[Click here for a PDF of this post with nicer formatting]
In a discussion of Dirac’s monopoles, [1] introduces a duality transformation, forming electric and magnetic fields by forming a rotation that combines a different pair of electric and magnetic fields. In SI units that transformation becomes
\begin{equation}\label{eqn:dualityTransformation:40}
\begin{bmatrix}
\boldsymbol{\mathcal{E}} \\
\eta \boldsymbol{\mathcal{H}}
\end{bmatrix}
=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\boldsymbol{\mathcal{E}}’ \\
\eta \boldsymbol{\mathcal{H}}’
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:60}
\begin{bmatrix}
\boldsymbol{\mathcal{D}} \\
\boldsymbol{\mathcal{B}}/\eta
\end{bmatrix}
=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\boldsymbol{\mathcal{D}}’ \\
\boldsymbol{\mathcal{B}}’/\eta
\end{bmatrix},
\end{equation}
where \( \eta = \sqrt{\mu_0/\epsilon_0} \). It is left as an exercise to the reader to show that application of these to Maxwell’s equations
\begin{equation}\label{eqn:dualityTransformation:100}
\spacegrad \cdot \boldsymbol{\mathcal{E}} = \rho_{\textrm{e}}/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:120}
\spacegrad \cdot \boldsymbol{\mathcal{H}} = \rho_{\textrm{m}}/\mu_0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:140}
-\spacegrad \cross \boldsymbol{\mathcal{E}} – \partial_t \boldsymbol{\mathcal{B}} = \boldsymbol{\mathcal{J}}_{\textrm{m}}
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:160}
\spacegrad \cross \boldsymbol{\mathcal{H}} – \partial_t \boldsymbol{\mathcal{D}} = \boldsymbol{\mathcal{J}}_{\textrm{e}},
\end{equation}
determine a similar relation between the sources. That transformation of Maxwell’s equation is
\begin{equation}\label{eqn:dualityTransformation:200}
\spacegrad \cdot \lr{ \cos\theta \boldsymbol{\mathcal{E}}’ + \sin\theta \eta \boldsymbol{\mathcal{H}}’ } = \rho_{\textrm{e}}/\epsilon_0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:220}
\spacegrad \cdot \lr{ -\sin\theta \boldsymbol{\mathcal{E}}’/\eta + \cos\theta \boldsymbol{\mathcal{H}}’ } = \rho_{\textrm{m}}/\mu_0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:240}
-\spacegrad \cross \lr{ \cos\theta \boldsymbol{\mathcal{E}}’ + \sin\theta \eta \boldsymbol{\mathcal{H}}’ } – \partial_t \lr{ – \sin\theta \eta \boldsymbol{\mathcal{D}}’ + \cos\theta \boldsymbol{\mathcal{B}}’ } = \boldsymbol{\mathcal{J}}_{\textrm{m}}
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:260}
\spacegrad \cross \lr{ -\sin\theta \boldsymbol{\mathcal{E}}’/\eta + \cos\theta \boldsymbol{\mathcal{H}}’ } – \partial_t \lr{ \cos\theta \boldsymbol{\mathcal{D}}’ + \sin\theta \boldsymbol{\mathcal{B}}’/\eta } = \boldsymbol{\mathcal{J}}_{\textrm{e}}.
\end{equation}
A bit of rearranging gives
\begin{equation}\label{eqn:dualityTransformation:400}
\begin{bmatrix}
\eta \rho_{\textrm{e}} \\
\rho_{\textrm{m}}
\end{bmatrix}
=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\eta \rho_{\textrm{e}}’ \\
\rho_{\textrm{m}}’
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:420}
\begin{bmatrix}
\eta \boldsymbol{\mathcal{J}}_{\textrm{e}} \\
\boldsymbol{\mathcal{J}}_{\textrm{m}} \\
\end{bmatrix}
=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\eta \boldsymbol{\mathcal{J}}_{\textrm{e}}’ \\
\boldsymbol{\mathcal{J}}_{\textrm{m}}’ \\
\end{bmatrix}.
\end{equation}
For example, with \( \rho_{\textrm{m}} = \boldsymbol{\mathcal{J}}_{\textrm{m}} = 0 \), and \( \theta = \pi/2 \), the transformation of sources is
\begin{equation}\label{eqn:dualityTransformation:440}
\begin{aligned}
\rho_{\textrm{e}}’ &= 0 \\
\boldsymbol{\mathcal{J}}_{\textrm{e}}’ &= 0 \\
\rho_{\textrm{m}}’ &= \eta \rho_{\textrm{e}} \\
\boldsymbol{\mathcal{J}}_{\textrm{m}}’ &= \eta \boldsymbol{\mathcal{J}}_{\textrm{e}},
\end{aligned}
\end{equation}
and Maxwell’s equations then have only magnetic sources
\begin{equation}\label{eqn:dualityTransformation:480}
\spacegrad \cdot \boldsymbol{\mathcal{E}}’ = 0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:500}
\spacegrad \cdot \boldsymbol{\mathcal{H}}’ = \rho_{\textrm{m}}’/\mu_0
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:520}
-\spacegrad \cross \boldsymbol{\mathcal{E}}’ – \partial_t \boldsymbol{\mathcal{B}}’ = \boldsymbol{\mathcal{J}}_{\textrm{m}}’
\end{equation}
\begin{equation}\label{eqn:dualityTransformation:540}
\spacegrad \cross \boldsymbol{\mathcal{H}}’ – \partial_t \boldsymbol{\mathcal{D}}’ = 0.
\end{equation}
Of this relation Jackson points out that “The invariance of the equations of electrodynamics under duality transformations shows that it is a matter of convention to speak of a particle possessing an electric charge, but not magnetic charge.” This is an interesting comment, and worth some additional thought.
References
[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.