## Motivation.

I was asked about the geometric algebra equivalents of some of the vector calculus identities from [1]. I’ll call the specific page of those calculus notes “the article”. The article includes identities like
\label{eqn:formAndCurl:20}
\begin{aligned}
\spacegrad \cdot \lr{ \BF \cross \BG } &= \BG \cdot \lr{ \spacegrad \cross \BF } – \BF \cdot \lr{ \spacegrad \cross \BG },
\end{aligned}

but the point of these particular lecture notes is the interface between traditional Gibbs vector calculus and differential forms. That’s a much bigger topic, and perhaps not what I was actually being asked about. It is, however, an interesting topic, so let’s explore it.

## Comparisons.

The article identifies the cross product representation of the curl $$\spacegrad \cross \BF$$ as the equivalent to the exterior derivative of a one form (which has been mapped to a vector function.) In geometric algebra, this isn’t the identification we would use. Instead we should identify the “bivector curl” $$\spacegrad \wedge \BF$$ as the logical equivalent of the exterior derivative of that one form, and in general identify $$\spacegrad \wedge A_k$$ as the exterior derivative of a k-form (k-blade). In my notes to follow, the wedge of the gradient with a function, will be called the curl of that function, even if we are operating in $$\mathbb{R}^3$$ where the cross product is defined.

The starting place of the article was to define a one form and it’s exterior derivative was essentially as follows

## Definition 1.1: The exterior derivative of a one form.

Let $$f : \mathbb{R}^N \rightarrow \mathbb{R}$$ be a zero form. It’s exterior derivative is
\begin{equation*}
df = \sum_i dx_i \PD{x_i}{f}.
\end{equation*}

I’ve stated that the GA equivalent of the exterior derivative was a curl $$\spacegrad \wedge A$$, and this doesn’t look anything curl like, so right away, we have some trouble to deal with. To resolve that trouble, let’s step back to the gradient, which we haven’t defined yet. In the article, the gradient (of a scalar function) was defined as a coordinate triplet
\label{eqn:formAndCurl:60}
\spacegrad \Bf = \lr{ \PD{x}{f}, \PD{y}{f}, \PD{z}{f} }.

In GA we don’t like representations where the basis vectors are implicit, so we’d prefer to define

## Definition 1.2: The gradient of a function.

We define the gradient of multivector $$f(x_1, x_2, \cdots, x_N)$$, and denote it by $$\spacegrad f$$
\begin{equation*}
\spacegrad f = \sum_{i=1}^N \Be_i \PD{x_i}{f},
\end{equation*}
where $$\setlr{ \Be_1, \cdots \Be_N }$$ is an orthonormal basis for $$\mathbb{R}^N$$.

Unlike the article, we do not restrict $$f$$ to be a scalar function, since we do not have a problem with a vector valued operator directly multiplying a vector or any product of vectors. Instead $$f$$ can be a multivector function, with scalar, vector, bivector, trivector, … components, and we define the gradient the same way.

In order to define the curl of a k-blade, we need a reminder of how we define the wedge of a vector with a k-blade. Recall that this is how we generally define the wedge between two blades.

## Definition 1.3:

Let $$A_r$$ be a r-blade, and $$B_s$$ a s-blade. The wedge of $$A_r$$ with $$B_s$$ is
\label{eqn:formAndCurl:120}
A_r \wedge B_s = \gpgrade{A_r B_s}{r+s}.

In particular, if $$\Ba$$ is a vector, then the wedge with an s-blade $$B_s$$ is
\label{eqn:formAndCurl:140}
\Ba \wedge B_s = \gpgrade{\Ba B_s}{s+1},

which is just the $$s+1$$ grade selection of their product. Furthermore, if $$f$$ is a scalar, then
\label{eqn:formAndCurl:160}
\Ba \wedge f = \gpgrade{\Ba f}{1} = \Ba f.

We can now state the curl of a k-blade

## Definition 1.4: Curl of a k-blade.

Let $$A_k$$ be a k-blade. We define the curl of a k-blade as the wedge product of the gradient with that k-blade, designated
\begin{equation*}
\end{equation*}

Observe, given our generalized wedge product definition above, that the curl of a scalar function $$f$$, is in fact just the gradient of that function
\label{eqn:formAndCurl:200}

This has exactly the structure of the exterior derivative of a one form, as stated in “Definition: The exterior derivative of a one form”, but we have replaced $$dx_i$$ with a basis vector $$\Be_i$$.

## Definition 1.5: Exterior derivative of a one-form.

Let $$\omega = f_i dx_i$$ be a one-form. The exterior derivative of $$d \omega$$ is
\begin{equation*}
d\omega = \sum_i d( f_i ) \wedge dx_i.
\end{equation*}

## Lemma 1.1: Exterior derivative of a one-form.

Let $$\omega = f_i dx_i$$ be a one-form. The exterior derivative $$d \omega$$ can be expanding into a Jacobian form
\begin{equation*}
d\omega
=
\sum_{i < j} \lr{
\PD{x_i}{f_j}

\PD{x_j}{f_i}
} dx_i \wedge dx_j.
\end{equation*}

### Start proof:

\label{eqn:formAndCurl:220}
\begin{aligned}
d\omega
&= \sum_j d( f_j dx_j ) \\
&= \sum_j d( f_j ) \wedge dx_j \\
&= \sum_j \lr{ \sum_i dx_i \PD{x_i}{f_j} } \wedge dx_j \\
&= \sum_{ji} \PD{x_i}{f_j} dx_i \wedge dx_j \\
&= \sum_{j \ne i} \PD{x_i}{f_j} dx_i \wedge dx_j \\
&=
\sum_{i < j} \PD{x_i}{f_j} dx_i \wedge dx_j
+
\sum_{j < i} \PD{x_i}{f_j} dx_i \wedge dx_j \\
&=
\sum_{i < j} \PD{x_i}{f_j} dx_i \wedge dx_j
+
\sum_{i < j} \PD{x_j}{f_i} dx_j \wedge dx_i \\
&=
\sum_{i < j} \lr{
\PD{x_i}{f_j}

\PD{x_j}{f_i}
} dx_i \wedge dx_j.
\end{aligned}

## Lemma 1.2: Curl of a vector.

Let $$\Bf = \sum_i \Be_i f_i \in \mathbb{R}^N$$ be a vector. The curl of $$\Bf$$ has a Jacobian structure
\begin{equation*}
=
\sum_{i < j}
\lr{ \PD{x_i}{f_j} – \PD{x_j}{f_i} }
\lr{ \Be_i \wedge \Be_j }
.
\end{equation*}

