[Click here for a PDF of this post with nicer formatting]

In [1] it is left as an exersize to expand the scalar field Hamiltonian in terms of the raising and lowering operators. Let’s do that.

The field operator expanded in terms of the raising and lowering operators is

\begin{equation}\label{eqn:scalarFieldHamiltonian:20} \phi(x) = \int \frac{ d^3 k}{ (2 \pi)^{3/2} \sqrt{ 2 \omega_k } } \lr{ a_k e^{-i k \cdot x} + a_k^\dagger e^{i k \cdot x} }. \end{equation}

Note that x and k here are both four-vectors, so this field is dependent on a spacetime point, but the integration is over a spatial volume.

The Hamiltonian in terms of the fields was
\begin{equation}\label{eqn:scalarFieldHamiltonian:40} H = \inv{2} \int d^3 x \lr{ \Pi^2 + \lr{ \spacegrad \phi }^2 + \mu^2 \phi^2 }. \end{equation}

The field derivatives are

\begin{equation}\label{eqn:scalarFieldHamiltonian:60} \Pi = \partial_0 \phi = \partial_0 \int \frac{ d^3 k}{ (2 \pi)^{3/2} \sqrt{ 2 \omega_k } } \lr{ a_k e^{-i \omega_k t + i \Bk \cdot \Bx} +a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} } = i \int \frac{ d^3 k}{ (2 \pi)^{3/2} \frac{\omega_k}{ 2 \omega_k } } \lr{ -a_k e^{-i \omega_k t + i \Bk \cdot \Bx} +a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} }, \end{equation}

and

\begin{equation}\label{eqn:scalarFieldHamiltonian:80} \partial_n \phi = \partial_n \int \frac{ d^3 k}{ (2 \pi)^{3/2} \sqrt{ 2 \omega_k } } \lr{ a_k e^{-i \omega_k t + i \Bk \cdot \Bx} +a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} } = i \int \frac{ d^3 k k^n}{ (2 \pi)^{3/2} \sqrt{ 2 \omega_k } } \lr{ a_k e^{-i \omega_k t + i \Bk \cdot \Bx} -a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} }. \end{equation}

Introducing a second set of momentum variables with j = \Abs{\Bj} , the momentum portion of the Hamiltonian is

\begin{equation}\label{eqn:scalarFieldHamiltonian:100} \begin{aligned} \inv{2} \int d^3 x \Pi^2 &= -\inv{2} \inv{(2 \pi)^{3}} \int d^3 x \int d^3 j d^3 k \inv{ \sqrt{ 4 \omega_j \omega_k } } \omega_j \omega_k \lr{ -a_j e^{-i \omega_j t + i \Bj \cdot \Bx} +a_j^\dagger e^{i \omega_j t – i \Bj \cdot \Bx} } \lr{ -a_k e^{-i \omega_k t + i \Bk \cdot \Bx} +a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} } \\ &= -\inv{4} \inv{(2 \pi)^{3}} \int d^3 x \int d^3 j d^3 k \sqrt{ \omega_j \omega_k} \lr{ a_j^\dagger a_k^\dagger e^{i (\omega_k + \omega_j) t – i (\Bk + \Bj) \cdot \Bx} + a_j a_k e^{-i (\omega_j + \omega_k) t + i (\Bj + \Bk) \cdot \Bx} – a_j^\dagger a_k e^{-i (\omega_k -\omega_j) t – i (\Bj – \Bk) \cdot \Bx} – a_j a_k^\dagger e^{-i (\omega_j – \omega_k) t – i (\Bk – \Bj) \cdot \Bx} } \\ &= -\inv{4} \int d^3 j d^3 k \sqrt{ \omega_j \omega_k} \lr{ a_j^\dagger a_k^\dagger e^{i (\omega_k + \omega_j) t } \delta^3(\Bk + \Bj) + a_j a_k e^{-i (\omega_j + \omega_k) t } \delta^3(-\Bj – \Bk) – a_j^\dagger a_k e^{-i (\omega_k -\omega_j) t } \delta^3(\Bj – \Bk) – a_j a_k^\dagger e^{-i (\omega_j – \omega_k) t } \delta^3(\Bk – \Bj) } \\ &= -\inv{4} \int d^3 k \omega_k \lr{ a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } + a_{-k} a_k e^{- 2 i \omega_k t } – a_k^\dagger a_k – a_k a_k^\dagger }. \end{aligned} \end{equation}

