multivector

A fun application of Green’s functions and geometric algebra: Residue calculus

November 2, 2025 math and physics play , , , , , , , , , , , , , , , , , ,

[Click here for a PDF version of this post]

Motivation.

A fun application of both Green’s functions and geometric algebra is to show how the Cauchy integral equation can be expressed in terms of the Green’s function for the 2D gradient. This is covered, almost as an aside, in [1]. I found that treatment a bit hard to understand, so I am going to work through it here at my own pace.

Complex numbers in geometric algebra.

Anybody who has studied geometric algebra is likely familiar with a variety of ways to construct complex numbers from geometric objects. For example, complex numbers can be constructed for any plane. If \( \Be_1, \Be_2 \) is a pair of orthonormal vectors for some plane in \(\mathbb{R}^N\), then any vector in that plane has the form
\begin{equation}\label{eqn:residueGreens:20}
\Bf = \Be_1 u + \Be_2 v,
\end{equation}
has an associated complex representation, by simply multiplying that vector one of those basis vectors. For example, if we pre-multiply \( \Bf \) by \( \Be_1 \), forming
\begin{equation}\label{eqn:residueGreens:40}
\begin{aligned}
z
&= \Be_1 \Bf \\
&= \Be_1 \lr{ \Be_1 u + \Be_2 v } \\
&= u + \Be_1 \Be_2 v.
\end{aligned}
\end{equation}

We may identify the unit bivector \( \Be_1 \Be_2 \) as an imaginary, designed by \( i \), since it has the expected behavior
\begin{equation}\label{eqn:residueGreens:60}
\begin{aligned}
i^2 &=
\lr{\Be_1 \Be_2}^2 \\
&=
\lr{\Be_1 \Be_2}
\lr{\Be_1 \Be_2} \\
&=
\Be_1 \lr{\Be_2
\Be_1} \Be_2 \\
&=
-\Be_1 \lr{\Be_1
\Be_2} \Be_2 \\
&=
-\lr{\Be_1 \Be_1}
\lr{\Be_2 \Be_2} \\
&=
-1.
\end{aligned}
\end{equation}

Complex numbers are seen to be isomorphic to even grade multivectors in a planar subspace. The imaginary is the grade-two pseudoscalar, and geometrically is an oriented unit area (bivector.)

Cauchy-equations in terms of the gradient.

It is natural to wonder about the geometric algebra equivalents of various complex-number relationships and identities. Of particular interest for this discussion is the geometric algebra equivalent of the Cauchy equations that specify required conditions for a function to be differentiable.

If a complex function \( f(z) = u(z) + i v(z) \) is differentiable, then we must be able to find the limit of
\begin{equation}\label{eqn:residueGreens:80}
\frac{\Delta f(z_0)}{\Delta z} = \frac{f(z_0 + h) – f(z_0)}{h},
\end{equation}
for any complex \( h \rightarrow 0 \), for any possible trajectory of \( z_0 + h \) toward \( z_0 \). In particular, for real \( h = \epsilon \),
\begin{equation}\label{eqn:residueGreens:100}
\lim_{\epsilon \rightarrow 0} \frac{u(x_0 + \epsilon, y_0) + i v(x_0 + \epsilon, y_0) – u(x_0, y_0) – i v(x_0, y_0)}{\epsilon}
=
\PD{x}{u(z_0)} + i \PD{x}{v(z_0)},
\end{equation}
and for imaginary \( h = i \epsilon \)
\begin{equation}\label{eqn:residueGreens:120}
\lim_{\epsilon \rightarrow 0} \frac{u(x_0, y_0 + \epsilon) + i v(x_0, y_0 + \epsilon) – u(x_0, y_0) – i v(x_0, y_0)}{i \epsilon}
=
-i\lr{ \PD{y}{u(z_0)} + i \PD{y}{v(z_0)} }.
\end{equation}
Equating real and imaginary parts, we see that existence of the derivative requires
\begin{equation}\label{eqn:residueGreens:140}
\begin{aligned}
\PD{x}{u} &= \PD{y}{v} \\
\PD{x}{v} &= -\PD{y}{u}.
\end{aligned}
\end{equation}
These are the Cauchy equations. When the derivative exists in a given neighbourhood, we say that the function is analytic in that region. If we use a bivector interpretation of the imaginary, with \( i = \Be_1 \Be_2 \), the Cauchy equations are also satisfied if the gradient of the complex function is zero, since
\begin{equation}\label{eqn:residueGreens:160}
\begin{aligned}
\spacegrad f
&=
\lr{ \Be_1 \partial_x + \Be_2 \partial_y } \lr{ u + \Be_1 \Be_2 v } \\
&=
\Be_1 \lr{ \partial_x u – \partial_y v } + \Be_2 \lr{ \partial_y u + \partial_x v }.
\end{aligned}
\end{equation}
We see that the geometric algebra equivalent of the Cauchy equations is simply
\begin{equation}\label{eqn:residueGreens:200}
\spacegrad f = 0.
\end{equation}
Roughly speaking, we may say that a function is analytic in a region, if the Cauchy equations are satisfied, or the gradient is zero, in a neighbourhood of all points in that region.

A special case of the fundamental theorem of geometric calculus.

Given an even grade multivector \( \psi \in \mathbb{R}^2 \) (i.e.: a complex number), we can show that
\begin{equation}\label{eqn:residueGreens:220}
\int_A \spacegrad \psi d^2\Bx = \oint_{\partial A} d\Bx \psi.
\end{equation}
Let’s get an idea why this works by expanding the area integral for a rectangular parameterization
\begin{equation}\label{eqn:residueGreens:240}
\begin{aligned}
\int_A \spacegrad \psi d^2\Bx
&=
\int_A \lr{ \Be_1 \partial_1 + \Be_2 \partial_2 } \psi I dx dy \\
&=
\int \Be_1 I dy \evalrange{\psi}{x_0}{x_1}
+
\int \Be_2 I dx \evalrange{\psi}{y_0}{y_1} \\
&=
\int \Be_2 dy \evalrange{\psi}{x_0}{x_1}

\int \Be_1 dx \evalrange{\psi}{y_0}{y_1} \\
&=
\int d\By \evalrange{\psi}{x_0}{x_1}

\int d\Bx \evalrange{\psi}{y_0}{y_1}.
\end{aligned}
\end{equation}
We took advantage of the fact that the \(\mathbb{R}^2\) pseudoscalar commutes with \( \psi \). The end result, is illustrated in fig. 1, shows pictorially that the remaining integral is an oriented line integral.

fig. 1. Oriented multivector line integral.

 

If we want to approximate a more general area, we may do so with additional tiles, as illustrated in fig. 2. We may evaluate the area integral using the line integral over just the exterior boundary using such a tiling, as any overlapping opposing boundary contributions cancel exactly.

fig. 2. A crude circular tiling approximation.

 

The reason that this is interesting is that it allows us to re-express a complex integral as a corresponding multivector area integral. With \( d\Bx = \Be_1 dz \), we have
\begin{equation}\label{eqn:residueGreens:260}
\oint dz\, \psi = \Be_1 \int \spacegrad \psi d^2\Bx.
\end{equation}

The Cauchy kernel as a Green’s function.

We’ve previously derived the Green’s function for the 2D Laplacian, and found
\begin{equation}\label{eqn:residueGreens:280}
\tilde{G}(\Bx, \Bx’) = \inv{2\pi} \ln \Abs{\lr{\Bx – \Bx’}},
\end{equation}
which satisfies
\begin{equation}\label{eqn:residueGreens:300}
\delta^2(\Bx – \Bx’) = \spacegrad^2 \tilde{G}(\Bx, \Bx’) = \spacegrad \lr{ \spacegrad \tilde{G}(\Bx, \Bx’) }.
\end{equation}
This means that \( G(\Bx, \Bx’) = \spacegrad \tilde{G}(\Bx, \Bx’) \) is the Green’s function for the gradient. That Green’s function is
\begin{equation}\label{eqn:residueGreens:320}
\begin{aligned}
G(\Bx, \Ba)
&= \inv{2 \pi} \frac{\spacegrad \Abs{\Bx – \Ba}}{\Abs{\Bx – \Ba}} \\
&= \inv{2 \pi} \frac{\Bx – \Ba}{\Abs{\Bx – \Ba}^2}.
\end{aligned}
\end{equation}
We may cast this Green’s function into complex form with \( z = \Be_1 \Bx, a = \Be_1 \Ba \). In particular
\begin{equation}\label{eqn:residueGreens:340}
\begin{aligned}
\inv{z – a}
&=
\frac{(z – a)^\conj}{\Abs{z – a}^2} \\
&=
\frac{(z – a)^\conj}{\Abs{z – a}^2} \\
&=
\frac{\Bx – \Ba}{\Abs{\Bx – \Ba}^2} \Be_1 \\
&=
2 \pi G(\Bx, \Ba) \Be_1.
\end{aligned}
\end{equation}

Cauchy’s integral.