### Start proof:

The antisymmetry of the wedges of differentials in the exterior derivative and the curl clearly has a one to one correspondence. Let’s show this explicitly by expansion
\label{eqn:formAndCurl:240}
\begin{aligned}
&=
\sum_{ij} \lr{ \Be_i \PD{x_i}{} } \wedge \lr{ \Be_j f_j } \\
&=
\sum_{ij} \lr{ \Be_i \wedge \Be_j } \PD{x_i}{f_j} \\
&=
\sum_{i \ne j} \lr{ \Be_i \wedge \Be_j } \PD{x_i}{f_j} \\
&=
\sum_{i < j} \lr{ \Be_i \wedge \Be_j } \PD{x_i}{f_j}
+
\sum_{j < i} \lr{ \Be_i \wedge \Be_j } \PD{x_i}{f_j} \\
&=
\sum_{i < j} \lr{ \Be_i \wedge \Be_j } \PD{x_i}{f_j}
+
\sum_{i < j} \lr{ \Be_j \wedge \Be_i } \PD{x_j}{f_i} \\
&=
\sum_{i < j} \lr{ \Be_i \wedge \Be_j } \lr{ \PD{x_i}{f_j} – \PD{x_j}{f_i} }.
\end{aligned}

### End proof.

If we are translating from differential forms, again, we see that we simply replace any differentials $$dx_i$$ with the basis vectors $$\Be_i$$ (at least for the zero-form and one-form cases, which is all that we have looked at here.)

Note that in differential forms, we often assume that there is an implicit wedge product between any different one form elements, writing
\label{eqn:formAndCurl:260}
dx_1 \wedge dx_2 = dx_1 dx_2.

This works out fine when we map differentials to basis vectors, since
\label{eqn:formAndCurl:280}
\Be_1 \Be_2 =
\Be_1 \cdot \Be_2
+
\Be_1 \wedge \Be_2
=
\Be_1 \wedge \Be_2.

However, we have to be more careful in GA when using indexed expressions, since
\label{eqn:formAndCurl:300}
\Be_i \Be_j = \Be_i \cdot \Be_j + \Be_i \wedge \Be_j.

The dot product portion of the RHS is only zero if $$i \ne j$$.

Now let’s look at the equivalence between the exterior derivative of a two-form with the curl.

## Definition 1.6: Exterior derivative of a two-form.

Let $$\eta = \sum_{ij} f_{ij} dx_i \wedge dx_j$$ be a two-form. The exterior derivative of $$\eta$$ is
\begin{equation*}
d\eta =
\sum_{ij} d( f_{ij} ) \wedge dx_i \wedge dx_j.
\end{equation*}

## Lemma 1.3: Exterior derivative of a two-form.

Let $$\eta = \sum_{ij} f_{ij} dx_i \wedge dx_j$$ be a two-form. The exterior derivative of $$\eta$$ can be expanded as
\begin{equation*}
d \eta
=
\sum_{i,j,k} \PD{x_k}{f_{ij}} dx_i \wedge dx_j \wedge dx_k.
\end{equation*}

### Start proof:

The exterior derivative of $$\eta$$ is
\label{eqn:formAndCurl:340}
\begin{aligned}
d \eta
&=
\sum_{i,j} d( f_{ij} dx_i \wedge dx_j ) \\
&=
\sum_{i,j,k} \lr{ \PD{x_k}{f_{ij}} dx_k } \wedge dx_i \wedge dx_j \\
&=
\sum_{i,j,k} \PD{x_k}{f_{ij}} dx_i \wedge dx_j \wedge dx_k.
\end{aligned}

### End proof.

Let’s compare that to the curl of a bivector valued function.

## Lemma 1.4: Curl of a 2-blade.

Let $$B = \sum_{i \ne j} f_{ij} \Be_i \wedge \Be_j$$ be a 2-blade. The curl of $$B$$ is
\begin{equation*}
=
\sum_{i,j,k} \PD{x_k}{f_{ij}} \Be_i \wedge \Be_j \wedge \Be_k.
\end{equation*}

### Start proof:

\label{eqn:formAndCurl:380}
\begin{aligned}
&=
\lr{ \sum_k \Be_k \PD{x_k}{} } \wedge \lr{ \sum_{i \ne j} f_{ij} \Be_i \wedge \Be_j } \\
&=
\sum_{k, i \ne j} \PD{x_k}{f_{ij}} \Be_k \wedge \Be_i \wedge \Be_j \\
&=
\sum_{i,j,k} \PD{x_k}{f_{ij}} \Be_i \wedge \Be_j \wedge \Be_k.
\end{aligned}

### End proof.

Again, we see an exact correspondence with the exterior derivative $$d \eta$$ of a two-form, and the curl $$\spacegrad \wedge B$$, of a 2-blade.

The article established a coorespondence between the exterior derivative of a two form over $$\mathbb{R}^3$$ to the divergence. The way we would express this in GA (also for \R{3}) is to write
\label{eqn:formAndCurl:400}
B = I \Bb,

where $$I = \Be_1 \Be_2 \Be_3$$ is the $$\mathbb{R}^3$$ pseudoscalar (a “unit” trivector.) Forming the curl of $$B$$ we have
\label{eqn:formAndCurl:420}
\begin{aligned}
\end{aligned}

The equivalence relationships that we have developed must then imply that the differential forms representation of this relationship is
\label{eqn:formAndCurl:440}
d B = dx_1 \wedge dx_2 \wedge dx_3 (\spacegrad \cdot \Bb)
= dx \wedge dy \wedge dz \lr{ \PD{x}{b_1} + \PD{y}{b_2} + \PD{z}{b_3} },

as defined in the article.

Here is the GA equivalent of Lemma 4.4.10 from the article

## Lemma 1.5: Repeated curl identities.

Let $$A$$ be a smooth k-blade, then
\begin{equation*}
\end{equation*}
For $$\mathbb{R}^3$$, this result, for a scalar function $$f$$, and a vector function $$\Bf$$, in terms of the cross product, as
\label{eqn:formAndCurl:560}
\begin{aligned}
\end{aligned}

It shouldn’t be surprising that this is the equivalent of $$d^2 A = 0$$ from differential forms. Let’s prove this, first considering the 0-blade case

### Start proof:

\label{eqn:formAndCurl:480}
\begin{aligned}
&=
&=
\sum_{ij} \Be_i \wedge \Be_j \frac{\partial^2 A}{\partial x_i \partial x_j} \\
&= 0.
\end{aligned}

The smooth criteria of for the function $$A$$ is assumed to imply that we have equality of mixed partials, and since this is a sum of an antisymmetric term with respect to indexes $$i, j$$ (the wedge) and a symmetric term in indexes $$i, j$$ (the partials), we have zero overall.

Now consider a k-blade $$A, k > 0$$. Expanding the gradients, we have
\label{eqn:formAndCurl:500}
=
\sum_{ij} \Be_i \wedge \Be_j \wedge \frac{\partial^2 A}{\partial x_i \partial x_j}.

