patching plaster and lathe: no strapping required!

February 29, 2020 Home renos , ,

I’d never had to patch holes in plaster and lathe before, and proceeded in the normal fashion, trying to slip strapping into the hole like you would with drywall.  That was really difficult (at least in the small holes I was trying to patch.)

I got smarter on my second hole, and used the lathe itself as the strapping.  All I had to do was cut the hole a bit bigger than my hole, like so:

then I was able to anchor my filler piece of drywall nicely using the lathe

my first coat in the closet side is a bit messy since that side it just plaster and lathe and very uneven

but on the outside side of this wall, where we have drywall on plaster on lathe, the patch will be nice and smooth:


This is a new switch for the wall sconce light outlet that we presume was a wall sconce that had its own switch initially.

I had some trouble using my new trick on one of my four holes, since the plaster and lathe in that section was thinner than my drywall.  In that section, I tried trimming my filler drywall edgewise, which didn’t work too well, since it cracked once screwed in, but it was good enough to hold the mud in place, so it all worked out in the end.

Kitchen progress, we have a floor!

February 24, 2020 Home renos , , ,

Our contractor installed the new kitchen tiles this weekend, and I think it’s looking pretty good, even without the grout:

There’s still some finicky work with the thresholds to do, but we should be able to get the cabinet installers in to do their work soon.

We spent some time at the house too. Sofia got tons of the remaining chaos under control, and I putzed away, patching up the giant holes in Connor’s old room’s closet, which we ripped the plumbing and electrical out of (there was improperly installed plumbing and electrical in there for a 2nd floor laundry.)

The holes in the floor are because the old owner didn’t properly replace the subfloor that he massacred to run his plumbing and electical (on one side he didn’t have anything at all, and just covered it up the hole with some click-together hardwood). I have some nice solid plywood that I’ll put in here to replace the missing OSB, but I couldn’t do that this weekend (at least easily) without my table saw, which was at the new-house. I’ll also screw in a parallel section of 2×6 on the right hand side of the closet to strengthen the joist, which was also massacred a bit — that’s probably overkill, but I may as well while the floor is open.

Building a cantilever TV stand

February 17, 2020 Home renos , ,

The basement den in the new house has a really nice built in TV cabinet.

The problem is that gargantuan TVs are too cheap these days, and the one we bought a couple years ago doesn’t fit.  We’ve had the TV propped up in front of the built in cabinet on a temporary stand (the one we used at the old house.)  Our plan was to build a cantilever shelf that just fits into the built in cabinet, which would support the TV, and is non-destructive.  Should we get rid of the current behemoth for a smaller TV, we could just take out the cantilever unit, and things would basically be back to the original state.

I wanted to match character with the original unit, which appears to be built from 3/4″ MDF, and has tasteful lips around all the basic boxes like so

These edges are all 1.5″ thick, 2x the width of the stock used for the box portions of the unit.  Here’s what I built (still not sanded, nor painted)

This is a big shelf, “weighing in” at 51″ wide.  Since I had a left over wide shelf reinforcing bar, I’ve used that underneath

My joinery isn’t perfect, and looked pretty bad before sanding, especially with the glue smears, showing.

After a hand-sand this looked much better.  Only the portion at the very front really needs to be sanded, since the rest will be hidden.  I’ve got to pick up my sander from the old house, and give things a good once over before priming and painting.

Because the shelf and the TV are both big and awkward, I’ve installed it temporarily, even though it’s not sanded and painted yet.  This will keep the TV out of the way for now:

Kitchen renovation progress.

February 1, 2020 Home renos ,

We are making good progress on the kitchen renovation (a _lot_ of it over the last couple days). Here’s a couple weeks ago with the cabinets and backspash removed

then Friday with some of the tile removed:

yesterday, with the tiles, subfloor and unsavable drywall removed

and finally today, after piles of back breaking work and bruises and scratches (removing old tile is not easy!), we’ve got things cleaned up

The wall that had been butchered by the first owners of the house is rebuilt, ready for new drywall on both sides (no more microwave cavity in the stairwell.)

We’ll have to take out the electrical outlet in the stairwell, and fix up the stairwell sconce, which had been “installed” without a standard octagon box.

I was glad to see that the kitchen outlets were all run properly, so we don’t have to cut into the subfloor to run new lines back to the panel.