With
\begin{equation}\label{eqn:residueGreens:360}
\psi = \frac{f(z)}{z – a},
\end{equation}
using \ref{eqn:residueGreens:260}, we can now evaluate
\begin{equation}\label{eqn:residueGreens:265}
\begin{aligned}
\oint dz\, \frac{f(z)}{z – a}
&= \Be_1 \int \spacegrad \frac{f(z)}{z – a} d^2\Bx \\
&= \Be_1 \int \lr{ \frac{\spacegrad f(z)}{z – a} + \lr{ \spacegrad \inv{z – a}} f(z) } I dA \\
&= \Be_1 \int f(z) \spacegrad 2 \pi G(\Bx – \Ba) \Be_1 I dA \\
&= 2 \pi \Be_1 \int \delta^2(\Bx – \Ba) \Be_1 f(\Bx) I dA \\
&= 2 \pi \Be_1^2 f(\Ba) I \\
&= 2 \pi I f(a),
\end{aligned}
\end{equation}
where we’ve made use of the analytic condition \( \spacegrad f = 0 \), and the fact that \( f \) and \( 1/(z-a) \), both even multivectors, commute.

The Cauchy integral equation
\begin{equation}\label{eqn:residueGreens:380}
f(a) = \inv{2 \pi I} \oint dz\, \frac{f(z)}{z – a},
\end{equation}
falls out naturally. This sort of residue calculation always seemed a bit miraculous. By introducing a geometric algebra encoding of complex numbers, we get a new and interesting interpretation. In particular,

  1. the imaginary factor in the geometric algebra formulation of this identity is an oriented unit area coming directly from the area element,
  2. the factor of \( 2 \pi \) comes directly from the Green’s function for the gradient,
  3. the fact that this particular form of integral picks up only the contribution at the point \( z = a \) is no longer mysterious seeming. This is directly due to delta-function filtering.

Also, if we are looking for an understanding of how to generalize the Cauchy equation to more general multivector functions, we now also have a good clue how that would be done.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

Transverse electric and magnetic field relations.

August 10, 2025 math and physics play , , , , , , , , , , , , , , ,

[Click here for a PDF version of this post]

I found a sign error in my book. Here’s I’ll re-derive all the results for myself here in a standalone fashion, also verifying signs as I go.

Setup

Suppose that a field is propagating in a medium along the z-axis. We may represent that field as the real part of
\begin{equation}\label{eqn:transverseField:20}
F = F(x,y) e^{j(\omega t – k z)}.
\end{equation}
This is a doubly complex relationship, as we have a scalar complex imaginary \( j \), as well as the spatial imaginary \(I = \Be_1 \Be_2 \Be_3 \) that is part of the multivector field itself
\begin{equation}\label{eqn:transverseField:40}
F = \BE + I \eta \BH.
\end{equation}

Let’s call
\begin{equation}\label{eqn:transverseField:60}
F_z = \lr{ \BE \cdot \Be_3} \Be_3 + I \eta \lr{ \BH \cdot \Be_3 } \Be_3,
\end{equation}
the propagation component of the field and \( F_t = F – F_z \) the transverse component of the field. We can write these in a more symmetric fashion by expanding the dot products and regrouping
\begin{equation}\label{eqn:transverseField:80}
\begin{aligned}
F_z
&= \lr{ \BE \cdot \Be_3} \Be_3 + I \eta \lr{ \BH \cdot \Be_3 } \Be_3 \\
&= \inv{2} \lr{ \BE \Be_3 + \Be_3 \BE } \Be_3 + \frac{I \eta}{2} \lr{ \BH \Be_3 + \Be_3 \BH} \Be_3 \\
&= \inv{2} \lr{ \BE + \Be_3 \BE \Be_3 } + \frac{I \eta}{2} \lr{ \BH + \Be_3 \BH \Be_3} \Be_3 \\
&= \inv{2} \lr{ F + \Be_3 F \Be_3 }.
\end{aligned}
\end{equation}
By subtraction, we also have
\begin{equation}\label{eqn:transverseField:100}
F_t = \inv{2} \lr{ F – \Be_3 F \Be_3 }.
\end{equation}

Relating the transverse and propagation direction fields

The multivector form of Maxwell’s equation, for source free conditions, is
\begin{equation}\label{eqn:transverseField:120}
0 = \lr{ \spacegrad + \inv{c} \partial_t } F.
\end{equation}
We split the gradient into a propagation direction component and a transverse component \( \spacegrad_t \)
\begin{equation}\label{eqn:transverseField:140}
\spacegrad = \spacegrad_t + \Be_3 \partial_z,
\end{equation}
so
\begin{equation}\label{eqn:transverseField:160}
\begin{aligned}
0
&= \lr{ \spacegrad_t + \Be_3 \partial_z + \inv{c} \partial_t } F \\
&= \lr{ \spacegrad_t + \Be_3 \partial_z + \inv{c} \partial_t } F(x,y) e^{j(\omega t – k z) } \\
&= \lr{ \spacegrad_t – j\Be_3 k + j\frac{\omega}{c} } F(x,y) e^{j(\omega t – k z) },
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:transverseField:180}
-j \lr{ \frac{\omega}{c} – k \Be_3 } F = \spacegrad_t F.
\end{equation}

Observe that
\begin{equation}\label{eqn:transverseField:200}
-j \lr{ \frac{\omega}{c} – k \Be_3 } \Be_3 F \Be_3 = -\spacegrad_t \Be_3 F \Be_3,
\end{equation}
which means that
\begin{equation}\label{eqn:transverseField:220}
-j \lr{ \frac{\omega}{c} – k \Be_3 } \inv{2} \lr{ F \pm \Be_3 F \Be_3 } = \spacegrad_t \inv{2} \lr{ F \mp \Be_3 F \Be_3 },
\end{equation}
or
\begin{equation}\label{eqn:transverseField:240}
\begin{aligned}
-j \lr{ \frac{\omega}{c} – k \Be_3 } F_z &= \spacegrad_t F_t \\
-j \lr{ \frac{\omega}{c} – k \Be_3 } F_t &= \spacegrad_t F_z.
\end{aligned}
\end{equation}

Provided \( \omega^2 \ne k^2 c^2 \), this can be inverted, meaning that \( F_t \) fully specifies \( F_z \) if known, as well as the opposite.

That inversion provides the propagation direction field in terms of the transverse
\begin{equation}\label{eqn:transverseField:260a}
F_z = j \frac{ \frac{\omega}{c} + k \Be_3 }{ \omega^2 \mu \epsilon – k^2 } \spacegrad_t F_t,
\end{equation}
and the transverse field in terms of the propagation direction field
\begin{equation}\label{eqn:transverseField:260b}
F_t = j \frac{ \frac{\omega}{c} + k \Be_3 }{ \omega^2 \mu \epsilon – k^2 } \spacegrad_t F_z.
\end{equation}

Transverse field in terms of propagation

Let’s expand \ref{eqn:transverseField:260b} in terms of component electric and magnetic fields. First note that
\begin{equation}\label{eqn:transverseField:280}
\begin{aligned}
\spacegrad_t F_z
&= \spacegrad_t \Be_3 \lr{ E_z + I \eta H_z } \\
&= -\Be_3 \spacegrad_t \lr{ E_z + I \eta H_z }.
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:transverseField:300}
F_t = -j \frac{ \frac{\omega}{c} \Be_3 + k }{ \omega^2 \mu \epsilon – k^2 } \spacegrad_t \lr{ E_z + I \eta H_z }.
\end{equation}
This may now be split into electric and magnetic fields, but first note that the multivector operator
\begin{equation}\label{eqn:transverseField:320}
\begin{aligned}
\Be_3 \spacegrad_t
&=
\Be_3 \cdot \spacegrad_t + \Be_3 \wedge \spacegrad_t \\
&=
\Be_3 \wedge \spacegrad_t,
\end{aligned}
\end{equation}
has only a bivector component.

