Chapter 20 of Stroustrup’s book covers a few more new (to me) c++11 features:

  1. override
  2. final
  3. use of using statements for access control.
  4. pointer to member (for data and member functions)

override

The override keyword is really just to make it clear when you are providing a virtual function override.  Because the use of virtual at an override point is redundant, people have used that to explicitly show that the intent is to show the function overrides a base class function. However, if the have the interface erroneously different in the second specification, the use of virtual there means that you are defining a new virtual function.  Here’s a made up example, where the integer type of a virtual function was changed “accidentally” when “overriding” a base class virtual function:

#include <stdio.h>

struct x
{
   virtual void foo( int v ) ;
} ;

struct y : public x
{
   virtual void foo( long v ) ;
} ;

void x::foo( int v ) { printf( "x::foo:%d\n", v ) ; }
void y::foo( long v ) { printf( "y::foo:%ld\n", v ) ; }

Now in c++11 you can be explicit that you intention is to override a base class virtual. Replace the use of the redundant virtual with the override keyword, and the compiler can now tell you if you get things mixed up:

struct x
{
   virtual void foo( int v ) ;
} ;

struct y : public x
{
   void foo( long v ) override ;
} ;

void x::foo( int v )
{
   printf( "x::foo:%d\n", v ) ;
}

void y::foo( long v )
{
   printf( "y::foo:%ld\n", v ) ;
}

This gives a nice compiler message informing you about the error:

$ c++ -std=c++11 -O2 -MMD   -c -o d.o d.cc
d.cc:10:23: error: non-virtual member function marked 'override' hides virtual member function
   void foo( long v ) override ;
                      ^
d.cc:5:17: note: hidden overloaded virtual function 'x::foo' declared here: type mismatch at 1st parameter ('int' vs 'long')
   virtual void foo( int v ) ;
                ^

final

This is a second virtual function modifier designed to cut the performance cost of using virtual functions in some situations. My experimentation with this feature shows the compilers still have more work to do optimizing away the vtable calls. I introduced a square-matrix class that had a single range virtual range checking function:

   void throwRangeError( const indexType i, const indexType j ) const
   { 
      throw rangeError{ i, j, size } ;
   }

   /**
      Introduce a virtual function that allows user selection of optional range error checking.
    */
   virtual void handleRangeError( const indexType i, const indexType j ) const
   { 
      throwRangeError( i, j ) ;
   }

   bool areIndexesOutOfRange( const indexType i, const indexType j ) const
   { 
      if ( (0 == i) or (0 == j) or (i > size) or (j > size) )
      { 
         return true ;
      }

      return false ;
   }

My intent was that a derived class could provide a no-op specialization of handleRangeError:

/**
   Explicitly unchecked matrix element access
 */
class uncheckedMatrix : public matrix
{
public:
   // inherit constructors:
   using matrix::matrix ;

   void handleRangeError( const indexType i, const indexType j ) const final
   {
   }
} ;

This derived class no longer has any virtual functions. Also note that it uses ‘using’ statements to explicitly inherit the base class constructors, which is not a default action (and recommended by Stroustrup only for classes like this that do not add any data members).

The compiler didn’t do too well with this specialization, as calls to the element access operator still took a vtable hit. Here’s some code that when passed a 3×3 matrix object includes out of range accesses:

void outofbounds( const matrix & m, const char * s )
{
   printf( "%s: %g\n", s, m(4,2) ) ;
}

void outofbounds( const checkedMatrix & m, const char * s )
{
   printf( "%s: %g\n", s, m(4,2) ) ;
}

void outofbounds( const uncheckedMatrix & m, const char * s ) noexcept
{
   printf( "%s: %g\n", s, m(4,2) ) ;
}

Here’s the code for the first (base class) matrix class that has virtual functions, but no final overrides:

0000000000000000 <outofbounds(matrix const&, char const*)>:
   0: push   %rbp
   1: mov    %rsp,%rbp
   4: push   %r14
   6: push   %rbx
   7: mov    %rsi,%r14
   a: mov    %rdi,%rbx
   d: mov    0x20(%rbx),%rax
  11: cmp    $0x3,%rax
  15: ja     2d <outofbounds(matrix const&, char const*)+0x2d>
  17: mov    (%rbx),%rax
  1a: mov    $0x4,%esi
  1f: mov    $0x2,%edx
  24: mov    %rbx,%rdi
  27: callq  *(%rax)
  29: mov    0x20(%rbx),%rax
  2d: lea    (%rax,%rax,2),%rax
  31: mov    0x8(%rbx),%rcx
  35: movsd  0x8(%rcx,%rax,8),%xmm0
  3b: lea    0x149(%rip),%rdi        # 18b <__clang_call_terminate+0xb>
         3e: DISP32  .cstring-0x18b
  42: mov    $0x1,%al
  44: mov    %r14,%rsi
  47: pop    %rbx
  48: pop    %r14
  4a: pop    %rbp
  4b: jmpq   50 <outofbounds(checkedMatrix const&, char const*)>
         4c: BRANCH32   printf