Next steps:

  • choose and order tile, and underlay material
  • rough in plumbing
  • drywall and flooring installation
  • priming
  • cabinet and appliance installation
  • trimwork and finishing.

Lines and planes in geometric algebra.

January 30, 2020 Uncategorized

[Click here for a PDF of this post with nicer formatting]

Motivation.

I have way too many Dover books on mathematics, including [1], which is a nice little book, covering all basics, plus some higher level material like gamma functions, Fourier series, and Laplace transforms. I’d borrowed this book from the Toronto Public Library in my youth. I’ve been meaning to re-read it, and bought my own copy to do so (too long ago.)

Perusing the chapter on vectors, I saw his treatment of lines, specifically the distance from a point to a line, and realized I’d left that elementary geometry topics out of my book.

Let’s tackle this and the similar distance from a plane problem here.

Distance from a line.

Given a point \( \Bx \) on a line, and a direction vector \( \Bu \) for the line, we can parameterize all points \( \By \) on the line by
\begin{equation}\label{eqn:lineAndPlane:20}
\By(t) = \Bx + a \Bu.
\end{equation}
In particular, the vector \( \Bx – \By \) is directed along the line if
\begin{equation}\label{eqn:lineAndPlane:40}
\lr{ \Bx – \By } \wedge \Bu = 0.
\end{equation}

While \ref{eqn:lineAndPlane:40} holds in \(\mathbb{R}^2\) (and in fact \(\mathbb{R}^N\)), this relationship is usually written in the \(\mathbb{R}^3\) specific dual form
\begin{equation}\label{eqn:lineAndPlane:60}
\lr{ \Bx – \By } \cross \Bu = 0.
\end{equation}
Given a vector \( \Bs \), representing a point, not necessarily on the line, we can compute the (shortest) distance from that point to the line.

Fig 1. Distance to line.

Referring to fig. 1, it’s clear that we want this distance is just the rejection of \( \Bu \) from \( \Bd = \Bx – \Bs \). We can decompose \( \Bd \) into components parallel and perpendicular to \( \Bu \) using the usual trick
\begin{equation}\label{eqn:lineAndPlane:260}
\begin{aligned}
\Bd
&= \Bd \Bu \inv{\Bu} \\
&=
\lr{ \Bd \cdot \Bu }
\inv{\Bu}
+
\lr{ \Bd \wedge \Bu }
\inv{\Bu},
\end{aligned}
\end{equation}
where the first component is the projection along \( \Bu \), and the last is the rejection. This means that the
directed distance to the line from the point \( \Bs \) is
\begin{equation}\label{eqn:lineAndPlane:80}
\BD = \lr{\lr{\Bx – \Bs} \wedge \Bu } \inv{\Bu}.
\end{equation}
Should we want the conventional cross product formulation of this vector, this product may be expanded within a no-op grade-1 selection, applying the duality relation (\(\Bx \wedge \By = I \lr{ \Bx \cross \By }\)) twice
\begin{equation}\label{eqn:lineAndPlane:100}
\begin{aligned}
\Bd \wedge \Bu \inv{\Bu}
&=
\gpgradeone{
\Bd \wedge \Bu \frac{\Bu}{\Bu^2}
} \\
&=
\inv{\Bu^2}
\gpgradeone{
I (\Bd \cross \Bu) \Bu
} \\
&=
\inv{\Bu^2}
\gpgradeone{
I (\Bd \cross \Bu) \cdot \Bu
+
I (\Bd \cross \Bu) \wedge \Bu
} \\
&=
\inv{\Bu^2}
\gpgradeone{
I^2 (\Bd \cross \Bu) \cross \Bu
} \\
&=
\frac{\Bu \cross (\Bd \cross \Bu)}{\Bu^2}.
\end{aligned}
\end{equation}

Distance from a plane.