For the transverse electric field component, we have
\begin{equation}\label{eqn:transverseField:340}
\begin{aligned}
\gpgradeone{ \lr{ \frac{\omega}{c} \Be_3 + k } \spacegrad_t \lr{ E_z + I \eta H_z } }
&=
k \spacegrad_t E_z + \frac{\omega}{c} \Be_3 \wedge \spacegrad_t \lr{ I \eta H_z } \\
&=
k \spacegrad_t E_z – \frac{\eta \omega}{c} \Be_3 \cross \spacegrad_t H_z.
\end{aligned}
\end{equation}
and for the magnetic field component
\begin{equation}\label{eqn:transverseField:360}
\begin{aligned}
\gpgradetwo{ \lr{ \frac{\omega}{c} \Be_3 + k } \spacegrad_t \lr{ E_z + I \eta H_z } }
=
\frac{\omega}{c} \Be_3 \wedge \spacegrad_t E_z + I \eta k \spacegrad_t H_z
\end{aligned}
\end{equation}

This means that
\begin{equation}\label{eqn:transverseField:380}
\begin{aligned}
\BE_t &= \frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ -k \spacegrad_t E_z + \frac{\eta \omega}{c} \Be_3 \cross \spacegrad_t H_z } \\
\eta I \BH_t &= -\frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ \frac{\omega}{c} \Be_3 \wedge \spacegrad_t E_z + I \eta k \spacegrad_t H_z }
\end{aligned}
\end{equation}

Cancelling out the \( \eta I \) factors in the magnetic field component, and substituting \( \eta/c = \mu, 1/(c\eta) = \epsilon \), leaves us with
\begin{equation}\label{eqn:transverseField:400}
\begin{aligned}
\BE_t &= \frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ -k \spacegrad_t E_z + \mu \omega \Be_3 \cross \spacegrad_t H_z } \\
\BH_t &= -\frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ \epsilon \omega \Be_3 \cross \spacegrad_t E_z + k \spacegrad_t H_z }.
\end{aligned}
\end{equation}

Propagation field in terms of transverse.

Now let’s invert \ref{eqn:transverseField:260a}. We seek the grade selections
\begin{equation}\label{eqn:transverseField:420}
\gpgrade{ \lr{ \frac{\omega}{c} + k \Be_3 } \spacegrad_t F_t }{1,2}
\end{equation}

Performing each of these four grade selections in turn, for the \( \spacegrad_t F_t \) products we have
\begin{equation}\label{eqn:transverseField:440}
\begin{aligned}
\gpgradeone{ \spacegrad_t F_t }
&=
\gpgradeone{ \spacegrad_t \lr{ \BE_t + I \eta \BH_t } } \\
&=
\eta \gpgradeone{ I \spacegrad_t \BH_t } \\
&=
\eta I \lr{ \spacegrad_t \wedge \BH_t } \\
&=
-\eta \lr{ \spacegrad_t \cross \BH_t }.
\end{aligned}
\end{equation}
Because \( \spacegrad_t \BE_t \) has only 0,2 grades, so the grade-one selection was zero, leaving us with only \( \BH_t \) dependence.

For the grade two selection of the same, we have
\begin{equation}\label{eqn:transverseField:460}
\begin{aligned}
\gpgradetwo{ \spacegrad_t F_t }
&=
\gpgradetwo{ \spacegrad_t \lr{ \BE_t + I \eta \BH_t } } \\
&=
\spacegrad_t \wedge \BE_t \\
&=
I \lr{ \spacegrad_t \cross \BE_t }.
\end{aligned}
\end{equation}
This time we note that the vector-bivector product \( \spacegrad_t (I \BH_t) \) has only 1,3 grades, and is killed by the grade-2 selection.

For the \( \Be_3 \spacegrad_t F_t \) products, we have
\begin{equation}\label{eqn:transverseField:480}
\begin{aligned}
\gpgradeone{ \Be_3 \spacegrad_t F_t }
&=
\gpgradeone{ \Be_3 \spacegrad_t \lr{ \BE_t + I \eta \BH_t } } \\
&=
\gpgradeone{ \lr{ \Be_3 \cdot \spacegrad_t + \Be_3 \wedge \spacegrad_t } \BE_t }
+
\eta \gpgradeone{ I \Be_3 \lr{ \spacegrad_t \cdot \BH_t + \spacegrad_t \wedge \BH_t } } \\
&=
\gpgradeone{ I \lr{ \Be_3 \cross \spacegrad_t } \BE_t } \\
&=
-\lr{ \Be_3 \cross \spacegrad_t } \cross \BE_t.
\end{aligned}
\end{equation}
Observe that we’ve made use of \( \Be_3 \cdot \spacegrad_t = 0 \), regardless of what it operates on. For the \( \BH_t \) dependence, we had a bivector-scalar product \( (I \Be_3) (\spacegrad_t \cdot \BH_t) \), and a bivector-bivector product \( (I \Be_3) (\spacegrad_t \wedge \BH_t) \), neither of which have any vector grades.

Finally
\begin{equation}\label{eqn:transverseField:500}
\begin{aligned}
\gpgradetwo{ \Be_3 \spacegrad_t F_t }
&=
\eta \gpgradetwo{ I \Be_3 \spacegrad_t \BH_t } \\
&=
-\eta \gpgradetwo{ \lr{\Be_3 \cross \spacegrad_t} \BH_t } \\
&=
-\eta I \lr{\Be_3 \cross \spacegrad_t} \cross \BH_t.
\end{aligned}
\end{equation}
Here we’ve discarded the \( \BE_t \) dependent terms, since the bivector-vector product \( \lr{ \Be_3 \wedge \spacegrad_t } \BE_t \) has only grades 1,3, and we seek grade 2 only.

Putting all the pieces together, noting that \( \eta/c = \mu \) and \( 1/(c \eta) = \epsilon \), we have
we have
\begin{equation}\label{eqn:transverseField:520}
\BE_z = -\frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ \omega \mu \lr{ \spacegrad_t \cross \BH_t } + k \lr{ \Be_3 \cross \spacegrad_t } \cross \BE_t },
\end{equation}
and
\begin{equation}\label{eqn:transverseField:540}
\BH_z = \frac{j}{\omega^2 \mu \epsilon – k^2 } \lr{ \omega \epsilon \lr{ \spacegrad_t \cross \BE_t } – k \lr{\Be_3 \cross \spacegrad_t} \cross \BH_t }.
\end{equation}

More on time derivatives of integrals.

June 9, 2024 math and physics play , , , , , , , , , , , , ,

[Click here for a PDF version of this post]

Motivation.

I was asked about geometric algebra equivalents for a couple identities found in [1], one for line integrals
\begin{equation}\label{eqn:more_feynmans_trick:20}
\ddt{} \int_{C(t)} \Bf \cdot d\Bx =
\int_{C(t)} \lr{
\PD{t}{\Bf} + \spacegrad \lr{ \Bv \cdot \Bf } – \Bv \cross \lr{ \spacegrad \cross \Bf }
}
\cdot d\Bx,
\end{equation}
and one for area integrals
\begin{equation}\label{eqn:more_feynmans_trick:40}
\ddt{} \int_{S(t)} \Bf \cdot d\BA =
\int_{S(t)} \lr{
\PD{t}{\Bf} + \Bv \lr{ \spacegrad \cdot \Bf } – \spacegrad \cross \lr{ \Bv \cross \Bf }
}
\cdot d\BA.
\end{equation}

Both of these look questionable at first glance, because neither has boundary term. However, they can be transformed with Stokes theorem to
\begin{equation}\label{eqn:more_feynmans_trick:60}
\ddt{} \int_{C(t)} \Bf \cdot d\Bx
=
\int_{C(t)} \lr{
\PD{t}{\Bf} – \Bv \cross \lr{ \spacegrad \cross \Bf }
}
\cdot d\Bx
+
\evalbar{\Bv \cdot \Bf }{\Delta C},
\end{equation}
and
\begin{equation}\label{eqn:more_feynmans_trick:80}
\ddt{} \int_{S(t)} \Bf \cdot d\BA =
\int_{S(t)} \lr{
\PD{t}{\Bf} + \Bv \lr{ \spacegrad \cdot \Bf }
}
\cdot d\BA

\oint_{\partial S(t)} \lr{ \Bv \cross \Bf } \cdot d\Bx.
\end{equation}
The area integral derivative is now seen to be a variation of one of the special cases of the Leibniz integral rule, see for example [2]. The author admits that the line integral relationship is not well used, and doesn’t show up in the wikipedia page.

My end goal will be to evaluate the derivative of a general multivector line integral
\begin{equation}\label{eqn:more_feynmans_trick:100}
\ddt{} \int_{C(t)} F d\Bx G,
\end{equation}
and area integral
\begin{equation}\label{eqn:more_feynmans_trick:120}
\ddt{} \int_{S(t)} F d^2\Bx G.
\end{equation}
We’ve derived that line integral result in a different fashion previously, but it’s interesting to see a different approach. Perhaps this approach will lend itself nicely to non-scalar integrands?

