For a vector $$\BA$$ in spherical coordinates, let’s compute the Laplacian

\label{eqn:vectorWaveEquationSpherical:20}

to see the form of the wave equation. The spherical vector representation has a curvilinear basis
\label{eqn:vectorWaveEquationSpherical:40}
\BA = \rcap A_r + \thetacap A_\theta + \phicap A_\phi,

and the spherical Laplacian has been found to have the representation

\label{eqn:vectorWaveEquationSpherical:60}
=
\inv{r^2} \PD{r}{} \lr{ r^2 \PD{r}{ \psi} }
+ \frac{1}{r^2 \sin\theta} \PD{\theta}{} \lr{ \sin\theta \PD{\theta}{ \psi } }
+ \frac{1}{r^2 \sin^2\theta} \PDSq{\phi}{ \psi}.

Evaluating the Laplacian will require the following curvilinear basis derivatives

\label{eqn:vectorWaveEquationSpherical:80}
\begin{aligned}
\partial_\theta \rcap &= \thetacap \\
\partial_\theta \thetacap &= -\rcap \\
\partial_\theta \phicap &= 0 \\
\partial_\phi \rcap &= S_\theta \phicap \\
\partial_\phi \thetacap &= C_\theta \phicap \\
\partial_\phi \phicap &= -\rcap S_\theta – \thetacap C_\theta.
\end{aligned}

We’ll need to evaluate a number of derivatives. Starting with the $$\rcap$$ components

\label{eqn:vectorWaveEquationSpherical:120}
\partial_r \lr{ r^2 \partial_r \lr{ \rcap \psi} }
=
\rcap \partial_r \lr{ r^2 \partial_r \psi }

\label{eqn:vectorWaveEquationSpherical:140}
\begin{aligned}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \rcap \psi } }
&=
\partial_\theta \lr{ S_\theta (\thetacap \psi + \rcap \partial_\theta \psi ) } \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta \partial_\theta (\thetacap \psi + \rcap \partial_\theta \psi ) \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta \partial_\theta ((\partial_\theta \thetacap) \psi + (\partial_\theta \rcap) \partial_\theta \psi )
+ S_\theta \partial_\theta (\thetacap \partial_\theta \psi + \rcap \partial_{\theta \theta} \psi ) \\
&=
C_\theta (\thetacap \psi + \rcap \partial_\theta \psi )
+ S_\theta ((-\rcap) \psi + (\thetacap) \partial_\theta \psi )
+ S_\theta (\thetacap \partial_\theta \psi + \rcap \partial_{\theta \theta} \psi ) \\
&=
\rcap \lr{
C_\theta \partial_\theta \psi
– S_\theta \psi
+ S_\theta \partial_{\theta \theta} \psi
}
+\thetacap \lr{
C_\theta \psi
+ 2 S_\theta \partial_\theta \psi
}
\end{aligned}

\label{eqn:vectorWaveEquationSpherical:160}
\begin{aligned}
\partial_{\phi \phi} \lr{ \rcap \psi}
&=
\partial_\phi \lr{ (\partial_\phi \rcap) \psi + \rcap \partial_\phi \psi } \\
&=
\partial_\phi \lr{ (S_\theta \phicap) \psi + \rcap \partial_\phi \psi } \\
&=
S_\theta \partial_\phi (\phicap \psi)
+ \partial_\phi \lr{ \rcap \partial_\phi \psi } \\
&=
S_\theta (\partial_\phi \phicap) \psi
+ S_\theta \phicap \partial_\phi \psi
+ (\partial_\phi \rcap) \partial_\phi \psi
+ \rcap \partial_{\phi\phi} \psi \\
&=
S_\theta (-S_\theta \rcap – C_\theta \thetacap) \psi
+ S_\theta \phicap \partial_\phi \psi
+ (S_\theta \phicap) \partial_\phi \psi
+ \rcap \partial_{\phi\phi} \psi \\
&=
\rcap \lr{
– S_\theta^2 \psi
+ \partial_{\phi\phi} \psi
}
+
\thetacap \lr{
– S_\theta C_\theta \psi
}
+
\phicap \lr{
2 S_\theta \phicap \partial_\phi \psi
}
\end{aligned}