Given two linearly independent vectors \( \Ba, \Bb \) that span a plane, and a point \( \Bx \) in the plane, the points in that plane are parameterized by
\begin{equation}\label{eqn:lineAndPlane:140}
\By(s,t) = \Bx + s \Ba + t \Bb.
\end{equation}
We can form a trivector equation of a plane by wedging both sides, first with \( \Ba \) and then with \( \Bb \), yielding
\begin{equation}\label{eqn:lineAndPlane:160}
\lr{ \Bx – \By } \wedge \Ba \wedge \Bb = 0.
\end{equation}
This equation is satisfied by all points \( \Bx, \By \) that lie in the plane

We are used to seeing the equation of a plane in dot product form, utilizing a normal. That \(\mathbb{R}^3\) representation can be recovered utilizing a dual transformation. We introduce a bivector (2-blade) representation of the plane itself
\begin{equation}\label{eqn:lineAndPlane:180}
B = \Ba \wedge \Bb,
\end{equation}
and then let
\begin{equation}\label{eqn:lineAndPlane:200}
B = I \Bn.
\end{equation}
With such a substitution, \ref{eqn:lineAndPlane:160} can be transformed
\begin{equation}\label{eqn:lineAndPlane:220}
\begin{aligned}
0
&= \lr{ \Bx – \By } \wedge B \\
&= \gpgradethree{
\lr{ \Bx – \By } B
} \\
&= \gpgradethree{
\lr{ \Bx – \By } I \Bn
} \\
&= \gpgradethree{
I \lr{ \Bx – \By } \cdot \Bn
+
I \lr{ \Bx – \By } \wedge \Bn
} \\
&=
I \lr{ \Bx – \By } \cdot \Bn,
\end{aligned}
\end{equation}
where the last wedge product could be discarded since it contributes only a vector grade object after multiplication with \( I \), and that is filtered out by the grade three selection. Multiplication of both sides with \( -I \) yields
\begin{equation}\label{eqn:lineAndPlane:240}
\lr{ \Bx – \By } \cdot \Bn = 0,
\end{equation}
the conventional form of the equation of an \(\mathbb{R}^3\) plane.
If we want a more general representation, then we are better off using the wedge product form of this equation
\begin{equation}\label{eqn:lineAndPlane:280}
\lr{ \Bx – \By } \wedge B = 0,
\end{equation}
where we use \ref{eqn:lineAndPlane:180} to drop the references to the original spanning vectors \( \Ba, \Bb \). As with rotations, in geometric algebra, it is more natural to encode the orientation of the plane with a bivector, than to use a spanning pair of vectors in the plane, or the normal to the plane.

For the question of shortest distance from a point to our plane, we want to compute the component of \( \Bd = \Bx – \Bs \) that lies in the plane represented by \( B \), and the component perpendicular to that plane. We do so using the same method as above for the line distance problem, writing
\begin{equation}\label{eqn:lineAndPlane:300}
\begin{aligned}
\Bd
&= \Bd B \inv{B} \\
&=
\lr{ \Bd \cdot B } \inv{B}
+
\lr{ \Bd \wedge B } \inv{B}.
\end{aligned}
\end{equation}
It turns out that these are both vector grade objects (i.e. there are no non-vector grades that cancel perfectly). The first term is the projection of \( \Bd \) onto the plane \( B \) whereas the second term is the rejection. Let’s do a few things here to get comfortable with these components. First, let’s verify that they are perpendicular by computing their dot product
\begin{equation}\label{eqn:lineAndPlane:320}
\begin{aligned}
\lr{ \lr{ \Bd \cdot B } \inv{B} }
\cdot
\lr{ \lr{ \Bd \wedge B } \inv{B} }
&=
\gpgradezero{
\lr{ \Bd \cdot B } \inv{B}
\lr{ \Bd \wedge B } \inv{B}
} \\
&=
\inv{B^4}
\gpgradezero{
\lr{ \Bd \cdot B } B
\lr{ \Bd \wedge B } B
} \\
&\propto
\gpgradezero{
\lr{ \Bd \cdot B } B^2
\lr{ \Bd \wedge B }
} \\
&\propto
\gpgradezero{
\lr{ \Bd \cdot B }
\lr{ \Bd \wedge B }
} \\
&=
0,
\end{aligned}
\end{equation}
where we first used \( B^{-1} = B/B^2 \), then \( \lr{ \Bd \wedge B } B = \pm B \lr{ \Bd \wedge B } \) (for \(\mathbb{R}^3\) \( B \) commutes with the wedge \( \Bd \wedge B \) is a pseudoscalar, but may anticommute in other dimensions). Finally, within the scalar selection operator we are left with the products of grade-1 and grade-3 objects, which can have only grade 2 or grade 4 components, so the scalar selection is zero.

