[Click here for a PDF of this post with nicer formatting]
Q: [1] pr. 5.4
Given a 2D SHO with Hamiltonian
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:20} H_0 = \inv{2m} \lr{ p_x^2 + p_y^2 } + \frac{m \omega^2}{2} \lr{ x^2 + y^2 }, \end{equation}
- (a)
What are the energies and degeneracies of the three lowest states? - (b)
With perturbation\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:40} V = m \omega^2 x y, \end{equation}
calculate the first order energy perturbations and the zeroth order perturbed states.
- (c)
Solve the H_0 + \delta V problem exactly, and compare.
A: part (a)
Recall that we have
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:60} H \ket{n_1, n_2} = \Hbar\omega \lr{ n_1 + n_2 + 1 } \ket{n_1, n_2}, \end{equation}
So the three lowest energy states are \ket{0,0}, \ket{1,0}, \ket{0,1} with energies \Hbar \omega, 2 \Hbar \omega, 2 \Hbar \omega respectively (with a two fold degeneracy for the second two energy eigenkets).
A: part (b)
Consider the action of x y on the \beta = \setlr{ \ket{0,0}, \ket{1,0}, \ket{0,1} } subspace. Those are
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:200} \begin{aligned} x y \ket{0,0} &= \frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,0} \\ &= \frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,0} \\ &= \frac{x_0^2}{2} \ket{1,1}. \end{aligned} \end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:220} \begin{aligned} x y \ket{1, 0} &= \frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{1,0} \\ &= \frac{x_0^2}{2} \lr{ a + a^\dagger } \ket{1,1} \\ &= \frac{x_0^2}{2} \lr{ \ket{0,1} + \sqrt{2} \ket{2,1} } . \end{aligned} \end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:240} \begin{aligned} x y \ket{0, 1} &= \frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,1} \\ &= \frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,1} \\ &= \frac{x_0^2}{2} \lr{ \ket{1,0} + \sqrt{2} \ket{1,2} }. \end{aligned} \end{equation}
The matrix representation of m \omega^2 x y with respect to the subspace spanned by basis \beta above is
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:260} x y \sim \inv{2} \Hbar \omega \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix}. \end{equation}
This diagonalizes with
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:300}
U
=
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U}
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:320}
\tilde{U}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:340}
D =
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:360}
x y = U D U^\dagger = U D U.
\end{equation}
The unperturbed Hamiltonian in the original basis is
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:380} H_0 = \Hbar \omega \begin{bmatrix} 1 & 0 \\ 0 & 2 I \end{bmatrix}, \end{equation}
So the transformation to the diagonal x y basis leaves the initial Hamiltonian unaltered
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:400} \begin{aligned} H_0′ &= U^\dagger H_0 U \\ &= \Hbar \omega \begin{bmatrix} 1 & 0 \\ 0 & \tilde{U} 2 I \tilde{U} \end{bmatrix} \\ &= \Hbar \omega \begin{bmatrix} 1 & 0 \\ 0 & 2 I \end{bmatrix}. \end{aligned} \end{equation}
Now we can compute the first order energy shifts almost by inspection. Writing the new basis as \beta’ = \setlr{ \ket{0}, \ket{1}, \ket{2} } those energy shifts are just the diagonal elements from the x y operators matrix representation
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:420} \begin{aligned} E^{{(1)}}_0 &= \bra{0} V \ket{0} = 0 \\ E^{{(1)}}_1 &= \bra{1} V \ket{1} = \inv{2} \Hbar \omega \\ E^{{(1)}}_2 &= \bra{2} V \ket{2} = -\inv{2} \Hbar \omega. \end{aligned} \end{equation}
The new energies are
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:440} \begin{aligned} E_0 &\rightarrow \Hbar \omega \\ E_1 &\rightarrow \Hbar \omega \lr{ 2 + \delta/2 } \\ E_2 &\rightarrow \Hbar \omega \lr{ 2 – \delta/2 }. \end{aligned} \end{equation}
A: part (c)
For the exact solution, it’s possible to rotate the coordinate system in a way that kills the explicit x y term of the perturbation. That we could do this for x, y operators wasn’t obvious to me, but after doing so (and rotating the momentum operators the same way) the new operators still have the required commutators. Let
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:80} \begin{aligned} \begin{bmatrix} u \\ v \end{bmatrix} &= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \\ &= \begin{bmatrix} x \cos\theta + y \sin\theta \\ -x \sin\theta + y \cos\theta \end{bmatrix}. \end{aligned} \end{equation}
Similarly, for the momentum operators, let
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:100}
\begin{aligned}
\begin{bmatrix}
p_u \\
p_v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix} \\
&=
\begin{bmatrix}
p_x \cos\theta + p_y \sin\theta \\
-p_x \sin\theta + p_y \cos\theta
\end{bmatrix}.