Prerequisites.

Definition 1.1: Convective derivative.

The convective derivative,
of \( \phi(t, \Bx(t)) \) is defined as
\begin{equation*}
\frac{D \phi}{D t} = \lim_{\Delta t \rightarrow 0} \frac{ \phi(t + \Delta t, \Bx + \Delta t \Bv) – \phi(t, \Bx)}{\Delta t},
\end{equation*}
where \( \Bv = d\Bx/dt \).

Theorem 1.1: Convective derivative.

The convective derivative operator may be written
\begin{equation*}
\frac{D}{D t} = \PD{t}{} + \Bv \cdot \spacegrad.
\end{equation*}

Start proof:

Let’s write
\begin{equation}\label{eqn:more_feynmans_trick:140}
\begin{aligned}
v_0 &= 1 \\
u_0 &= t + v_0 h \\
u_k &= x_k + v_k h, k \in [1,3] \\
\end{aligned}
\end{equation}

The limit, if it exists, must equal the sum of the individual limits
\begin{equation}\label{eqn:more_feynmans_trick:160}
\frac{D \phi}{D t} = \sum_{\alpha = 0}^3 \lim_{\Delta t \rightarrow 0} \frac{ \phi(u_\alpha + v_\alpha h) – \phi(t, Bx)}{h},
\end{equation}
but that is just a sum of derivitives, which can be evaluated by chain rule
\begin{equation}\label{eqn:more_feynmans_trick:180}
\begin{aligned}
\frac{D \phi}{D t}
&= \sum_{\alpha = 0}^{3} \evalbar{ \PD{u_\alpha}{\phi(u_\alpha)} \PD{h}{u_\alpha} }{h = 0} \\
&= \PD{t}{\phi} + \sum_{k = 1}^3 v_k \PD{x_k}{\phi} \\
&= \lr{ \PD{t}{} + \Bv \cdot \spacegrad } \phi.
\end{aligned}
\end{equation}

End proof.

Definition 1.2: Hestenes overdot notation.

We may use a dot or a tick with a derivative operator, to designate the scope of that operator, allowing it to operate bidirectionally, or in a restricted fashion, holding specific multivector elements constant. This is called the Hestenes overdot notation.Illustrating by example, with multivectors \( F, G \), and allowing the gradient to act bidirectionally, we have
\begin{equation*}
\begin{aligned}
F \spacegrad G
&=
\dot{F} \dot{\spacegrad} G
+
F \dot{\spacegrad} \dot{G} \\
&=
\sum_i \lr{ \partial_i F } \Be_i G + \sum_i F \Be_i \lr{ \partial_i G }.
\end{aligned}
\end{equation*}
The last step is a precise statement of the meaning of the overdot notation, showing that we hold the position of the vector elements of the gradient constant, while the (scalar) partials are allowed to commute, acting on the designated elements.

We will need one additional identity

Lemma 1.1: Gradient of dot product (one constant vector.)

Given vectors \( \Ba, \Bb \) the gradient of their dot product is given by
\begin{equation*}
\spacegrad \lr{ \Ba \cdot \Bb }
= \lr{ \Bb \cdot \spacegrad } \Ba – \Bb \cdot \lr{ \spacegrad \wedge \Ba }
+ \lr{ \Ba \cdot \spacegrad } \Bb – \Ba \cdot \lr{ \spacegrad \wedge \Bb }.
\end{equation*}
If \( \Bb \) is constant, this reduces to
\begin{equation*}
\spacegrad \lr{ \Ba \cdot \Bb }
=
\dot{\spacegrad} \lr{ \dot{\Ba} \cdot \Bb }
= \lr{ \Bb \cdot \spacegrad } \Ba – \Bb \cdot \lr{ \spacegrad \wedge \Ba }.
\end{equation*}

Start proof:

The \( \Bb \) constant case is trivial to prove. We use \( \Ba \cdot \lr{ \Bb \wedge \Bc } = \lr{ \Ba \cdot \Bb} \Bc – \Bb \lr{ \Ba \cdot \Bc } \), and simply expand the vector, curl dot product
\begin{equation}\label{eqn:more_feynmans_trick:200}
\Bb \cdot \lr{ \spacegrad \wedge \Ba }
=
\Bb \cdot \lr{ \dot{\spacegrad} \wedge \dot{\Ba} }
= \lr{ \Bb \cdot \dot{\spacegrad} } \dot{\Ba} – \dot{\spacegrad} \lr{ \dot{\Ba} \cdot \Bb }. \end{equation}
Rearrangement proves that \( \Bb \) constant identity. The more general statement follows from a chain rule evaluation of the gradient, holding each vector constant in turn
\begin{equation}\label{eqn:more_feynmans_trick:320}
\spacegrad \lr{ \Ba \cdot \Bb }
=
\dot{\spacegrad} \lr{ \dot{\Ba} \cdot \Bb }
+
\dot{\spacegrad} \lr{ \dot{\Bb} \cdot \Ba }.
\end{equation}

End proof.

Time derivative of a line integral of a vector field.

We now have all our tools assembled, and can proceed to evaluate the derivative of the line integral. We want to show that

Theorem 1.2:

Given a path parameterized by \( \Bx(\lambda) \), where \( d\Bx = (\PDi{\lambda}{\Bx}) d\lambda \), with points along a \( C(t) \) moving through space at a velocity \( \Bv(\Bx(\lambda)) \), and a vector function \( \Bf = \Bf(t, \Bx(\lambda)) \),
\begin{equation*}
\ddt{} \int_{C(t)} \Bf \cdot d\Bx =
\int_{C(t)} \lr{
\PD{t}{\Bf} + \spacegrad \lr{ \Bf \cdot \Bv } + \Bv \cdot \lr{ \spacegrad \wedge \Bf}
} \cdot d\Bx
\end{equation*}

Start proof:

I’m going to avoid thinking about the rigorous details, like any requirements for curve continuity and smoothness. We will however, specify that the end points are given by \( [\lambda_1, \lambda_2] \). Expanding out the parameterization, we seek to evaluate
\begin{equation}\label{eqn:more_feynmans_trick:240}
\int_{C(t)} \Bf \cdot d\Bx
=
\int_{\lambda_1}^{\lambda_2} \Bf(t, \Bx(\lambda) ) \cdot \frac{\partial \Bx}{\partial \lambda} d\lambda.
\end{equation}
The parametric form nicely moves all the boundary time dependence into the integrand, allowing us to write
\begin{equation}\label{eqn:more_feynmans_trick:260}
\begin{aligned}
\ddt{} \int_{C(t)} \Bf \cdot d\Bx
&=
\lim_{\Delta t \rightarrow 0}
\inv{\Delta t}
\int_{\lambda_1}^{\lambda_2}
\lr{ \Bf(t + \Delta t, \Bx(\lambda) + \Delta t \Bv(\Bx(\lambda) ) \cdot \frac{\partial}{\partial \lambda} \lr{ \Bx + \Delta t \Bv(\Bx(\lambda)) } – \Bf(t, \Bx(\lambda)) \cdot \frac{\partial \Bx}{\partial \lambda} } d\lambda \\
&=
\lim_{\Delta t \rightarrow 0}
\inv{\Delta t}
\int_{\lambda_1}^{\lambda_2}
\lr{ \Bf(t + \Delta t, \Bx(\lambda) + \Delta t \Bv(\Bx(\lambda) ) – \Bf(t, \Bx)} \cdot \frac{\partial \Bx}{\partial \lambda} d\lambda \\
&\quad+
\lim_{\Delta t \rightarrow 0}
\int_{\lambda_1}^{\lambda_2}
\Bf(t + \Delta t, \Bx(\lambda) + \Delta t \Bv(\Bx(\lambda) )) \cdot \PD{\lambda}{}\Bv(\Bx(\lambda)) d\lambda \\
&=
\int_{\lambda_1}^{\lambda_2}
\frac{D \Bf}{Dt} \cdot \frac{\partial \Bx}{\partial \lambda} d\lambda +
\lim_{\Delta t \rightarrow 0}
\int_{\lambda_1}^{\lambda_2}
\Bf(t + \Delta t, \Bx(\lambda) + \Delta t \Bv(\Bx(\lambda) \cdot \frac{\partial}{\partial \lambda} \Bv(\Bx(\lambda)) d\lambda \\
&=
\int_{\lambda_1}^{\lambda_2}
\lr{ \PD{t}{\Bf} + \lr{ \Bv \cdot \spacegrad } \Bf } \cdot \frac{\partial \Bx}{\partial \lambda} d\lambda
+
\int_{\lambda_1}^{\lambda_2}
\Bf \cdot \frac{\partial \Bv}{\partial \lambda} d\lambda
\end{aligned}
\end{equation}
At this point, we have a \( d\Bx \) in the first integrand, and a \( d\Bv \) in the second. We can expand the second integrand, evaluating the derivative using chain rule to find
\begin{equation}\label{eqn:more_feynmans_trick:280}
\begin{aligned}
\Bf \cdot \PD{\lambda}{\Bv}
&=
\sum_i \Bf \cdot \PD{x_i}{\Bv} \PD{\lambda}{x_i} \\
&=
\sum_{i,j} f_j \PD{x_i}{v_j} \PD{\lambda}{x_i} \\
&=
\sum_{j} f_j \lr{ \spacegrad v_j } \cdot \PD{\lambda}{\Bx} \\
&=
\sum_{j} \lr{ \dot{\spacegrad} f_j \dot{v_j} } \cdot \PD{\lambda}{\Bx} \\
&=
\dot{\spacegrad} \lr{ \Bf \cdot \dot{\Bv} } \cdot \PD{\lambda}{\Bx}.
\end{aligned}
\end{equation}
Substitution gives
\begin{equation}\label{eqn:more_feynmans_trick:300}
\begin{aligned}
\ddt{} \int_{C(t)} \Bf \cdot d\Bx
&=
\int_{C(t)}
\lr{ \PD{t}{\Bf} + \lr{ \Bv \cdot \spacegrad } \Bf + \dot{\spacegrad} \lr{ \Bf \cdot \dot{\Bv} } } \cdot \frac{\partial \Bx}{\partial \lambda} d\lambda \\
&=
\int_{C(t)}
\lr{ \PD{t}{\Bf}
+ \spacegrad \lr{ \Bf \cdot \Bv }
+ \lr{ \Bv \cdot \spacegrad } \Bf
– \dot{\spacegrad} \lr{ \dot{\Bf} \cdot \Bv }
} \cdot d\Bx \\
&=
\int_{C(t)}
\lr{ \PD{t}{\Bf}
+ \spacegrad \lr{ \Bf \cdot \Bv }
+ \Bv \cdot \lr{ \spacegrad \wedge \Bf }
} \cdot d\Bx,
\end{aligned}
\end{equation}
where the last simplification utilizes lemma 1.1.