To confirm the guess that \( \lr{ \Bd \cdot B } \inv{B} \) lies in the plane, we can expand this object in terms of the spanning vector pair \( \Ba, \Bb \) to find
\begin{equation}\label{eqn:lineAndPlane:340}
\begin{aligned}
\lr{ \Bd \cdot B } \inv{B}
&=
\lr{ \Bd \cdot \lr{ \Ba \wedge \Bb} } \inv{B} \\
&=
\lr{
(\Bd \cdot \Ba) \Bb

(\Bd \cdot \Bb) \Ba
} \inv{B} \\
&\propto
\lr{
u \Ba + v \Bb
}
\cdot \lr{ \Ba \wedge \Bb} \\
&\in \setlr{ \Ba, \Bb }
\end{aligned}
\end{equation}
Similarly, if \( \lr{ \Bd \cdot B } \inv{B} \) has any component in the plane, dotting with \( B \) should be non-zero, but we have
\begin{equation}\label{eqn:lineAndPlane:360}
\begin{aligned}
\lr{ \lr{ \Bd \cdot B } \inv{B} } \cdot B
&=
\gpgradeone{ \lr{ \Bd \cdot B } \inv{B} B } \\
&=
\gpgradeone{ \Bd \cdot B } \\
&= 0,
\end{aligned}
\end{equation}
which demonstrates that this is the component we are interested in. The directed (shortest) distance from the point \( \Bs \) to the plane is therefore
\begin{equation}\label{eqn:lineAndPlane:380}
\BD
=
\lr{ \lr{ \Bx – \Bs } \wedge B } \inv{B}.
\end{equation}
There should be a dual form for this relationship too, so let’s see what it looks like. First note that for vector \( \Bd \)
\begin{equation}\label{eqn:lineAndPlane:400}
\begin{aligned}
\Bd \wedge B
&=
\gpgradethree{
\Bd I \Bn
} \\
&=
I (\Bd \cdot \Bn),
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:lineAndPlane:420}
\begin{aligned}
\BD
&=
I \lr{ \lr{ \Bx – \Bs } \cdot \Bn } \inv{I \Bn} \\
&=
\lr{ \Bx – \Bs } \cdot \Bn \inv{\Bn}.
\end{aligned}
\end{equation}
This would conventionally be written in terms of a unit vector \( \ncap \) as \( \lr{\lr{ \Bx – \Bs } \cdot \ncap} \ncap\).

Summary.

We can write the equation of a line, plane, (volume, …) in a uniform fashion as
\begin{equation}\label{eqn:lineAndPlane:440}
\lr{ \By – \Bx } \wedge V = 0,
\end{equation}
where \( V = \Bu_1, \Bu_1 \wedge \Bu_2, \Bu_1 \wedge \Bu_2 \wedge \cdots \wedge \Bu_n \) depending on the dimenion of the desired subspace, where \( \Bu_k \) are linearly independent vectors spanning that space, and \( \Bx \) is one point in that subspace.

The (directed) distance from a vector \( \Bs \) to that subspace is given by
\begin{equation}\label{eqn:lineAndPlane:460}
\BD = \lr{ \Bx – \Bs } \wedge V \inv{V}.
\end{equation}
For the \(\mathbb{R}^3\) special case of a line, where \( V = \ucap \) is a unit vector on the line, we showed that this reduces to
\begin{equation}\label{eqn:lineAndPlane:480}
\BD = \ucap \cross \lr{ \lr{ \Bx – \Bs } \cross \ucap },
\end{equation}
For the \(\mathbb{R}^3\) special case of a line, where \( V = I \ncap \) is a unit bivector representing the plane, we found that we could write \ref{eqn:lineAndPlane:460} as a projection onto the normal to the plane
\begin{equation}\label{eqn:lineAndPlane:500}
\BD = \lr{ \lr{ \Bx – \Bs } \cdot \ncap } \ncap.
\end{equation}
Again, only for \(\mathbb{R}^3\) we were also able to write the equation of the plane itself in dual form as
\begin{equation}\label{eqn:lineAndPlane:520}
\lr{ \By – \Bx } \cdot \ncap = 0.
\end{equation}
These dual forms would also be possible for other special cases (like the equation of a volume in \(\mathbb{R}^4\) and the distance from a point to that volume), but should we desire general relationships valid in all dimension (even \(\mathbb{R}^2\)), we can stick to \ref{eqn:lineAndPlane:440} and \ref{eqn:lineAndPlane:460}.

References

[1] David Vernon Widder. Advanced calculus. Courier Corporation, 1989.