It may be obvious that this is zero for the same reasons as above (sum of product of symmetric and antisymmetric entities). We can, however, make it more obvious, at the cost of some hellish indexing, by expressing $$A$$ in coordinate form. Let
\label{eqn:formAndCurl:520}
A = \sum_{i_1, i_2, \cdots, i_k}
A_{i_1, i_2, \cdots, i_k} \Be_{i_1} \wedge \Be_{i_2} \wedge \cdots \wedge \Be_{i_k},

then
\label{eqn:formAndCurl:540}
\begin{aligned}
&=
\sum_{i,j,i_1, i_2, \cdots, i_k} \Be_i \wedge \Be_j \wedge \Be_{i_1} \wedge \Be_{i_2} \wedge \cdots \wedge \Be_{i_k}
\frac{\partial^2 }{\partial x_i \partial x_j} A_{i_1, i_2, \cdots, i_k} \\
&= 0.
\end{aligned}

Now we clearly have a sum of an antisymmetric term (the wedges), and a symmetric term (assuming smooth $$A$$ means that we have equality of mixed partials), so the sum is zero.

Finally, for the $$\mathbb{R}^3$$ identities, we have
\label{eqn:formAndCurl:580}
\begin{aligned}
&=
&=
0,
\end{aligned}

since $$\spacegrad \wedge \lr{ \spacegrad f } = 0$$. For a vector $$\Bf$$, we have
\label{eqn:formAndCurl:600}
\begin{aligned}
&=
} \\
&=
} \\
&=
} \\
&=

&= 0,
\end{aligned}

again, because $$\spacegrad \wedge \lr{ \spacegrad \wedge \Bf} = 0$$.

## Identities.

We have a number of chain rule identities in the article. Here is the GA equivalent of that, and its corollaries

## Lemma 1.6: Chain rule identities.

Let $$f$$ be a scalar function and $$A$$ be a k-blade, then
\begin{equation*}
\spacegrad \lr{ f A } = \lr{ \spacegrad f } A + f \lr{ \spacegrad A }.
\end{equation*}
For $$A$$ with grade $$k > 0$$, the grade $$k-1$$ and $$k+1$$ components of this product are
\begin{equation*}
\begin{aligned}
\spacegrad \cdot \lr{ f A } &= \lr{ \spacegrad f } \cdot A + f \lr{ \spacegrad \cdot A } \\
\spacegrad \wedge \lr{ f A } &= \lr{ \spacegrad f } \wedge A + f \lr{ \spacegrad \wedge A }.
\end{aligned}
\end{equation*}
For $$\mathbb{R}^3$$, the wedge product relation above can be written in dual form as
\begin{equation*}
\spacegrad \cross \lr{ f A } = \lr{ \spacegrad f } \cross A + f \lr{ \spacegrad \cross A }.
\end{equation*}

Proving this is left to the reader.

We have some chain rule identities left in the article to verify and to find GA equivalents of. Before doing so, we need a couple miscellaneous identities relating triple cross products to wedge-dots.

## Lemma 1.7: Triple cross products.

Let $$\Ba, \Bb, \Bc$$ be vectors in $$\mathbb{R}^3$$. Then
\begin{equation*}
\begin{aligned}
\Ba \cross \lr{ \Bb \cross \Bc } &= – \Ba \cdot \lr{ \Bb \wedge \Bc } \\
\lr{ \Ba \cross \Bb } \cross \Bc &= – \lr{ \Ba \wedge \Bb } \cdot \Bc.
\end{aligned}
\end{equation*}

### Start proof:

\label{eqn:formAndCurl:720}
\begin{aligned}
\Ba \cross \lr{ \Bb \cross \Bc }
&=
\gpgradeone{ -I \lr{ \Ba \wedge \lr{ \Bb \cross \Bc } } } \\
&=
\gpgradeone{ -I \lr{ \Ba \lr{ \Bb \cross \Bc } } } \\
&=
\gpgradeone{ (-I)^2 \lr{ \Ba \lr{ \Bb \wedge \Bc } } } \\
&=
-\Ba \cdot \lr{ \Bb \wedge \Bc },
\end{aligned}

\label{eqn:formAndCurl:740}
\begin{aligned}
\lr{ \Ba \cross \Bb } \cross \Bc
&=
\gpgradeone{ -I \lr{ \Ba \cross \Bb } \wedge \Bc } \\
&=
\gpgradeone{ -I \lr{ \Ba \cross \Bb } \Bc } \\
&=
\gpgradeone{ (-I)^2 \lr{ \Ba \wedge \Bb } \Bc } \\
&=
– \lr{ \Ba \wedge \Bb } \cdot \Bc.
\end{aligned}

### End proof.

Next up is another chain rule identity

## Lemma 1.8: Gradient of dot product.

If $$\Ba, \Bb$$ are vectors, then
\begin{equation*}
\spacegrad \lr{ \Ba \cdot \Bb } =
\lr{ \Ba \cdot \spacegrad } \Bb
+
\lr{ \Bb \cdot \spacegrad } \Ba
+
\cdot
\Ba
+
\cdot
\Bb
\end{equation*}
For $$\mathbb{R}^3$$, this can be written as
\begin{equation*}
\spacegrad \lr{ \Ba \cdot \Bb }
=
\lr{ \Ba \cdot \spacegrad } \Bb
+
\lr{ \Bb \cdot \spacegrad } \Ba
+
\Ba \cross \lr{ \spacegrad \cross \Bb }
+
\Bb \cross \lr{ \spacegrad \cross \Ba }
\end{equation*}

### Start proof:

We will use $$\rspacegrad$$ to indicate that the gradient operates on everything to the right, $$\lrspacegrad$$ to indicate that the gradient operates bidirectionally, and $$\spacegrad’ A B’$$ to indicate that the gradient’s scope is limited to the ticked entity (just on $$B$$ in this case.)
\label{eqn:formAndCurl:760}
\begin{aligned}
\rspacegrad \lr{ \Ba \cdot \Bb }
&=
\rspacegrad \lr{ \Ba \Bb – \Ba \wedge \Bb }
} \\
&=
+
}
– \rspacegrad \cdot \lr{ \Ba \wedge \Bb }
\\
&=
+
\lr{ \spacegrad \wedge \Ba} \cdot \Bb
+
– \Ba \spacegrad \Bb + 2 \lr{ \Ba \cdot \spacegrad } \Bb
}
– \spacegrad’ \cdot \lr{ \Ba’ \wedge \Bb }
– \spacegrad’ \cdot \lr{ \Ba \wedge \Bb’ }
\\
&=
+
\lr{ \spacegrad \wedge \Ba} \cdot \Bb

