e^{j k \Abs{-\epsilon}} \mathrm{sgn}(-\epsilon) \\
&=
j k e^{j k \Abs{\epsilon}} \lr{ 1 – (-1) } \\
2 j k e^{j k \Abs{\epsilon}}.
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:helmholtzGreensV2:2500}
\lr{ \spacegrad^2 + k^2 }\int_{-\infty}^\infty e^{j k \Abs{x – x’} } V(x’) dx’
=
2 j k e^{j k \Abs{\epsilon}} V(x).
\end{equation}
Taking limits and dividing through by \( 2 j k \) proves the result.

1D Laplacian Green’s function.

Having blundered our way to what appears to be the correct Green’s function for the 1D Helmholtz operator, let’s further validate that by deriving the Green’s function for the 1D Laplacian. We should also be able to verify that it has the correct delta function semantics.

Expansion in series and taking the limit.

Expanding the Helmholtz Green’s function in series around \( k \Abs{r} \) we have
\begin{equation}\label{eqn:helmholtzGreensV2:1780}
\begin{aligned}
G(r)
&= -\frac{j}{2k} \lr{ 1 + j k \Abs{r} + O((k \Abs{r})^2) } \\
&= -\frac{j}{2} \lr{ \inv{k} + j \Abs{r} + \inv{k} O((k \Abs{r})^2) } \\
\end{aligned}
\end{equation}
This means that to first order in \( k \), we have
\begin{equation}\label{eqn:helmholtzGreensV2:1800}
G(r) + \frac{j}{2k} = \frac{\Abs{r}}{2}.
\end{equation}
As before, we are free to add constant terms to the Green’s function for the Laplacian, and we conclude that the 1D Green’s function for the Laplacian is
\begin{equation}\label{eqn:helmholtzGreensV2:1820}
\boxed{
G(r) = \frac{\Abs{r}}{2}.
}
\end{equation}

Alternatively, we may use the real sine form of the Green’s function, which has a nice expansion around \( k = 0 \), and arrive at the same result.

Observe that
\begin{equation}\label{eqn:helmholtzGreensV2:2520}
\frac{d^2}{dr^2} \frac{\Abs{r}}{2} =
\frac{d}{dr} \frac{\mathrm{sgn}(r)}{2} =
\delta(r),
\end{equation}
which verifies that this is a valid Green’s function for the 1D Laplacian.

Verifying the Green’s function with convolution.

We can also operate on the convolution with the Laplacian, to verify correctness. We are interested in evaluating
\begin{equation}\label{eqn:helmholtzGreensV2:1840}
\spacegrad^2 \int \frac{\Abs{x – x’}}{2} V(x’) dx’ = \int V(x + r) \frac{d^2}{dr^2} \frac{\Abs{r}}{2} dr.
\end{equation}
If all goes well, this should evaluate to \( V(x) \), indicating that \( \spacegrad^2 \Abs{x – x’}/2 = \delta(x – x’) \). As a first step, we expect \( \spacegrad^2 G = 0 \), for \( x \ne x’ \). Consider first \( r > 0 \), where
\begin{equation}\label{eqn:helmholtzGreensV2:1860}
\frac{d}{dr} \Abs{r}
=
\frac{d}{dr} r
= 1,
\end{equation}
and for \( r < 0 \) where
\begin{equation}\label{eqn:helmholtzGreensV2:1880}
\frac{d}{dr} \Abs{r}
=
\frac{d}{dr} (-r)
= -1.
\end{equation}
This means that, away from the origin \( d\Abs{r}/dr = \mathrm{sgn}(r) \), and \( d^2 \Abs{r}/dr^2 = 0\). We can conclude that, for some non-zero positive epsilon that we will eventually let approach zero, we have
\begin{equation}\label{eqn:helmholtzGreensV2:1900}
\begin{aligned}
\spacegrad^2 \int \frac{\Abs{x – x’}}{2} V(x’) dx’
&= \int_{-\epsilon}^\epsilon V(x + r) \frac{d^2}{dr^2} \frac{\Abs{r}}{2} dr \\
&= \int_{-\epsilon}^\epsilon \lr{
\frac{d}{dr} \lr{ V(x + r) \frac{d}{dr} \frac{\Abs{r}}{2} }
– \frac{dV(x + r)}{dr} \frac{d}{dr} \frac{\Abs{r}}{2}
}
dr \\
&=
\evalrange{ V(x + r) \frac{d}{dr} \frac{\Abs{r}}{2} }{-\epsilon}{\epsilon}
– \int_{-\epsilon}^\epsilon
\lr{
\frac{d}{dr} \lr{ \frac{dV(x + r)}{dr} \frac{\Abs{r}}{2} }

\frac{d^2V(x + r)}{dr^2} \frac{\Abs{r}}{2}
} dr \\
&=
\evalrange{ V(x + r) \frac{d}{dr} \frac{\Abs{r}}{2} }{-\epsilon}{\epsilon}
-\evalrange{ \frac{dV(x + r)}{dr} \frac{\Abs{r}}{2} }{-\epsilon}{\epsilon}
+
\int_{-\epsilon}^\epsilon \frac{d^2V(x + r)}{dr^2} \frac{\Abs{r}}{2} dr \\
&=
\inv{2} \lr{ V(x + \epsilon) + V(x – \epsilon) } \\
&-\quad \frac{\epsilon}{2}\lr{
\frac{dV(x + \epsilon)}{dr}

\frac{dV(x – \epsilon)}{dr}
} \\
&+
\frac{\epsilon^2}{2} \lr{
\frac{d^2V(x + \epsilon)}{dr^2}
+
\frac{d^2V(x + \epsilon)}{dr^2}
}.
\end{aligned}
\end{equation}
In the limit we have
\begin{equation}\label{eqn:helmholtzGreensV2:1920}
\boxed{
\spacegrad^2 \int G(x, x’) V(x’) dx’ = \inv{2} \lr{ V(x^+) + V(x^-) }.
}
\end{equation}

If the test (or driving) function is continuous at \( x’ = x \), then this is exactly the delta-function semantics that we expect of a Green’s function. It’s interesting that this check provides us with precise semantics for the Green’s function for discontinuous functions too.