This gives

\label{eqn:vectorWaveEquationSpherical:180}
\begin{aligned}
&=
\rcap \lr{
\inv{r^2}
\partial_r \lr{ r^2 \partial_r A_r }
+
\inv{r^2 S_\theta}
\lr{
C_\theta \partial_\theta A_r
– S_\theta A_r
+ S_\theta \partial_{\theta \theta} A_r
}
+ \inv{r^2 S_\theta^2}
\lr{
– S_\theta^2 A_r
+ \partial_{\phi\phi} A_r
}
} \\
\thetacap
\lr{
\inv{r^2 S_\theta}
\lr{
C_\theta A_r
+ 2 S_\theta \partial_\theta A_r
}

\inv{r^2 S_\theta}
S_\theta C_\theta A_r
} \\
\phicap
\lr{
\inv{r^2 S_\theta^2}
2 S_\theta \partial_\phi A_r
} \\
&=
\rcap \lr{
-\frac{2}{r^2 } A_r
}
+
\frac{\thetacap}{r^2}
\lr{
\frac{C_\theta}{S_\theta} A_r
+ 2 \partial_\theta A_r
– C_\theta A_r
}
+
\phicap
\frac{2}{r^2 S_\theta} \partial_\phi A_r.
\end{aligned}

Next, let’s compute the derivatives of the $$\thetacap$$ projection.

\label{eqn:vectorWaveEquationSpherical:220}
\partial_r \lr{ r^2 \partial_r \lr{ \thetacap \psi} }
=
\thetacap \partial_r \lr{ r^2 \partial_r \psi }

\label{eqn:vectorWaveEquationSpherical:240}
\begin{aligned}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \thetacap \psi } }
&=
\partial_\theta \lr{ S_\theta
\lr{
(\partial_\theta \thetacap ) \psi
+\thetacap \partial_\theta \psi
}
} \\
&=
\partial_\theta
\lr{ S_\theta
\lr{
(-\rcap ) \psi
+\thetacap \partial_\theta \psi
}
} \\
&=
C_\theta \lr{
-\rcap \psi
+\thetacap \partial_\theta \psi
}
+
S_\theta
\lr{
-(\partial_\theta \rcap) \psi
-\rcap \partial_\theta \psi
+(\partial_\theta \thetacap) \partial_\theta \psi
+\thetacap \partial_{\theta \theta} \psi
} \\
&=
C_\theta \lr{
-\rcap \psi
+\thetacap \partial_\theta \psi
}
+
S_\theta
\lr{
-(\thetacap) \psi
-\rcap \partial_\theta \psi
+(-\rcap) \partial_\theta \psi
+\thetacap \partial_{\theta \theta} \psi
} \\
&=
\rcap \lr{
-C_\theta \psi
-2 S_\theta \partial_\theta \psi
}
+
\thetacap \lr{
+C_\theta \partial_\theta \psi
-S_\theta \psi
+S_\theta \partial_{\theta \theta} \psi
} \\
&=
\rcap \lr{
-C_\theta \psi
-2 S_\theta \partial_\theta \psi
}
+
\thetacap \lr{
+\partial_\theta (S_\theta \partial_\theta \psi)
-S_\theta \psi
}
\end{aligned}

\label{eqn:vectorWaveEquationSpherical:260}
\begin{aligned}
\partial_{\phi \phi} \lr{ \thetacap \psi}
&=
\partial_{\phi} \lr{
(\partial_\phi \thetacap) \psi
+\thetacap \partial_\phi \psi
} \\
&=
\partial_{\phi} \lr{
(C_\theta \phicap) \psi
+\thetacap \partial_\phi \psi
} \\
&=
C_\theta \partial_{\phi} (\phicap \psi)
+
\partial_{\phi} ( \thetacap \partial_\phi \psi ) \\
&=
C_\theta (\partial_\phi \phicap) \psi
+C_\theta \phicap \partial_{\phi} \psi
+ (\partial_\phi \thetacap) \partial_\phi \psi
+\thetacap \partial_{\phi\phi} \psi \\
&=
C_\theta (-\rcap S_\theta – \thetacap C_\theta) \psi
+C_\theta \phicap \partial_{\phi} \psi
+ (C_\theta \phicap) \partial_\phi \psi
+\thetacap \partial_{\phi\phi} \psi \\
&=
-\rcap C_\theta S_\theta \psi
+\thetacap \lr{
-C_\theta C_\theta \psi
+\partial_{\phi\phi} \psi
}
+2 \phicap C_\theta \partial_\phi \psi,
\end{aligned}