The callq instruction is the vtable call. Because this function called through the base class object, and could represent a derived class object, such a call is required. Now look at the code for the uncheckedMatrix class where the handleRangeError() had a no-op final override:

00000000000000a0 <outofbounds(uncheckedMatrix const&, char const*)>:
  a0: push   %rbp
  a1: mov    %rsp,%rbp
  a4: push   %r14
  a6: push   %rbx
  a7: mov    %rsi,%r14
  aa: mov    %rdi,%rbx
  ad: mov    0x20(%rbx),%rax
  b1: cmp    $0x3,%rax
  b5: ja     d0 <outofbounds(uncheckedMatrix const&, char const*)+0x30>
  b7: mov    (%rbx),%rax
  ba: mov    (%rax),%rax
  bd: mov    $0x4,%esi
  c2: mov    $0x2,%edx
  c7: mov    %rbx,%rdi
  ca: callq  *%rax
  cc: mov    0x20(%rbx),%rax
  d0: lea    (%rax,%rax,2),%rax
...

We still have an unnecessary vtable call. This must be a call to handleRangeError(), but that has a final override, and could conceivably be inlined. Some experimentation shows that it is possible to get the desired behaviour (Apple LLVM version 7.3.0 (clang-703.0.31)), but only when the final call is a leaf function. Explicit override of the base class element access operator to omit the check-and-throw logic

/**
   Explicitly unchecked matrix element access
 */
class uncheckedMatrix2 : public matrix
{
public:
   // inherit constructors:
   using matrix::matrix ;

   T operator()( const indexType i, const indexType j ) const
   { 
      return access( i, j ) ;
   }
} ;

has much less horrible code

0000000000000100 <outofbounds(uncheckedMatrix2 const&, char const*)>:
 100: push   %rbp
 101: mov    %rsp,%rbp
 104: mov    0x8(%rdi),%rax
 108: mov    0x20(%rdi),%rcx
 10c: lea    (%rcx,%rcx,2),%rcx
 110: movsd  0x8(%rax,%rcx,8),%xmm0
 116: lea    0x6e(%rip),%rdi        # 18b <__clang_call_terminate+0xb>
         119: DISP32 .cstring-0x18b
 11d: mov    $0x1,%al
 11f: pop    %rbp
 120: jmpq   125 <outofbounds(uncheckedMatrix2 const&, char const*)+0x25>
         121: BRANCH32  printf
 125: data16 nopw %cs:0x0(%rax,%rax,1)

Now we don’t have any of the vtable related epilog and prologue code, nor the indirection required to make such a call. This code isn’t pretty, but isn’t actually that much worse than raw pointer or plain vector access:

void outofbounds( const std::vector<double> m, const char * s ) noexcept
{
   printf( "%s: %g\n", s, m[ 4*3+2-1 ] ) ;
}

void outofbounds( const double * m, const char * s ) noexcept
{
   printf( "%s: %g\n", s, m[ 4*3+2-1 ] ) ;
}

The first generates code like the following:

0000000000000130 <outofbounds(std::__1::vector<double, std::__1::allocator<double> >, char const*)>:
 130: push   %rbp
 131: mov    %rsp,%rbp 
 134: mov    (%rdi),%rax  
 137: movsd  0x68(%rax),%xmm0
 13c: lea    0x48(%rip),%rdi        # 18b <__clang_call_terminate+0xb>
         13f: DISP32 .cstring-0x18b
 143: mov    $0x1,%al
 145: pop    %rbp
 146: jmpq   14b <outofbounds(std::__1::vector<double, std::__1::allocator<double> >, char const*)+0x1b>
         147: BRANCH32  printf
 14b: nopl   0x0(%rax,%rax,1)

Using vector instead of raw array access imposes only a single instruction dereference penalty:

0000000000000150 <outofbounds(double const*, char const*)>:
 150: push   %rbp
 151: mov    %rsp,%rbp
 154: movsd  0x68(%rdi),%xmm0
 159: lea    0x2b(%rip),%rdi        # 18b <__clang_call_terminate+0xb>
         15c: DISP32 .cstring-0x18b
 160: mov    $0x1,%al
 162: pop    %rbp
 163: jmpq   168 <GCC_except_table2>
         164: BRANCH32  printf

With the final override in a leaf function, or a similar explicit hiding of the base class function, we add one additional instruction overhead (one additional load).

pointer to member

This is a somewhat obscure feature. I don’t think that it is new to c++11, but I’ve never seen it used in 20 years. The only thing interesting about it is that the pointer to member objects apparently are entirely offset based, so could be used in shared memory interprocess configurations (where virtual functions cannot!)