End proof.

Since \( \Ba \cdot \lr{ \Bb \wedge \Bc } = -\Ba \cross \lr{ \Bb \cross \Bc } \), observe that we have also recovered \ref{eqn:more_feynmans_trick:20}.

Time derivative of a line integral of a bivector field.

For a bivector line integral, we have

Theorem 1.3:

Given a path parameterized by \( \Bx(\lambda) \), where \( d\Bx = (\PDi{\lambda}{\Bx}) d\lambda \), with points along a \( C(t) \) moving through space at a velocity \( \Bv(\Bx(\lambda)) \), and a bivector function \( B = B(t, \Bx(\lambda)) \),
\begin{equation*}
\ddt{} \int_{C(t)} B \cdot d\Bx =
\int_{C(t)}
\PD{t}{B} \cdot d\Bx + \lr{ d\Bx \cdot \spacegrad } \lr{ B \cdot \Bv } + \lr{ \lr{ \Bv \wedge d\Bx } \cdot \spacegrad } \cdot B.
\end{equation*}

Start proof:

Skipping the steps that follow our previous proceedure exactly, we have
\begin{equation}\label{eqn:more_feynmans_trick:340}
\ddt{} \int_{C(t)} B \cdot d\Bx =
\int_{C(t)}
\PD{t}{B} \cdot d\Bx + \lr{ \Bv \cdot \spacegrad } B \cdot d\Bx + B \cdot d\Bv.
\end{equation}
Since
\begin{equation}\label{eqn:more_feynmans_trick:360}
\begin{aligned}
B \cdot d\Bv
&= B \cdot \PD{\lambda}{\Bv} d\lambda \\
&= B \cdot \PD{x_i}{\Bv} \PD{\lambda}{x_i} d\lambda \\
&= B \cdot \lr{ \lr{ d\Bx \cdot \spacegrad } \Bv },
\end{aligned}
\end{equation}
we have
\begin{equation}\label{eqn:more_feynmans_trick:380}
\ddt{} \int_{C(t)} B \cdot d\Bx
=
\int_{C(t)}
\PD{t}{B} \cdot d\Bx + \lr{ \Bv \cdot \spacegrad } B \cdot d\Bx + B \cdot \lr{ \lr{ d\Bx \cdot \spacegrad } \Bv } \\
\end{equation}
Let’s reduce the two last terms in this integrand
\begin{equation}\label{eqn:more_feynmans_trick:400}
\begin{aligned}
\lr{ \Bv \cdot \spacegrad } B \cdot d\Bx + B \cdot \lr{ \lr{ d\Bx \cdot \spacegrad } \Bv }
&=
\lr{ \Bv \cdot \spacegrad } B \cdot d\Bx –
\lr{ d\Bx \cdot \dot{\spacegrad} } \lr{ \dot{\Bv} \cdot B } \\
&=
\lr{ \Bv \cdot \spacegrad } B \cdot d\Bx
– \lr{ d\Bx \cdot \spacegrad} \lr{ \Bv \cdot B }
+ \lr{ d\Bx \cdot \dot{\spacegrad} } \lr{ \Bv \cdot \dot{B} } \\
&=
\lr{ d\Bx \cdot \spacegrad} \lr{ B \cdot \Bv }
+ \lr{ \Bv \cdot \dot{\spacegrad} } \dot{B} \cdot d\Bx
+ \lr{ d\Bx \cdot \dot{\spacegrad} } \lr{ \Bv \cdot \dot{B} } \\
&=
\lr{ d\Bx \cdot \spacegrad} \lr{ B \cdot \Bv }
+ \lr{ \Bv \lr{ d\Bx \cdot \spacegrad } – d\Bx \lr{ \Bv \cdot \spacegrad } } \cdot B \\
&=
\lr{ d\Bx \cdot \spacegrad} \lr{ B \cdot \Bv }
+ \lr{ \lr{ \Bv \wedge d\Bx } \cdot \spacegrad } \cdot B.
\end{aligned}
\end{equation}
Back substitution finishes the job.

End proof.

Time derivative of a multivector line integral.

Theorem 1.4: Time derivative of multivector line integral.

Given a path parameterized by \( \Bx(\lambda) \), where \( d\Bx = (\PDi{\lambda}{\Bx}) d\lambda \), with points along a \( C(t) \) moving through space at a velocity \( \Bv(\Bx(\lambda)) \), and multivector functions \( M = M(t, \Bx(\lambda)), N = N(t, \Bx(\lambda)) \),
\begin{equation*}
\ddt{} \int_{C(t)} M d\Bx N =
\int_{C(t)}
\frac{D}{D t} M d\Bx N + M \lr{ \lr{ d\Bx \cdot \dot{\spacegrad} } \dot{\Bv} } N.
\end{equation*}

It is useful to write this out explicitly for clarity
\begin{equation}\label{eqn:more_feynmans_trick:420}
\ddt{} \int_{C(t)} M d\Bx N =
\int_{C(t)}
\PD{t}{M} d\Bx N + M d\Bx \PD{t}{N}
+ \dot{M} \lr{ \Bv \cdot \dot{\spacegrad} } N
+ M \lr{ \Bv \cdot \dot{\spacegrad} } \dot{N}
+ M \lr{ \lr{ d\Bx \cdot \dot{\spacegrad} } \dot{\Bv} } N.
\end{equation}

Proof is left to the reader, but follows the patterns above.

It’s not obvious whether there is a nice way to reduce this, as we did for the scalar valued line integral of a vector function, and the vector valued line integral of a bivector function. In particular, our vector and bivector results had \( \spacegrad \lr{ \Bf \cdot \Bv } \), and \( \spacegrad \lr{ B \cdot \Bv } \) terms respectively, which allows for the boundary term to be evaluated using Stokes’ theorem. Is such a manipulation possible here?

Coming later: surface integrals!

References

[1] Nicholas Kemmer. Vector Analysis: A physicist’s guide to the mathematics of fields in three dimensions. CUP Archive, 1977.

[2] Wikipedia contributors. Leibniz integral rule — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Leibniz_integral_rule&oldid=1223666713, 2024. [Online; accessed 22-May-2024].

Multivector form of Leibniz integral theorem for line integrals.

June 2, 2024 math and physics play , , , , ,

[Click here for a PDF version of this post]

Goal.

Here we will explore the multivector form of the Leibniz integral theorem (aka. Feynman’s trick in one dimension), as discussed in [1].