\Ba \lr{ \spacegrad \cdot \Bb }

\Ba \cdot \lr{ \spacegrad \wedge \Bb }
+ 2 \lr{ \Ba \cdot \spacegrad } \Bb
– \spacegrad’ \cdot \lr{ \Ba’ \wedge \Bb }
– \spacegrad’ \cdot \lr{ \Ba \wedge \Bb’ }.
\end{aligned}

We are running out of room, and have not had any cancellation yet, so let’s expand those last two terms separately
\label{eqn:formAndCurl:780}
\begin{aligned}
– \spacegrad’ \cdot \lr{ \Ba’ \wedge \Bb }
– \spacegrad’ \cdot \lr{ \Ba \wedge \Bb’ }
&=
– \lr{ \spacegrad’ \cdot \Ba’ } \Bb
+ \lr{ \spacegrad’ \cdot \Bb } \Ba’
– \lr{ \spacegrad’ \cdot \Ba } \Bb’
+ \lr{ \spacegrad’ \cdot \Bb’ } \Ba
\\
&=
– \lr{ \spacegrad \cdot \Ba } \Bb
+ \lr{ \Bb \cdot \spacegrad } \Ba
– \lr{ \Ba \cdot \spacegrad } \Bb
+ \lr{ \spacegrad \cdot \Bb } \Ba.
\end{aligned}

Now we can cancel some terms, leaving
\label{eqn:formAndCurl:800}
\begin{aligned}
\rspacegrad \lr{ \Ba \cdot \Bb }
&=
\lr{ \spacegrad \wedge \Ba} \cdot \Bb

\Ba \cdot \lr{ \spacegrad \wedge \Bb }
+ \lr{ \Ba \cdot \spacegrad } \Bb
+ \lr{ \Bb \cdot \spacegrad } \Ba.
\end{aligned}

After adjustment of the order and sign of the second term, we see that this is the result we wanted. To show the $$\mathbb{R}^3$$ formulation, we have only apply “Lemma: Triple cross products”.

## Lemma 1.9: Divergence of a bivector.

Let $$\Ba, \Bb \in \mathbb{R}^N$$ be vectors. The divergence of their wedge can be written
\begin{equation*}
\spacegrad \cdot \lr{ \Ba \wedge \Bb }
=
\Bb \lr{ \spacegrad \cdot \Ba }
– \Ba \lr{ \spacegrad \cdot \Bb }
– \lr{ \Bb \cdot \spacegrad } \Ba
+ \lr{ \Ba \cdot \spacegrad } \Bb.
\end{equation*}
For $$\mathbb{R}^3$$, this can also be written in triple cross product form
\begin{equation*}
\spacegrad \cdot \lr{ \Ba \wedge \Bb }
=
-\spacegrad \cross \lr{ \Ba \cross \Bb }.
\end{equation*}

### Start proof:

\label{eqn:formAndCurl:860}
\begin{aligned}
\rspacegrad \cdot \lr{ \Ba \wedge \Bb }
&=
\spacegrad’ \cdot \lr{ \Ba’ \wedge \Bb }
+ \spacegrad’ \cdot \lr{ \Ba \wedge \Bb’ } \\
&=
\lr{ \spacegrad’ \cdot \Ba’ } \Bb
– \lr{ \spacegrad’ \cdot \Bb } \Ba’
+ \lr{ \spacegrad’ \cdot \Ba } \Bb’
– \lr{ \spacegrad’ \cdot \Bb’ } \Ba
\\
&=
\lr{ \spacegrad \cdot \Ba } \Bb
– \lr{ \Bb \cdot \spacegrad } \Ba
+ \lr{ \Ba \cdot \spacegrad } \Bb
– \lr{ \spacegrad \cdot \Bb } \Ba.
\end{aligned}

For the $$\mathbb{R}^3$$ part of the story, we have
\label{eqn:formAndCurl:870}
\begin{aligned}
\spacegrad \cross \lr{ \Ba \cross \Bb }
&=
-I \lr{ \spacegrad \wedge \lr{ \Ba \cross \Bb } }
} \\
&=
-I \spacegrad \lr{ \Ba \cross \Bb }
} \\
&=
(-I)^2 \spacegrad \lr{ \Ba \wedge \Bb }
} \\
&=

\spacegrad \cdot \lr{ \Ba \wedge \Bb }
\end{aligned}

### End proof.

We have just one identity left in the article to find the GA equivalent of, but will split that into two logical pieces.

## Lemma 1.10: Dual of triple wedge.

If $$\Ba, \Bb, \Bc \in \mathbb{R}^3$$ are vectors, then
\begin{equation*}
\Ba \cdot \lr{ \Bb \cross \Bc } = -I \lr{ \Ba \wedge \Bb \wedge \Bc }.
\end{equation*}

### Start proof:

\label{eqn:formAndCurl:680}
\begin{aligned}
\Ba \cdot \lr{ \Bb \cross \Bc }
&=
\Ba \lr{ \Bb \cross \Bc }
} \\
&=
\Ba (-I) \lr{ \Bb \wedge \Bc }
} \\
&=
-I \lr{
\Ba \cdot \lr{ \Bb \wedge \Bc }
+
\Ba \wedge \lr{ \Bb \wedge \Bc }
}
} \\
&=
-I \lr{ \Ba \wedge \lr{ \Bb \wedge \Bc } }
} \\
&=
-I \lr{ \Ba \wedge \lr{ \Bb \wedge \Bc } }.
\end{aligned}

## Lemma 1.11: Curl of a wedge of gradients (divergence of a gradient cross products.)

Let $$f, g, h$$ be smooth functions with smooth derivatives. Then
\begin{equation*}
=
\wedge
\wedge
\end{equation*}
For $$\mathbb{R}^3$$ this can be written as
\begin{equation*}
=
\cdot
\lr{
\cross
}.
\end{equation*}

### Start proof:

The GA identity follows by chain rule and application of “Lemma: Repeated curl identities”.
\label{eqn:formAndCurl:910}
\begin{aligned}
&=
+
f
&=
\end{aligned}

The $$\mathbb{R}^3$$ part of the lemma follows from “Lemma: Dual of triple wedge”, applied twice
\label{eqn:formAndCurl:970}
\begin{aligned}
&=
&=
&=
\end{aligned}

## Lemma 1.12: Curl of a bivector.

Let $$\Ba, \Bb$$ be vectors. The curl of their wedge is
\begin{equation*}
\spacegrad \wedge \lr{ \Ba \wedge \Bb } = \Bb \wedge \lr{ \spacegrad \wedge \Ba } – \Ba \wedge \lr{ \spacegrad \wedge \Bb }
\end{equation*}
For $$\mathbb{R}^3$$, this can be expressed as the divergence of a cross product
\begin{equation*}
\spacegrad \cdot \lr{ \Ba \cross \Bb } = \Bb \cdot \lr{ \spacegrad \cross \Ba } – \Ba \cdot \lr{ \spacegrad \cross \Bb }
\end{equation*}

### Start proof:

The GA case is a trivial chain rule application
\label{eqn:formAndCurl:950}
\begin{aligned}
\rspacegrad \wedge \lr{ \Ba \wedge \Bb }
&=
\lr{ \spacegrad’ \wedge \Ba’} \wedge \Bb
+
\lr{ \spacegrad’ \wedge \Ba } \wedge \Bb’ \\
&= \Bb \wedge \lr{ \spacegrad \wedge \Ba } – \Ba \wedge \lr{ \spacegrad \wedge \Bb }.
\end{aligned}

The $$\mathbb{R}^3$$ case, is less obvious by inspection, but follows from “Lemma: Dual of triple wedge”.