\end{aligned}
\end{equation}
For the commutators of the new operators we have
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:120} \begin{aligned} \antisymmetric{u}{p_u} &= \antisymmetric{x \cos\theta + y \sin\theta}{p_x \cos\theta + p_y \sin\theta} \\ &= \antisymmetric{x}{p_x} \cos^2\theta + \antisymmetric{y}{p_y} \sin^2\theta \\ &= i \Hbar \lr{ \cos^2\theta + \sin^2\theta } \\ &= i\Hbar. \end{aligned} \end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:140} \begin{aligned} \antisymmetric{v}{p_v} &= \antisymmetric{-x \sin\theta + y \cos\theta}{-p_x \sin\theta + p_y \cos\theta} \\ &= \antisymmetric{x}{p_x} \sin^2\theta + \antisymmetric{y}{p_y} \cos^2\theta \\ &= i \Hbar. \end{aligned} \end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:160} \begin{aligned} \antisymmetric{u}{p_v} &= \antisymmetric{x \cos\theta + y \sin\theta}{-p_x \sin\theta + p_y \cos\theta} \\ &= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\ &= 0. \end{aligned} \end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:180} \begin{aligned} \antisymmetric{v}{p_u} &= \antisymmetric{-x \sin\theta + y \cos\theta}{p_x \cos\theta + p_y \sin\theta} \\ &= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\ &= 0. \end{aligned} \end{equation}
We see that the new operators are canonical conjugate as required. For this problem, we just want a 45 degree rotation, with
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:460} \begin{aligned} x &= \inv{\sqrt{2}} \lr{ u + v } \\ y &= \inv{\sqrt{2}} \lr{ u – v }. \end{aligned} \end{equation}
We have
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:480}
\begin{aligned}
x^2 + y^2
&=
\inv{2} \lr{ (u+v)^2 + (u-v)^2 } \\
&=
\inv{2} \lr{ 2 u^2 + 2 v^2 + 2 u v – 2 u v } \\
&=
u^2 + v^2,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:500} \begin{aligned} p_x^2 + p_y^2 &= \inv{2} \lr{ (p_u+p_v)^2 + (p_u-p_v)^2 } \\ &= \inv{2} \lr{ 2 p_u^2 + 2 p_v^2 + 2 p_u p_v – 2 p_u p_v } \\ &= p_u^2 + p_v^2, \end{aligned} \end{equation}
and
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:520}
\begin{aligned}
x y
&=
\inv{2} \lr{ (u+v)(u-v) } \\
&=
\inv{2} \lr{ u^2 – v^2 }.
\end{aligned}
\end{equation}
The perturbed Hamiltonian is
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:540} \begin{aligned} H_0 + \delta V &= \inv{2m} \lr{ p_u^2 + p_v^2 } + \inv{2} m \omega^2 \lr{ u^2 + v^2 + \delta u^2 – \delta v^2 } \\ &= \inv{2m} \lr{ p_u^2 + p_v^2 } + \inv{2} m \omega^2 \lr{ u^2(1 + \delta) + v^2 (1 – \delta) }. \end{aligned} \end{equation}
In this coordinate system, the corresponding eigensystem is
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:560} H \ket{n_1, n_2} = \Hbar \omega \lr{ 1 + n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } } \ket{n_1, n_2}. \end{equation}
For small \delta
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:580} n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } \approx n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta, \end{equation}
so
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:600}
H \ket{n_1, n_2}
\approx \Hbar \omega \lr{ 1 + n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta
} \ket{n_1, n_2}.
\end{equation}
The lowest order perturbed energy levels are
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:620}
\ket{0,0} \rightarrow \Hbar \omega
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:640}
\ket{1,0} \rightarrow \Hbar \omega \lr{ 2 + \inv{2} \delta }
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:660}
\ket{0,1} \rightarrow \Hbar \omega \lr{ 2 – \inv{2} \delta }
\end{equation}
The degeneracy of the \ket{0,1}, \ket{1,0} states has been split, and to first order match the zeroth order perturbation result.
References
[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.