Q: [1] pr 3.33

A spin $$3/2$$ nucleus subjected to an external electric field has an interaction Hamiltonian of the form

\label{eqn:spinThreeHalvesNucleus:20}
H = \frac{e Q}{2 s(s-1) \Hbar^2} \lr{
\lr{\PDSq{x}{\phi}}_0 S_x^2
+\lr{\PDSq{y}{\phi}}_0 S_y^2
+\lr{\PDSq{z}{\phi}}_0 S_z^2
}.

Show that the interaction energy can be written as

\label{eqn:spinThreeHalvesNucleus:40}
A(3 S_z^2 – \BS^2) + B(S_{+}^2 + S_{-}^2).

Find the energy eigenvalues for such a Hamiltonian.

A:

Reordering
\label{eqn:spinThreeHalvesNucleus:60}
\begin{aligned}
S_{+} &= S_x + i S_y \\
S_{-} &= S_x – i S_y,
\end{aligned}

gives
\label{eqn:spinThreeHalvesNucleus:80}
\begin{aligned}
S_x &= \inv{2} \lr{ S_{+} + S_{-} } \\
S_y &= \inv{2i} \lr{ S_{+} – S_{-} }.
\end{aligned}

The squared spin operators are
\label{eqn:spinThreeHalvesNucleus:100}
\begin{aligned}
S_x^2
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + S_{+} S_{-} + S_{-} S_{+} } \\
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + 2( S_x^2 + S_y^2 ) } \\
&=
\inv{4} \lr{ S_{+}^2 + S_{-}^2 + 2( \BS^2 – S_z^2 ) },
\end{aligned}

\label{eqn:spinThreeHalvesNucleus:120}
\begin{aligned}
S_y^2
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – S_{+} S_{-} – S_{-} S_{+} } \\
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – 2( S_x^2 + S_y^2 ) } \\
&=
-\inv{4} \lr{ S_{+}^2 + S_{-}^2 – 2( \BS^2 – S_z^2 ) }.
\end{aligned}

This gives
\label{eqn:spinThreeHalvesNucleus:140}
\begin{aligned}
H &= \frac{e Q}{2 s(s-1) \Hbar^2} \biglr{ \inv{4} \lr{\PDSq{x}{\phi}}_0 \lr{ S_{+}^2 + S_{-}^2 + 2( \BS^2 – S_z^2 ) }
-\lr{\PDSq{y}{\phi}}_0 \lr{ S_{+}^2 + S_{-}^2 – 2( \BS^2 – S_z^2 ) }
+\lr{\PDSq{z}{\phi}}_0 S_z^2 } \\
&= \frac{e Q}{2 s(s-1) \Hbar^2} \biglr{ \inv{4} \lr{ \lr{\PDSq{x}{\phi}}_0 -\lr{\PDSq{y}{\phi}}_0 } \lr{ S_{+}^2 + S_{-}^2 }
+ \inv{2} \lr{ \lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0 } \BS^2
+ \lr{ \lr{\PDSq{z}{\phi}}_0 – \inv{2} \lr{\PDSq{x}{\phi}}_0 – \inv{2} \lr{\PDSq{y}{\phi}}_0 } S_z^2
}.
\end{aligned}

For a static electric field we have

\label{eqn:spinThreeHalvesNucleus:160}

but are evaluating it at a point away from the generating charge distribution, so $$\spacegrad^2 \phi = 0$$ at that point. This gives

\label{eqn:spinThreeHalvesNucleus:180}
H
=
\frac{e Q}{4 s(s-1) \Hbar^2}
\biglr{
\inv{2} \lr{ \lr{\PDSq{x}{\phi}}_0 -\lr{\PDSq{y}{\phi}}_0
} \lr{ S_{+}^2 + S_{-}^2 }
+
\lr{
\lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0
} (\BS^2 – 3 S_z^2)
},

so
\label{eqn:spinThreeHalvesNucleus:200}
A =
-\frac{e Q}{4 s(s-1) \Hbar^2} \lr{
\lr{\PDSq{x}{\phi}}_0 + \lr{\PDSq{y}{\phi}}_0
}

\label{eqn:spinThreeHalvesNucleus:220}
B =
\frac{e Q}{8 s(s-1) \Hbar^2}
\lr{ \lr{\PDSq{x}{\phi}}_0 – \lr{\PDSq{y}{\phi}}_0 }.

A: energy eigenvalues

Using sakuraiProblem3.33.nb, matrix representations for the spin three halves operators and the Hamiltonian were constructed with respect to the basis $$\setlr{ \ket{3/2}, \ket{1/2}, \ket{-1/2}, \ket{-3/2} }$$

\label{eqn:spinThreeHalvesNucleus:240}
\begin{aligned}
S_{+} &=
\Hbar
\begin{bmatrix}
0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & \sqrt{3} \\
0 & 0 & 0 & 0 \\
\end{bmatrix} \\
S_{-} &=
\Hbar
\begin{bmatrix}
0 & 0 & 0 & 0 \\
\sqrt{3} & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 \\
\end{bmatrix} \\
S_x &=
\Hbar
\begin{bmatrix}
0 & \sqrt{3}/2 & 0 & 0 \\
\sqrt{3}/2 & 0 & 1 & 0 \\
0 & 1 & 0 & \sqrt{3}/2 \\
0 & 0 & \sqrt{3}/2 & 0 \\
\end{bmatrix} \\
S_y &=
i \Hbar
\begin{bmatrix}
0 & -\ifrac{\sqrt{3}}{2} & 0 & 0 \\
\ifrac{\sqrt{3}}{2} & 0 & -1 & 0 \\
0 & 1 & 0 & -\ifrac{\sqrt{3}}{2} \\
0 & 0 & \ifrac{\sqrt{3}}{2} & 0 \\
\end{bmatrix} \\
S_z &=
\frac{\Hbar}{2}
\begin{bmatrix}
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3 \\
\end{bmatrix} \\
H &=
\begin{bmatrix}
3 A & 0 & 2 \sqrt{3} B & 0 \\
0 & -3 A & 0 & 2 \sqrt{3} B \\
2 \sqrt{3} B & 0 & -3 A & 0 \\
0 & 2 \sqrt{3} B & 0 & 3 A \\
\end{bmatrix}.
\end{aligned}

The energy eigenvalues are found to be

\label{eqn:spinThreeHalvesNucleus:260}
E = \pm \Hbar^2 \sqrt{9 A^2 + 12 B^2 },

with two fold degeneracies for each eigenvalue.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.