## Summary.

We found that we have an isomorphism between the exterior derivative of differential forms and the curl operation of geometric algebra, as follows
\label{eqn:formAndCurl:990}
\begin{aligned}
df &\rightleftharpoons \spacegrad \wedge f \\
dx_i &\rightleftharpoons \Be_i.
\end{aligned}

We didn’t look at how the Hodge dual translates to GA duality (pseudoscalar multiplication.) The divergence relationship between the exterior derivative of an $$\mathbb{R}^3$$ two-form really requires that formalism, and has only been examined in a cursory fashion.

We also translated a number of vector and gradient identities from conventional vector algebra (i.e.: using cross products) and wedge product equivalents of the same. The GA identities are often simpler, and in some cases, provide nice mechanisms to derive the conventional identities that would be more cumbersome to determine without the GA toolbox.

# References

[1] Vincent Bouchard. Math 215: Calculus iv: 4.4 the exterior derivative and vector calculus, 2023. URL https://sites.ualberta.ca/ vbouchar/MATH215/section_exterior_vector.html. [Online; accessed 11-November-2023].

## Fundamental theorem of geometric calculus for line integrals (relativistic.)

[This post is best viewed in PDF form, due to latex elements that I could not format with wordpress mathjax.]

Background for this particular post can be found in

## Motivation.

I’ve been slowly working my way towards a statement of the fundamental theorem of integral calculus, where the functions being integrated are elements of the Dirac algebra (space time multivectors in the geometric algebra parlance.)

This is interesting because we want to be able to do line, surface, 3-volume and 4-volume space time integrals. We have many $$\mathbb{R}^3$$ integral theorems
\label{eqn:fundamentalTheoremOfGC:40a}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A),

\label{eqn:fundamentalTheoremOfGC:60a}
\int_S dA\, \ncap \cross \spacegrad f = \int_{\partial S} d\Bx\, f,

\label{eqn:fundamentalTheoremOfGC:80a}
\int_S dA\, \ncap \cdot \lr{ \spacegrad \cross \Bf} = \int_{\partial S} d\Bx \cdot \Bf,

\label{eqn:fundamentalTheoremOfGC:100a}
\int_S dx dy \lr{ \PD{y}{P} – \PD{x}{Q} }
=
\int_{\partial S} P dx + Q dy,

\label{eqn:fundamentalTheoremOfGC:120a}
\int_V dV\, \spacegrad f = \int_{\partial V} dA\, \ncap f,

\label{eqn:fundamentalTheoremOfGC:140a}
\int_V dV\, \spacegrad \cross \Bf = \int_{\partial V} dA\, \ncap \cross \Bf,

\label{eqn:fundamentalTheoremOfGC:160a}
\int_V dV\, \spacegrad \cdot \Bf = \int_{\partial V} dA\, \ncap \cdot \Bf,

and want to know how to generalize these to four dimensions and also make sure that we are handling the relativistic mixed signature correctly. If our starting point was the mess of equations above, we’d be in trouble, since it is not obvious how these generalize. All the theorems with unit normals have to be handled completely differently in four dimensions since we don’t have a unique normal to any given spacetime plane.
What comes to our rescue is the Fundamental Theorem of Geometric Calculus (FTGC), which has the form
\label{eqn:fundamentalTheoremOfGC:40}
\int F d^n \Bx\, \lrpartial G = \int F d^{n-1} \Bx\, G,

where $$F,G$$ are multivectors functions (i.e. sums of products of vectors.) We’ve seen ([2], [1]) that all the identities above are special cases of the fundamental theorem.

Do we need any special care to state the FTGC correctly for our relativistic case? It turns out that the answer is no! Tangent and reciprocal frame vectors do all the heavy lifting, and we can use the fundamental theorem as is, even in our mixed signature space. The only real change that we need to make is use spacetime gradient and vector derivative operators instead of their spatial equivalents. We will see how this works below. Note that instead of starting with \ref{eqn:fundamentalTheoremOfGC:40} directly, I will attempt to build up to that point in a progressive fashion that is hopefully does not require the reader to make too many unjustified mental leaps.

## Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in $$\mathbb{R}^3$$ we would say that for scalar functions $$f$$, the integral
\label{eqn:fundamentalTheoremOfGC:180b}
\int d\Bx\, f = \int f d\Bx,

is a line integral. Also, for vector functions $$\Bf$$ we call
\label{eqn:fundamentalTheoremOfGC:200}
\int d\Bx \cdot \Bf = \inv{2} \int d\Bx\, \Bf + \Bf d\Bx.

a line integral. In order to generalize line integrals to multivector functions, we will allow our multivector functions to be placed on either or both sides of the differential.

## Definition 1.1: Line integral.

Given a single variable parameterization $$x = x(u)$$, we write $$d^1\Bx = \Bx_u du$$, and call
\label{eqn:fundamentalTheoremOfGC:220a}
\int F d^1\Bx\, G,

a line integral, where $$F,G$$ are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since the differential may not commute with either $$F$$ or $$G$$. Here is a simple example where the integrand has a product of a vector and differential.

## Problem: Circular parameterization.

Given a circular parameterization $$x(\theta) = \gamma_1 e^{-i\theta}$$, where $$i = \gamma_1 \gamma_2$$, the unit bivector for the $$x,y$$ plane. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:100}
\int_0^{\pi/4} F(\theta)\, d^1 \Bx\, G(\theta),

where $$F(\theta) = \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0$$ is a multivector valued function, and $$G(\theta) = \gamma_0$$ is vector valued.