which gives
\label{eqn:vectorWaveEquationSpherical:360}
\begin{aligned}
&=
\rcap
\lr{
\inv{r^2 S_\theta}
\lr{
-C_\theta A_\theta
-2 S_\theta \partial_\theta A_\theta
}

\inv{r^2 S_\theta^2}
C_\theta S_\theta A_\theta
} \\
\thetacap \lr{
\inv{r^2} \partial_r \lr{ r^2 \partial_r A_\theta }
+
\inv{r^2 S_\theta}
\lr{
+\partial_\theta (S_\theta \partial_\theta A_\theta)
-S_\theta A_\theta
}
+\inv{r^2 S_\theta^2}
\lr{
-C_\theta C_\theta A_\theta
+\partial_{\phi\phi} A_\theta
}
} \\
\phicap \lr{
\inv{r^2 S_\theta^2}
2 C_\theta \partial_\phi A_\theta
} \\
&=
-2 \rcap
\inv{r^2 S_\theta}
\partial_\theta (S_\theta A_\theta)
+
\thetacap \lr{
-\inv{r^2}
A_\theta
-\inv{r^2 S_\theta^2} C_\theta^2 A_\theta
}
+
2 \phicap \lr{
\inv{r^2 S_\theta^2}
C_\theta \partial_\phi A_\theta
}.
\end{aligned}

Finally, we can compute the derivatives of the $$\phicap$$ projection.

\label{eqn:vectorWaveEquationSpherical:300}
\partial_r \lr{ r^2 \partial_r \lr{ \phicap \psi} }
=
\phicap \partial_r \lr{ r^2 \partial_r \psi }

\label{eqn:vectorWaveEquationSpherical:320}
\partial_\theta \lr{ S_\theta \partial_\theta \lr{ \phicap \psi } }
=
\phicap \partial_\theta \lr{ S_\theta \partial_\theta \psi }

\label{eqn:vectorWaveEquationSpherical:340}
\begin{aligned}
\partial_{\phi \phi} \lr{ \phicap \psi}
&=
\partial_{\phi} \lr{
(\partial_\phi \phicap) \psi
+\phicap \partial_\phi \psi
} \\
&=
\partial_{\phi} \lr{
(-\rcap S_\theta – \thetacap C_\theta) \psi
+\phicap \partial_\phi \psi
} \\
&=
-((\partial_\phi \rcap) S_\theta + (\partial_\phi \thetacap) C_\theta) \psi
-(\rcap S_\theta + \thetacap C_\theta) \partial_\phi \psi
+(\partial_\phi \phicap \partial_\phi \psi
+\phicap \partial_{\phi \phi} \psi \\
&=
-((S_\theta \phicap) S_\theta + (C_\theta \phicap) C_\theta) \psi
-(\rcap S_\theta + \thetacap C_\theta) \partial_\phi \psi
+(-\rcap S_\theta – \thetacap C_\theta) \partial_\phi \psi
+\phicap \partial_{\phi \phi} \psi \\
&=
– 2 \rcap S_\theta \partial_\phi \psi
– 2 \thetacap C_\theta \partial_\phi \psi
+ \phicap \lr{
\partial_{\phi \phi} \psi
-\psi
},
\end{aligned}

which gives
\label{eqn:vectorWaveEquationSpherical:380}
\begin{aligned}
&=
-2 \rcap \inv{r^2 S_\theta} \partial_\phi A_\phi
-2 \thetacap \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
\phicap \lr{
\inv{r^2}
\partial_r \lr{ r^2 \partial_r A_\phi }
+
\inv{r^2 S_\theta}
\partial_\theta \lr{ S_\theta \partial_\theta A_\phi }
+
\inv{r^2 S_\theta^2}
\lr{
\partial_{\phi \phi} A_\phi -A_\phi
}
} \\
&=
-2 \rcap \inv{r^2 S_\theta} \partial_\phi A_\phi
-2 \thetacap \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi
+
\phicap \lr{
}.
\end{aligned}