Given a boundary \( \Omega(t) \) that varies in time, we seek to evaluate
\begin{equation}\label{eqn:LeibnizIntegralTheorem:20}
\ddt{} \int_{\Omega(t)} F d^p \Bx \lrpartial G.
\end{equation}
Recall that when the bounding volume is fixed, we have
\begin{equation}\label{eqn:LeibnizIntegralTheorem:40}
\int_{\Omega} F d^p \Bx \lrpartial G = \int_{\partial \Omega} F d^{p-1} \Bx G,
\end{equation}
and expect a few terms that are variations of the RHS if we take derivatives.

Simplest case: scalar function, one variable.

With
\begin{equation}\label{eqn:LeibnizIntegralTheorem:60}
A(t) = \int_{a(t)}^{b(t)} f(u, t) du,
\end{equation}
If we can find an antiderivative, such that
\begin{equation}\label{eqn:LeibnizIntegralTheorem:80}
\PD{u}{F(u,t)} = f(u, t),
\end{equation}
or
\begin{equation}\label{eqn:LeibnizIntegralTheorem:90}
F(u, t) = \int f(u, t) du.
\end{equation}
The integral is made trivial
\begin{equation}\label{eqn:LeibnizIntegralTheorem:100}
\begin{aligned}
A(t)
&=
\int_{a(t)}^{b(t)} f(u, t) du \\
&=
\int_{a(t)}^{b(t)} \PD{u}{F(u,t)} du \\
&= F( b(t), t ) – F( a(t), t ).
\end{aligned}
\end{equation}
Should we attempt to take derivatives, we have a contribution from the first parameter that is entirely dependent on the boundary, and a contribution from the second parameter that is entirely independent of the boundary. That is
\begin{equation}\label{eqn:LeibnizIntegralTheorem:120}
\begin{aligned}
\ddt{} \int_{a(t)}^{b(t)} f(u, t) du
&=
\PD{b}{ F } \PD{t}{b}
-\PD{a}{ F } \PD{t}{a}
+ \evalrange{\PD{t}{F(u, t)}}{u = a(t)}{b(t)} \\
&=
f(b(t), t) b'(t) –
f(a(t), t) a'(t)
+ \int_{a(t)}^{b(t)} \PD{t}{} f(u, t) du.
\end{aligned}
\end{equation}
In the second step, the antiderivative function \( F \) has been restated in it’s original integral form \ref{eqn:LeibnizIntegralTheorem:90}. We are able to take the derivative into the integral, since we first evaluate that derivative, independent of the boundary, and then evaluate the result at the respective end points of the boundary.

Next simplest case: Multivector line integral (perfect derivative.)

Given an \( N \) dimensional vector space, and a path parameterized by vector \( \Bx = \Bx(u) \). The line integral special case of the fundamental theorem of calculus is found by evaluating
\begin{equation}\label{eqn:LeibnizIntegralTheorem:140}
\int F(u) d\Bx \lrpartial G(u),
\end{equation}
where \( F, G \) are multivectors, and
\begin{equation}\label{eqn:LeibnizIntegralTheorem:160}
\begin{aligned}
d\Bx &= \PD{u}{\Bx} du = \Bx_u du \\
\lrpartial &= \Bx^u \stackrel{ \leftrightarrow }{\PD{u}{}},
\end{aligned}
\end{equation}
where \( \Bx_u \Bx^u = \Bx_u \cdot \Bx^u = 1 \).

Evaluating the integral, we have
\begin{equation}\label{eqn:LeibnizIntegralTheorem:180}
\begin{aligned}
\int F(u) d\Bx \lrpartial G(u)
&=
\int F(u) \Bx_u du \Bx^u \stackrel{ \leftrightarrow }{\PD{u}{}} G(u) \\
&=
\int du \PD{u}{} \lr{ F(u) G(u) } \\
&=
F(u) G(u).
\end{aligned}
\end{equation}

If we allow \( F, G, \Bx \) to each have time dependence
\begin{equation}\label{eqn:LeibnizIntegralTheorem:200}
\begin{aligned}
F &= F(u, t) \\
G &= G(u, t) \\
\Bx &= \Bx(u, t),
\end{aligned}
\end{equation}
so we have
\begin{equation}\label{eqn:LeibnizIntegralTheorem:220}
\ddt{} \int_{u = a(t)}^{b(t)} F(u, t) d\Bx \lrpartial G(u, t)
=
\evalrange{ \ddt{u} \PD{u}{} \lr{ F(u, t) G(u, t) } }{u = a(t)}{b(t)}
+ \evalrange{\ddt{} \lr{ F(u, t) G(u, t) } }{u = a(t)}{b(t)}
.
\end{equation}

General multivector line integral.

Now suppose that we have a general multivector line integral
\begin{equation}\label{eqn:LeibnizIntegralTheorem:240}
A(t) = \int_{a(t)}^{b(t)} F(u, t) d\Bx G(u, t),
\end{equation}
where \( d\Bx = \Bx_u du \), \( \Bx_u = \partial \Bx(u, t)/\partial u \). Writing out the integrand explicitly, we have
\begin{equation}\label{eqn:LeibnizIntegralTheorem:260}
A(t) = \int_{a(t)}^{b(t)} du F(u, t) \Bx_u(u, t) G(u, t).
\end{equation}
Following our logic with the first scalar case, let
\begin{equation}\label{eqn:LeibnizIntegralTheorem:280}
\PD{u}{B(u, t)} = F(u, t) \Bx_u(u, t) G(u, t).
\end{equation}
We can now evaluate the derivative
\begin{equation}\label{eqn:LeibnizIntegralTheorem:300}
\ddt{A(t)} = \evalrange{ \ddt{u} \PD{u}{B} }{u = a(t)}{b(t)} + \evalrange{ \PD{t}{}B(u, t) }{u = a(t)}{b(t)}.
\end{equation}
Writing \ref{eqn:LeibnizIntegralTheorem:280} in integral form, we have
\begin{equation}\label{eqn:LeibnizIntegralTheorem:320}
B(u, t) = \int du F(u, t) \Bx_u(u, t) G(u, t),
\end{equation}
so
\begin{equation}\label{eqn:LeibnizIntegralTheorem:340}
\begin{aligned}
\ddt{A(t)}
&= \evalrange{ \ddt{u} \PD{u}{B} }{u = a(t)}{b(t)} +
\evalbar{ \PD{t’}{} \int_{a(t)}^{b(t)} du F(u, t’) d\Bx_u(u, t’) G(u, t’) }{t’ = t} \\
&= \evalrange{ \ddt{u} F(u, t) \Bx_u(u, t) G(u, t) }{u = a(t)}{b(t)} +
\int_{a(t)}^{b(t)} \PD{t}{} F(u, t) d\Bx(u, t) G(u, t),
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:LeibnizIntegralTheorem:360}
\ddt{} \int_{a(t)}^{b(t)} F(u, t) d\Bx(u, t) G(u, t)
= \evalrange{ F(u, t) \ddt{\Bx}(u, t) G(u, t) }{u = a(t)}{b(t)} +
\int_{a(t)}^{b(t)} \PD{t}{} F(u, t) d\Bx(u, t) G(u, t).
\end{equation}

This is perhaps clearer, if just written as:
\begin{equation}\label{eqn:LeibnizIntegralTheorem:380}
\ddt{} \int_{a(t)}^{b(t)} F d\Bx G
= \evalrange{ F \ddt{\Bx} G }{u = a(t)}{b(t)} +
\int_{a(t)}^{b(t)} \PD{t}{} F d\Bx G.
\end{equation}
As a check, it’s worth pointing out that we can recover the one dimensional result, writing \( \Bx = u \Be_1 \), \( f = F \Be_1^{-1} \), and \( G = 1 \), for
\begin{equation}\label{eqn:LeibnizIntegralTheorem:400}
\ddt{} \int_{a(t)}^{b(t)} f du
= \evalrange{ f(u) \ddt{u} }{u = a(t)}{b(t)} +
\int_{a(t)}^{b(t)} du \PD{t}{f}.
\end{equation}

Next steps.

I’ve tried a couple times on paper to do surface integral variations of this (allowing the surface to vary with time), and don’t think that I’ve gotten it right. Will try again (or perhaps just look it up and see what the result is supposed to look like, then see how that translates into the GC formalism.)

References

[1] Wikipedia contributors. Leibniz integral rule — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Leibniz_integral_rule&oldid=1223666713, 2024. [Online; accessed 22-May-2024].

Potentials for multivector Maxwell’s equation (again.)

December 8, 2023 math and physics play , , , , , , , , , , , , , , , , ,

[Click here for the PDF version of this post.]

Motivation.