The tangent vector for the curve is
\label{eqn:fundamentalTheoremOfGC:60}
\Bx_\theta
= -\gamma_1 \gamma_1 \gamma_2 e^{-i\theta}
= \gamma_2 e^{-i\theta},

with reciprocal vector $$\Bx^\theta = e^{i \theta} \gamma^2$$. The differential element is $$d^1 \Bx = \gamma_2 e^{-i\theta} d\theta$$, so the integrand is
\label{eqn:fundamentalTheoremOfGC:80}
\begin{aligned}
\int_0^{\pi/4} \lr{ \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0 } d^1 \Bx\, \gamma_0
&=
\int_0^{\pi/4} \lr{ e^{i\theta} \gamma^2 + \gamma_3 + \gamma_1 \gamma_0 } \gamma_2 e^{-i\theta} d\theta\, \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \lr{ \gamma_{32} + \gamma_{102} } \inv{-i} \lr{ e^{-i\pi/4} – 1 } \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{32} + \gamma_{102} } \gamma_{120} \lr{ 1 – \gamma_{12} } \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{310} + 1 } \lr{ 1 – \gamma_{12} }.
\end{aligned}

Observe how care is required not to reorder any terms. This particular end result is a multivector with scalar, vector, bivector, and trivector grades, but no pseudoscalar component. The grades in the end result depend on both the function in the integrand and on the path. For example, had we integrated all the way around the circle, the end result would have been the vector $$2 \pi \gamma_0$$ (i.e. a $$\gamma_0$$ weighted unit circle circumference), as all the other grades would have been killed by the complex exponential integrated over a full period.

## Problem: Line integral for boosted time direction vector.

Let $$x = e^{\vcap \alpha/2} \gamma_0 e^{-\vcap \alpha/2}$$ represent the spacetime curve of all the boosts of $$\gamma_0$$ along a specific velocity direction vector, where $$\vcap = (v \wedge \gamma_0)/\Norm{v \wedge \gamma_0}$$ is a unit spatial bivector for any constant vector $$v$$. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:240}
\int x\, d^1 \Bx.

Observe that $$\vcap$$ and $$\gamma_0$$ anticommute, so we may write our boost as a one sided exponential
\label{eqn:fundamentalTheoremOfGC:260}
x(\alpha) = \gamma_0 e^{-\vcap \alpha} = e^{\vcap \alpha} \gamma_0 = \lr{ \cosh\alpha + \vcap \sinh\alpha } \gamma_0.

The tangent vector is just
\label{eqn:fundamentalTheoremOfGC:280}
\Bx_\alpha = \PD{\alpha}{x} = e^{\vcap\alpha} \vcap \gamma_0.

Let’s get a bit of intuition about the nature of this vector. It’s square is
\label{eqn:fundamentalTheoremOfGC:300}
\begin{aligned}
\Bx_\alpha^2
&=
e^{\vcap\alpha} \vcap \gamma_0
e^{\vcap\alpha} \vcap \gamma_0 \\
&=
-e^{\vcap\alpha} \vcap e^{-\vcap\alpha} \vcap (\gamma_0)^2 \\
&=
-1,
\end{aligned}

so we see that the tangent vector is a spacelike unit vector. As the vector representing points on the curve is necessarily timelike (due to Lorentz invariance), these two must be orthogonal at all points. Let’s confirm this algebraically
\label{eqn:fundamentalTheoremOfGC:320}
\begin{aligned}
x \cdot \Bx_\alpha
&=
\gpgradezero{ e^{\vcap \alpha} \gamma_0 e^{\vcap \alpha} \vcap \gamma_0 } \\
&=
\gpgradezero{ e^{-\vcap \alpha} e^{\vcap \alpha} \vcap (\gamma_0)^2 } \\
&=
&= 0.
\end{aligned}

Here we used $$e^{\vcap \alpha} \gamma_0 = \gamma_0 e^{-\vcap \alpha}$$, and $$\gpgradezero{A B} = \gpgradezero{B A}$$. Geometrically, we have the curious fact that the direction vectors to points on the curve are perpendicular (with respect to our relativistic dot product) to the tangent vectors on the curve, as illustrated in fig. 1.

fig. 1. Tangent perpendicularity in mixed metric.

### Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now move on to figure out the structure of a line integral that has a “perfect” differential integrand. We can take a hint from the $$\mathbb{R}^3$$ vector result that we already know, namely
\label{eqn:fundamentalTheoremOfGC:120}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A).

It seems reasonable to guess that the relativistic generalization of this is
\label{eqn:fundamentalTheoremOfGC:140}
\int_A^B dx \cdot \grad f = f(B) – f(A).

Let’s check that, by expanding in coordinates
\label{eqn:fundamentalTheoremOfGC:160}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \partial_\mu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f} \\
&=
\int_A^B d\tau \frac{df}{d\tau} \\
&=
f(B) – f(A).
\end{aligned}

If we drop the dot product, will we have such a nice result? Let’s see:
\label{eqn:fundamentalTheoremOfGC:180}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \gamma_\mu \gamma^\nu \partial_\nu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f}
+
\int_A^B
d\tau
\sum_{\mu \ne \nu} \gamma_\mu \gamma^\nu
\frac{dx^\mu}{d\tau} \PD{x^\nu}{f}.
\end{aligned}

This scalar component of this integrand is a perfect differential, but the bivector part of the integrand is a complete mess, that we have no hope of generally integrating. It happens that if we consider one of the simplest parameterization examples, we can get a strong hint of how to generalize the differential operator to one that ends up providing a perfect differential. In particular, let’s integrate over a linear constant path, such as $$x(\tau) = \tau \gamma_0$$. For this path, we have
\label{eqn:fundamentalTheoremOfGC:200a}
\begin{aligned}
&=
\int_A^B \gamma_0 d\tau \lr{
\gamma^0 \partial_0 +
\gamma^1 \partial_1 +
\gamma^2 \partial_2 +
\gamma^3 \partial_3 } f \\
&=
\int_A^B d\tau \lr{
\PD{\tau}{f} +
\gamma_0 \gamma^1 \PD{x^1}{f} +
\gamma_0 \gamma^2 \PD{x^2}{f} +
\gamma_0 \gamma^3 \PD{x^3}{f}
}.
\end{aligned}

Just because the path does not have any $$x^1, x^2, x^3$$ component dependencies does not mean that these last three partials are neccessarily zero. For example $$f = f(x(\tau)) = \lr{ x^0 }^2 \gamma_0 + x^1 \gamma_1$$ will have a non-zero contribution from the $$\partial_1$$ operator. In that particular case, we can easily integrate $$f$$, but we have to know the specifics of the function to do the integral. However, if we had a differential operator that did not include any component off the integration path, we would ahve a perfect differential. That is, if we were to replace the gradient with the projection of the gradient onto the tangent space, we would have a perfect differential. We see that the function of the dot product in \ref{eqn:fundamentalTheoremOfGC:140} has the same effect, as it rejects any component of the gradient that does not lie on the tangent space.