The vector Laplacian resolves into three augmented scalar wave equations, all highly coupled

\label{eqn:vectorWaveEquationSpherical:420}
\boxed{
\begin{aligned}
\rcap \cdot \lr{ \spacegrad^2 \BA }
&=
-\frac{2}{r^2 } A_r
– \frac{2}{r^2 S_\theta} \partial_\theta (S_\theta A_\theta)
– \frac{2}{r^2 S_\theta} \partial_\phi A_\phi \\
\thetacap \cdot \lr{ \spacegrad^2 \BA }
&=
\frac{1}{r^2} \frac{C_\theta}{S_\theta} A_r
+ \frac{2}{r^2} \partial_\theta A_r
– \frac{1}{r^2} C_\theta A_r
– \inv{r^2} A_\theta
– \inv{r^2 S_\theta^2} C_\theta^2 A_\theta
-2 \inv{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
\frac{2}{r^2 S_\theta} \partial_\phi A_r
+ \frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi.
\end{aligned}
}

I’d guess one way to decouple these equations would be to impose a constraint that allows all the non-wave equation terms in one of the component equations to be killed, and then substitute that constraint into the remaining equations. Let’s try one such constraint

\label{eqn:vectorWaveEquationSpherical:480}
A_r
=
– \inv{S_\theta} \partial_\theta (S_\theta A_\theta)
– \inv{S_\theta} \partial_\phi A_\phi.

This gives

\label{eqn:vectorWaveEquationSpherical:520}
\begin{aligned}
\rcap \cdot \lr{ \spacegrad^2 \BA }
&=
\thetacap \cdot \lr{ \spacegrad^2 \BA }
&=
\lr{
\frac{1}{r^2} \frac{C_\theta}{S_\theta}
+ \frac{2}{r^2} \partial_\theta
– \frac{1}{r^2} C_\theta
}
\lr{
– \inv{S_\theta} \partial_\theta (S_\theta A_\theta)
– \inv{S_\theta} \partial_\phi A_\phi
} \\
– \inv{r^2} A_\theta
– \inv{r^2 S_\theta^2} C_\theta^2 A_\theta
-\frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\phi \\
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
– \frac{2}{r^2 S_\theta} \partial_\phi
\lr{
\inv{S_\theta} \partial_\theta (S_\theta A_\theta)
+ \inv{S_\theta} \partial_\phi A_\phi
}
+ \frac{2}{r^2 S_\theta^2} C_\theta \partial_\phi A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi \\
&=
-\frac{2}{r^2 S_\theta} \partial_\theta A_\theta
-\frac{2}{r^2 S_\theta^2} \partial_{\phi\phi} A_\theta
+ \spacegrad^2 A_\phi – \inv{r^2} A_\phi
\end{aligned}

It looks like some additional cancellations may be had in the $$\thetacap$$ projection of this constrained vector Laplacian. I’m not inclined to try to take this reduction any further without a thorough check of all the algebra (using Mathematica to do so would make sense).

I also guessing that such a solution might be how the $$\textrm{TE}^r$$ and $$\textrm{TM}^r$$ modes were defined, but that doesn’t appear to be the case according to [1]. There the wave equation is formulated in terms of the vector potentials (picking one to be zero and the other to be radial only). The solution obtained from such a potential wave equation then directly defines the $$\textrm{TE}^r$$ and $$\textrm{TM}^r$$ modes. It would be interesting to see how the modes derived in that analysis transform with application of the vector Laplacian derived above.

# References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.