This revisits my last blog post where I covered this content in a meandering fashion. This is an attempt to re-express this in a more compact form. In particular, in a form that is amenable to include in my book. When I wrote the potential section of my book, I cheated, and didn’t try to motivate the results. My cheat was figuring out the multivector potential representation starting with STA where things are simpler, and then translating it back to a multivector representation, instead of figuring out a reasonable way to motivate things from the foundation already laid.

I’d like to eventually have a less rushed treatment of potentials in my book, where the results are not pulled out of a magic hat. Here is an attempted step in that direction. I’ve opted to put some of the motivational material in problems (with solutions at the chapter end.)

Multivector potentials.

We know from conventional electromagnetism (given no fictitious magnetic sources) that we can represent the six components of the electric and magnetic fields in terms of four scalar fields
\begin{equation}\label{eqn:mvpotentials:80}
\begin{aligned}
\BE &= -\spacegrad \phi – \PD{t}{\BA} \\
\BH &= \inv{\mu} \spacegrad \cross \BA.
\end{aligned}
\end{equation}
The conventional way of constructing these potentials makes use of the identities
\begin{equation}\label{eqn:mvpotentials:60}
\begin{aligned}
\spacegrad \cdot \lr{ \spacegrad \cross \BA } &= 0 \\
\spacegrad \cross \lr{ \spacegrad \phi } &= 0,
\end{aligned}
\end{equation}
applying those to the source free Maxwell’s equations to find representations of \( \BE, \BH \) that automatically satisfy those equations. For that conventional analysis, see section 18-6 [2] (available online), or section 10.1 [3], or section 6.4 [4]. We can also find such a potential representation using geometric algebra methods that are cross product free (problem 1.)

For Maxwell’s equations with fictitious magnetic sources, it can be shown that a potential representation of the field
\begin{equation}\label{eqn:mvpotentials:100}
\begin{aligned}
\BH &= -\spacegrad \phi_m – \PD{t}{\BF} \\
\BE &= -\inv{\epsilon} \spacegrad \cross \BF.
\end{aligned}
\end{equation}
satisfies the source-free grades of Maxwell’s equation.
See [1], and [5] for such derivations. As with the conventional source potentials, we can also apply our geometric algebra toolbox to easily find these results (problem 2.)

We have a mix of time partials and curls that is reminiscent of Maxwell’s equation itself. It’s obvious to wonder whether there is a more coherent integrated form for the potential. This is in fact the case.

Lemma 1.1: Multivector potentials.

For Maxwell’s equation with electric sources, the total field \( F \) can be expressed in multivector potential form
\begin{equation}\label{eqn:mvpotentials:520}
F = \gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } \lr{ -\phi + c \BA } }{1,2}.
\end{equation}
For Maxwell’s equation with only fictitious magnetic sources, the total field \( F \) can be expressed in multivector form
\begin{equation}\label{eqn:mvpotentials:540}
F = \gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } I \eta \lr{ -\phi_m + c \BF } }{1,2}.
\end{equation}

The reader should try to verify this themselves (problem 3.)

Using superposition, we can form a multivector potential that includes all grades.

Definition 1.1: Multivector potential.

We call \( A \), a multivector with all grades, the multivector potential, defining the total field as
\begin{equation}\label{eqn:mvpotentials:600}
\begin{aligned}
F
&=
\gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } A }{1,2} \\
&=
\lr{ \spacegrad – \inv{c} \PD{t}{} } A

\gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } A }{0,3}.
\end{aligned}
\end{equation}
Imposition of the constraint
\begin{equation}\label{eqn:mvpotentials:680}
\gpgrade{ \lr{ \spacegrad – \inv{c} \PD{t}{} } A }{0,3} = 0,
\end{equation}
is called the Lorentz gauge condition, and allows us to express \( F \) in terms of the potential without any grade selection filters.

Lemma 1.2: Conventional multivector potential.

Let
\begin{equation}\label{eqn:mvpotentials:620}
A = -\phi + c \BA + I \eta \lr{ -\phi_m + c \BF }.
\end{equation}
This results in the conventional potential representation of the electric and magnetic fields
\begin{equation}\label{eqn:mvpotentials:640}
\begin{aligned}
\BE &= -\spacegrad \phi – \PD{t}{\BA} – \inv{\epsilon} \spacegrad \cross \BF \\
\BH &= -\spacegrad \phi_m – \PD{t}{\BF} + \inv{\mu} \spacegrad \cross \BA.
\end{aligned}
\end{equation}
In terms of potentials, the Lorentz gauge condition \ref{eqn:mvpotentials:680} takes the form
\begin{equation}\label{eqn:mvpotentials:660}
\begin{aligned}
0 &= \inv{c} \PD{t}{\phi} + \spacegrad \cdot (c \BA) \\
0 &= \inv{c} \PD{t}{\phi_m} + \spacegrad \cdot (c \BF).
\end{aligned}
\end{equation}

Start proof:

See problem 4.

End proof.

Problems.

Problem 1: Potentials for no-fictitious sources.

Starting with Maxwell’s equation with only conventional electric sources
\begin{equation}\label{eqn:mvpotentials:120}
\lr{ \spacegrad + \inv{c}\PD{t}{} } F = \gpgrade{J}{0,1}.
\end{equation}
Show that this may be split by grade into three equations
\begin{equation}\label{eqn:mvpotentials:140}
\begin{aligned}
\gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } F}{0,1} &= \gpgrade{J}{0,1} \\
\spacegrad \wedge \BE + \inv{c}\PD{t}{} \lr{ I \eta \BH } &= 0 \\
\spacegrad \wedge \lr{ I \eta \BH } &= 0.
\end{aligned}
\end{equation}
Then use the identities \( \spacegrad \wedge \spacegrad \wedge \BA = 0 \), for vector \( \BA \) and \( \spacegrad \wedge \spacegrad \phi = 0 \), for scalar \( \phi \) to find the potential representation.

Answer

Taking grade(0,1) and (2,3) selections of Maxwell’s equation, we split our equations into source dependent and source free equations
\begin{equation}\label{eqn:mvpotentials:200}
\gpgrade{ \lr{ \spacegrad + \inv{c} \PD{t}{} } F }{0,1} = \gpgrade{J}{0,1},
\end{equation}
\begin{equation}\label{eqn:mvpotentials:220}
\gpgrade{ \lr{ \spacegrad + \inv{c} \PD{t}{} } F }{2,3} = 0.
\end{equation}

In terms of \( F = \BE + I \eta \BH \), the source free equation expands to
\begin{equation}\label{eqn:mvpotentials:240}
\begin{aligned}
0
&=
\gpgrade{
\lr{ \spacegrad + \inv{c} \PD{t}{} } \lr{ \BE + I \eta \BH }
}{2,3} \\
&=
\gpgradetwo{\spacegrad \BE}
+ \gpgradethree{I \eta \spacegrad \BH} + I \eta \inv{c} \PD{t}{\BH} \\
&=
\spacegrad \wedge \BE
+ \spacegrad \wedge \lr{ I \eta \BH }
+ I \eta \inv{c} \PD{t}{\BH},
\end{aligned}
\end{equation}
which can be further split into a bivector and trivector equation
\begin{equation}\label{eqn:mvpotentials:260}
0 = \spacegrad \wedge \BE + I \eta \inv{c} \PD{t}{\BH}
\end{equation}
\begin{equation}\label{eqn:mvpotentials:280}
0 = \spacegrad \wedge \lr{ I \eta \BH }.
\end{equation}
It’s clear that we want to write the magnetic field as a (bivector) curl, so we let
\begin{equation}\label{eqn:mvpotentials:300}
I \eta \BH = I c \BB = c \spacegrad \wedge \BA,
\end{equation}
or
\begin{equation}\label{eqn:mvpotentials:301}
\BH = \inv{\mu} \spacegrad \cross \BA.
\end{equation}

\Cref{eqn:mvpotentials:260} is reduced to
\begin{equation}\label{eqn:mvpotentials:320}
\begin{aligned}
0
&= \spacegrad \wedge \BE + I \eta \inv{c} \PD{t}{\BH} \\
&= \spacegrad \wedge \BE + \inv{c} \PD{t}{} \spacegrad \wedge \lr{ c \BA } \\
&= \spacegrad \wedge \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}
\end{equation}
We can now let
\begin{equation}\label{eqn:mvpotentials:340}
\BE + \PD{t}{\BA} = -\spacegrad \phi.
\end{equation}
We sneakily adjust the sign of the gradient so that the result matches the conventional representation.

Problem 2: Potentials for fictitious sources.