## Definition 1.2: Vector derivative.

Given a spacetime manifold parameterized by $$x = x(u^0, \cdots u^{N-1})$$, with tangent vectors $$\Bx_\mu = \PDi{u^\mu}{x}$$, and reciprocal vectors $$\Bx^\mu \in \textrm{Span}\setlr{\Bx_\nu}$$, such that $$\Bx^\mu \cdot \Bx_\nu = {\delta^\mu}_\nu$$, the vector derivative is defined as
\label{eqn:fundamentalTheoremOfGC:240a}
\partial = \sum_{\mu = 0}^{N-1} \Bx^\mu \PD{u^\mu}{}.

Observe that if this is a full parameterization of the space ($$N = 4$$), then the vector derivative is identical to the gradient. The vector derivative is the projection of the gradient onto the tangent space at the point of evaluation.Furthermore, we designate $$\lrpartial$$ as the vector derivative allowed to act bidirectionally, as follows
\label{eqn:fundamentalTheoremOfGC:260a}
R \lrpartial S
=
R \Bx^\mu \PD{u^\mu}{S}
+
\PD{u^\mu}{R} \Bx^\mu S,

where $$R, S$$ are multivectors, and summation convention is implied. In this bidirectional action,
the vector factors of the vector derivative must stay in place (as they do not neccessarily commute with $$R,S$$), but the derivative operators apply in a chain rule like fashion to both functions.

Noting that $$\Bx_u \cdot \grad = \Bx_u \cdot \partial$$, we may rewrite the scalar line integral identity \ref{eqn:fundamentalTheoremOfGC:140} as
\label{eqn:fundamentalTheoremOfGC:220}
\int_A^B dx \cdot \partial f = f(B) – f(A).

However, as our example hinted at, the fundamental theorem for line integrals has a multivector generalization that does not rely on a dot product to do the tangent space filtering, and is more powerful. That generalization has the following form.

## Theorem 1.1: Fundamental theorem for line integrals.

Given multivector functions $$F, G$$, and a single parameter curve $$x(u)$$ with line element $$d^1 \Bx = \Bx_u du$$, then
\label{eqn:fundamentalTheoremOfGC:280a}
\int_A^B F d^1\Bx \lrpartial G = F(B) G(B) – F(A) G(A).

### Start proof:

Writing out the integrand explicitly, we find
\label{eqn:fundamentalTheoremOfGC:340}
\int_A^B F d^1\Bx \lrpartial G
=
\int_A^B \lr{
\PD{\alpha}{F} d\alpha\, \Bx_\alpha \Bx^\alpha G
+
F d\alpha\, \Bx_\alpha \Bx^\alpha \PD{\alpha}{G }
}

However for a single parameter curve, we have $$\Bx^\alpha = 1/\Bx_\alpha$$, so we are left with
\label{eqn:fundamentalTheoremOfGC:360}
\begin{aligned}
\int_A^B F d^1\Bx \lrpartial G
&=
\int_A^B d\alpha\, \PD{\alpha}{(F G)} \\
&=
\evalbar{F G}{B}

\evalbar{F G}{A}.
\end{aligned}

## More to come.

In the next installment we will explore surface integrals in spacetime, and the generalization of the fundamental theorem to multivector space time integrals.

# References

[1] Peeter Joot. Geometric Algebra for Electrical Engineers. Kindle Direct Publishing, 2019.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

## New version of Geometric Algebra for Electrical Engineers posted.

A new version of Geometric Algebra for Electrical Engineers (V0.1.8) is now posted.Â  This fixes a number of issues in Chapter II on geometric calculus.Â  In particular, I had confused definitions of line, area, and volume integrals that were really the application of the fundamental theorem to such integrals.Â  This is now fixed, and the whole chapter is generally improved and clarified.

## Generalizing Ampere’s law using geometric algebra.

The question I’d like to explore in this post is how Ampere’s law, the relationship between the line integral of the magnetic field to current (i.e. the enclosed current)
\label{eqn:flux:20}
\oint_{\partial A} d\Bx \cdot \BH = -\int_A \ncap \cdot \BJ,

generalizes to geometric algebra where Maxwell’s equations for a statics configuration (all time derivatives zero) is
\label{eqn:flux:40}

where the multivector fields and currents are
\label{eqn:flux:60}
\begin{aligned}
F &= \BE + I \eta \BH \\
J &= \eta \lr{ c \rho – \BJ } + I \lr{ c \rho_\txtm – \BM }.
\end{aligned}

Here (fictitious) the magnetic charge and current densities that can be useful in antenna theory have been included in the multivector current for generality.

My presumption is that it should be possible to utilize the fundamental theorem of geometric calculus for expressing the integral over an oriented surface to its boundary, but applied directly to Maxwell’s equation. That integral theorem has the form
\label{eqn:flux:80}
\int_A d^2 \Bx \boldpartial F = \oint_{\partial A} d\Bx F,

where $$d^2 \Bx = d\Ba \wedge d\Bb$$ is a two parameter bivector valued surface, and $$\boldpartial$$ is vector derivative, the projection of the gradient onto the tangent space. I won’t try to explain all of geometric calculus here, and refer the interested reader to [1], which is an excellent reference on geometric calculus and integration theory.

The gotcha is that we actually want a surface integral with $$\spacegrad F$$. We can split the gradient into the vector derivative a normal component
\label{eqn:flux:160}

so
\label{eqn:flux:100}
=
\int_A d^2 \Bx \boldpartial F
+
\int_A d^2 \Bx \ncap \lr{ \ncap \cdot \spacegrad } F,

so
\label{eqn:flux:120}
\begin{aligned}
\oint_{\partial A} d\Bx F
&=
\int_A d^2 \Bx \lr{ J – \ncap \lr{ \ncap \cdot \spacegrad } F } \\
&=
\int_A dA \lr{ I \ncap J – \lr{ \ncap \cdot \spacegrad } I F }
\end{aligned}

This is not nearly as nice as the magnetic flux relationship which was nicely split with the current and fields nicely separated. The $$d\Bx F$$ product has all possible grades, as does the $$d^2 \Bx J$$ product (in general). Observe however, that the normal term on the right has only grades 1,2, so we can split our line integral relations into pairs with and without grade 1,2 components
\label{eqn:flux:140}
\begin{aligned}
&=
\int_A dA \gpgrade{ I \ncap J }{0,3} \\
&=
\int_A dA \lr{ \gpgrade{ I \ncap J }{1,2} – \lr{ \ncap \cdot \spacegrad } I F }.
\end{aligned}

Let’s expand these explicitly in terms of the component fields and densities to check against the conventional relationships, and see if things look right. The line integrand expands to
\label{eqn:flux:180}
\begin{aligned}
d\Bx F
&=
d\Bx \lr{ \BE + I \eta \BH }
=
d\Bx \cdot \BE + I \eta d\Bx \cdot \BH
+
d\Bx \wedge \BE + I \eta d\Bx \wedge \BH \\
&=
d\Bx \cdot \BE
– \eta (d\Bx \cross \BH)
+ I (d\Bx \cross \BE )
+ I \eta (d\Bx \cdot \BH),
\end{aligned}

the current integrand expands to
\label{eqn:flux:200}
\begin{aligned}
I \ncap J
&=
I \ncap
\lr{
\frac{\rho}{\epsilon} – \eta \BJ + I \lr{ c \rho_\txtm – \BM }
} \\
&=
\ncap I \frac{\rho}{\epsilon} – \eta \ncap I \BJ – \ncap c \rho_\txtm + \ncap \BM \\
&=
\ncap \cdot \BM
+ \eta (\ncap \cross \BJ)
– \ncap c \rho_\txtm
+ I (\ncap \cross \BM)
+ \ncap I \frac{\rho}{\epsilon}
– \eta I (\ncap \cdot \BJ).
\end{aligned}

We are left with
\label{eqn:flux:220}
\begin{aligned}
\oint_{\partial A}
\lr{
d\Bx \cdot \BE + I \eta (d\Bx \cdot \BH)
}
&=
\int_A dA
\lr{
\ncap \cdot \BM – \eta I (\ncap \cdot \BJ)
} \\
\oint_{\partial A}
\lr{
– \eta (d\Bx \cross \BH)
+ I (d\Bx \cross \BE )
}
&=
\int_A dA
\lr{
\eta (\ncap \cross \BJ)
– \ncap c \rho_\txtm
+ I (\ncap \cross \BM)
+ \ncap I \frac{\rho}{\epsilon}
-\PD{n}{} \lr{ I \BE – \eta \BH }
}.
\end{aligned}

This is a crazy mess of dots, crosses, fields and sources. We can split it into one equation for each grade, which will probably look a little more regular. That is
\label{eqn:flux:240}
\begin{aligned}
\oint_{\partial A} d\Bx \cdot \BE &= \int_A dA \ncap \cdot \BM \\
\oint_{\partial A} d\Bx \cross \BH
&=
\int_A dA
\lr{
– \ncap \cross \BJ
+ \frac{ \ncap \rho_\txtm }{\mu}
– \PD{n}{\BH}
} \\
\oint_{\partial A} d\Bx \cross \BE &=
\int_A dA
\lr{
\ncap \cross \BM
+ \frac{\ncap \rho}{\epsilon}
– \PD{n}{\BE}
} \\
\oint_{\partial A} d\Bx \cdot \BH &= -\int_A dA \ncap \cdot \BJ \\
\end{aligned}

The first and last equations could have been obtained much more easily from Maxwell’s equations in their conventional form more easily. The two cross product equations with the normal derivatives are not familiar to me, even without the fictitious magnetic sources. It is somewhat remarkable that so much can be packed into one multivector equation:
\label{eqn:flux:260}
\oint_{\partial A} d\Bx F
=
I \int_A dA \lr{ \ncap J – \PD{n}{F} }.

# References

[1] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

## Helmholtz theorem

This is a problem from ece1228. I attempted solutions in a number of ways. One using Geometric Algebra, one devoid of that algebra, and then this method, which combined aspects of both. Of the three methods I tried to obtain this result, this is the most compact and elegant. It does however, require a fair bit of Geometric Algebra knowledge, including the Fundamental Theorem of Geometric Calculus, as detailed in [1], [3] and [2].

## Question: Helmholtz theorem

Prove the first Helmholtz’s theorem, i.e. if vector $$\BM$$ is defined by its divergence

\label{eqn:helmholtzDerviationMultivector:20}

and its curl
\label{eqn:helmholtzDerviationMultivector:40}

within a region and its normal component $$\BM_{\textrm{n}}$$ over the boundary, then $$\BM$$ is
uniquely specified.

The gradient of the vector $$\BM$$ can be written as a single even grade multivector

\label{eqn:helmholtzDerviationMultivector:60}
= s + I \BC.

We will use this to attempt to discover the relation between the vector $$\BM$$ and its divergence and curl. We can express $$\BM$$ at the point of interest as a convolution with the delta function at all other points in space

\label{eqn:helmholtzDerviationMultivector:80}
\BM(\Bx) = \int_V dV’ \delta(\Bx – \Bx’) \BM(\Bx’).

The Laplacian representation of the delta function in \R{3} is

\label{eqn:helmholtzDerviationMultivector:100}
\delta(\Bx – \Bx’) = -\inv{4\pi} \spacegrad^2 \inv{\Abs{\Bx – \Bx’}},

so $$\BM$$ can be represented as the following convolution

\label{eqn:helmholtzDerviationMultivector:120}
\BM(\Bx) = -\inv{4\pi} \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’).

Using this relation and proceeding with a few applications of the chain rule, plus the fact that $$\spacegrad 1/\Abs{\Bx – \Bx’} = -\spacegrad’ 1/\Abs{\Bx – \Bx’}$$, we find

\label{eqn:helmholtzDerviationMultivector:720}
\begin{aligned}
-4 \pi \BM(\Bx)
&= \int_V dV’ \spacegrad^2 \inv{\Abs{\Bx – \Bx’}} \BM(\Bx’) \\
} } \\
&=
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
\frac{s(\Bx’) + I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}
} \\
&=
\ncap \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}
}
\frac{s(\Bx’)}{\Abs{\Bx – \Bx’}}
\frac{I\BC(\Bx’)}{\Abs{\Bx – \Bx’}}.
\end{aligned}

By inserting a no-op grade selection operation in the second step, the trivector terms that would show up in subsequent steps are automatically filtered out. This leaves us with a boundary term dependent on the surface and the normal and tangential components of $$\BM$$. Added to that is a pair of volume integrals that provide the unique dependence of $$\BM$$ on its divergence and curl. When the surface is taken to infinity, which requires $$\Abs{\BM}/\Abs{\Bx – \Bx’} \rightarrow 0$$, then the dependence of $$\BM$$ on its divergence and curl is unique.

In order to express final result in traditional vector algebra form, a couple transformations are required. The first is that

\label{eqn:helmholtzDerviationMultivector:800}
\gpgradeone{ \Ba I \Bb } = I^2 \Ba \cross \Bb = -\Ba \cross \Bb.

For the grade selection in the boundary integral, note that

\label{eqn:helmholtzDerviationMultivector:740}
\begin{aligned}
&=
+
&=
+
&=

\end{aligned}

These give

\label{eqn:helmholtzDerviationMultivector:721}
\boxed{
\begin{aligned}
\BM(\Bx)
&=
\spacegrad \inv{4\pi} \int_{\partial V} dA’ \ncap \cdot \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}}

\spacegrad \cross \inv{4\pi} \int_{\partial V} dA’ \ncap \cross \frac{\BM(\Bx’)}{\Abs{\Bx – \Bx’}} \\