Starting with Maxwell’s equation with only fictitious magnetic sources
\begin{equation}\label{eqn:mvpotentials:160}
\lr{ \spacegrad + \inv{c}\PD{t}{} } F = \gpgrade{J}{2,3},
\end{equation}
show that this may be split by grade into three equations
\begin{equation}\label{eqn:mvpotentials:180}
\begin{aligned}
\gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } I F}{0,1} &= I \gpgrade{J}{2,3} \\
-\eta \spacegrad \wedge \BH + \inv{c}\PD{t}{(I \BE)} &= 0 \\
\spacegrad \wedge \lr{ I \BE } &= 0.
\end{aligned}
\end{equation}
Then use the identities \( \spacegrad \wedge \spacegrad \wedge \BF = 0 \), for vector \( \BF \) and \( \spacegrad \wedge \spacegrad \phi_m = 0 \), for scalar \( \phi_m \) to find the potential representation \ref{eqn:mvpotentials:100}.

Answer

We multiply \ref{eqn:mvpotentials:160} by \( I \) to find
\begin{equation}\label{eqn:mvpotentials:360}
\lr{ \spacegrad + \inv{c}\PD{t}{} } I F = I \gpgrade{J}{2,3},
\end{equation}
which can be split into
\begin{equation}\label{eqn:mvpotentials:380}
\begin{aligned}
\gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } I F }{1,2} &= I \gpgrade{J}{2,3} \\
\gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } I F }{0,3} &= 0.
\end{aligned}
\end{equation}
We expand the source free equation in terms of \( I F = I \BE – \eta \BH \), to find
\begin{equation}\label{eqn:mvpotentials:400}
\begin{aligned}
0
&= \gpgrade{ \lr{ \spacegrad + \inv{c}\PD{t}{} } \lr{ I \BE – \eta \BH } }{0,3} \\
&= \spacegrad \wedge \lr{ I \BE } + \inv{c} \PD{t}{(I \BE)} – \eta \spacegrad \wedge \BH,
\end{aligned}
\end{equation}
which has the respective bivector and trivector grades
\begin{equation}\label{eqn:mvpotentials:420}
0 = \spacegrad \wedge \lr{ I \BE }
\end{equation}
\begin{equation}\label{eqn:mvpotentials:440}
0 = \inv{c} \PD{t}{(I \BE)} – \eta \spacegrad \wedge \BH.
\end{equation}
We can clearly satisfy \ref{eqn:mvpotentials:420} by setting
\begin{equation}\label{eqn:mvpotentials:460}
I \BE = -\inv{\epsilon} \spacegrad \wedge \BF,
\end{equation}
or
\begin{equation}\label{eqn:mvpotentials:461}
\BE = -\inv{\epsilon} \spacegrad \cross \BF.
\end{equation}
Here, once again, the sneaky inclusion of a constant factor \( -1/\epsilon \) is to make the result match the conventional. Inserting this value for \( I \BE \) into our bivector equation yields
\begin{equation}\label{eqn:mvpotentials:480}
\begin{aligned}
0
&= -\inv{\epsilon} \inv{c} \PD{t}{} (\spacegrad \wedge \BF) – \eta \spacegrad \wedge \BH \\
&= -\eta \spacegrad \wedge \lr{ \PD{t}{\BF} + \BH },
\end{aligned}
\end{equation}
so we set
\begin{equation}\label{eqn:mvpotentials:500}
\PD{t}{\BF} + \BH = -\spacegrad \phi_m,
\end{equation}
and have a field representation that automatically satisfies the source free equations.

Problem 3: Total field in terms of potentials.

Prove lemma 1.1, either by direct expansion, or by trying to discover the multivector form of the field by construction.

Answer

Proof by expansion is straightforward, and left to the reader. We form the respective total electromagnetic fields \( F = \BE + I \eta H \) for each case.

We find
\begin{equation}\label{eqn:mvpotentials:560}
\begin{aligned}
F
&= \BE + I \eta \BH \\
&= -\spacegrad \phi – \PD{t}{\BA} + I \frac{\eta}{\mu} \spacegrad \cross \BA \\
&= -\spacegrad \phi – \inv{c} \PD{t}{(c \BA)} + \spacegrad \wedge (c\BA) \\
&= \gpgrade{ -\spacegrad \phi – \inv{c} \PD{t}{(c \BA)} + \spacegrad \wedge (c\BA) }{1,2} \\
&= \gpgrade{ -\spacegrad \phi – \inv{c} \PD{t}{(c \BA)} + \spacegrad (c\BA) }{1,2} \\
&= \gpgrade{ \spacegrad \lr{ -\phi + c \BA } – \inv{c} \PD{t}{(c \BA)} }{1,2} \\
&= \gpgrade{ \lr{ \spacegrad -\inv{c} \PD{t}{} } \lr{ -\phi + c \BA } }{1,2}.
\end{aligned}
\end{equation}

For the field for the fictitious source case, we compute the result in the same way, inserting a no-op grade selection to allow us to simplify, finding
\begin{equation}\label{eqn:mvpotentials:580}
\begin{aligned}
F
&= \BE + I \eta \BH \\
&= -\inv{\epsilon} \spacegrad \cross \BF + I \eta \lr{ -\spacegrad \phi_m – \PD{t}{\BF} } \\
&= \inv{\epsilon c} I \lr{ \spacegrad \wedge (c \BF)} + I \eta \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } \\
&= I \eta \lr{ \spacegrad \wedge (c \BF) + \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } } \\
&= I \eta \gpgrade{ \spacegrad \wedge (c \BF) + \lr{ -\spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} } }{1,2} \\
&= I \eta \gpgrade{ \spacegrad (c \BF) – \spacegrad \phi_m – \inv{c} \PD{t}{(c \BF)} }{1,2} \\
&= I \eta \gpgrade{ \spacegrad (-\phi_m + c \BF) – \inv{c} \PD{t}{(c \BF)} }{1,2} \\
&= I \eta \gpgrade{ \lr{ \spacegrad -\inv{c} \PD{t}{} } (-\phi_m + c \BF) }{1,2}.
\end{aligned}
\end{equation}

Problem 4: Fields in terms of potentials.

Prove lemma 1.2.

Answer

Let’s expand and then group by grade
\begin{equation}\label{eqn:mvpotentials:n}
\begin{aligned}
\lr{ \spacegrad – \inv{c} \PD{t}{} } A
&=
\lr{ \spacegrad – \inv{c} \PD{t}{} } \lr{ -\phi + c \BA + I \eta \lr{ -\phi_m + c \BF }} \\
&=
-\spacegrad \phi + c \spacegrad \BA + I \eta \lr{ -\spacegrad \phi_m + c \spacegrad \BF }
-\inv{c} \PD{t}{\phi} + c \inv{c} \PD{t}{ \BA } + I \eta \lr{ -\inv{c} \PD{t}{\phi_m} + c \inv{c} \PD{t}{\BF} } \\
&=
– \spacegrad \phi
+ I \eta c \spacegrad \wedge \BF
– c \inv{c} \PD{t}{\BA}
\quad + c \spacegrad \wedge \BA
-I \eta \spacegrad \phi_m
– c I \eta \inv{c} \PD{t}{\BF} \\
&\quad + c \spacegrad \cdot \BA
+\inv{c} \PD{t}{\phi}
\quad + I \eta \lr{ c \spacegrad \cdot \BF
+ \inv{c} \PD{t}{\phi_m} } \\
&=
– \spacegrad \phi
– \inv{\epsilon} \spacegrad \cross \BF
– \PD{t}{\BA}
\quad + I \eta \lr{
\inv{\mu} \spacegrad \cross \BA
– \spacegrad \phi_m
– \PD{t}{\BF}
} \\
&\quad + c \spacegrad \cdot \BA
+\inv{c} \PD{t}{\phi}
\quad + I \eta \lr{ c \spacegrad \cdot \BF
+ \inv{c} \PD{t}{\phi_m} }.
\end{aligned}
\end{equation}
Observing that \( F = \gpgrade{ \lr{ \spacegrad -(1/c) \partial_t } A }{1,2} = \BE + I \eta \BH \), completes the problem. If the Lorentz gauge condition is assumed, the scalar and pseudoscalar components above are obliterated, leaving just
\( F = \lr{ \spacegrad -(1/c) \partial_t } A \).

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition, 2005.

[2] R.P. Feynman, R.B. Leighton, and M.L. Sands. Feynman lectures on physics, Volume II.[Lectures on physics], chapter The Maxwell Equations. Addison-Wesley Publishing Company. Reading, Massachusetts, 1963. URL https://www.feynmanlectures.caltech.edu/II_18.html.

[3] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[4] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[5] David M Pozar. Microwave engineering. John Wiley & Sons, 2009.