For the gradient portion of the Hamiltonian we have

\begin{equation}\label{eqn:scalarFieldHamiltonian:120} \begin{aligned} \inv{2} \int d^3 x \lr{ \spacegrad \phi }^2 &= -\inv{2} \inv{(2 \pi)^{3}} \int d^3 x \int d^3 j d^3 k \inv{ \sqrt{ 4 \omega_j \omega_k } } \lr{ \sum_{n=1}^3 j^n k^n } \lr{ a_j e^{-i \omega_j t + i \Bj \cdot \Bx} -a_j^\dagger e^{i \omega_j t – i \Bj \cdot \Bx} } \lr{ a_k e^{-i \omega_k t + i \Bk \cdot \Bx} -a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} } \\ &= -\inv{4} \int d^3 j d^3 k \frac{\Bj \cdot \Bk}{ \sqrt{ \omega_j \omega_k } } \lr{ a_j^\dagger a_k^\dagger e^{i (\omega_k + \omega_j) t } \delta^3(\Bk + \Bj) + a_j a_k e^{-i (\omega_j + \omega_k) t } \delta^3(-\Bj – \Bk) – a_j^\dagger a_k e^{-i (\omega_k -\omega_j) t } \delta^3(\Bj – \Bk) – a_j a_k^\dagger e^{-i (\omega_j – \omega_k) t } \delta^3(\Bk – \Bj) } \\ &= -\inv{4} \int d^3 k \frac{\Bk^2}{ \omega_k } \lr{ – a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } – a_{-k} a_k e^{- 2 i \omega_k t } – a_k^\dagger a_k – a_k a_k^\dagger }. \end{aligned} \end{equation}

Finally, for the mass term, we have

\begin{equation}\label{eqn:scalarFieldHamiltonian:140} \begin{aligned} \inv{2} \int d^3 x \mu^2 \phi^2 &= \frac{\mu^2}{2} \inv{(2 \pi)^{3}} \int d^3 x \int d^3 j d^3 k \inv{ \sqrt{ 4 \omega_j \omega_k } } \lr{ a_j e^{-i \omega_j t + i \Bj \cdot \Bx} +a_j^\dagger e^{i \omega_j t – i \Bj \cdot \Bx} } \lr{ a_k e^{-i \omega_k t + i \Bk \cdot \Bx} +a_k^\dagger e^{i \omega_k t – i \Bk \cdot \Bx} } \\ &= \frac{\mu^2}{2} \inv{(2 \pi)^{3}} \int d^3 x \int d^3 j d^3 k \inv{ \sqrt{ 4 \omega_j \omega_k } } \lr{ a_j a_k e^{-i (\omega_k + \omega_j) t + i (\Bk + \Bj) \cdot \Bx} +a_j^\dagger a_k^\dagger e^{i (\omega_j + \omega_k) t – i (\Bk + \Bj) \cdot \Bx} +a_j a_k^\dagger e^{i (\omega_k – \omega_j) t – i (\Bk – \Bj) \cdot \Bx} +a_j^\dagger a_k e^{-i (\omega_k + \omega_j) t – i (\Bj – \Bk) \cdot \Bx} } \\ &= \frac{\mu^2}{2} \int d^3 j d^3 k \inv{ \sqrt{ 4 \omega_j \omega_k } } \lr{ a_j a_k e^{-i (\omega_k + \omega_j) t } \delta^3(- \Bk – \Bj) +a_j^\dagger a_k^\dagger e^{i (\omega_j + \omega_k) t } \delta^3( \Bk + \Bj) +a_j a_k^\dagger e^{i (\omega_k – \omega_j) t } \delta^3 (\Bk – \Bj) +a_j^\dagger a_k e^{-i (\omega_k + \omega_j) t } \delta^3 (\Bj – \Bk) } \\ &= \frac{\mu^2}{4} \int d^3 k \inv{ \omega_k } \lr{ a_{-k} a_k e^{- 2 i \omega_k t } +a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } +a_k a_k^\dagger +a_k^\dagger a_k }. \end{aligned} \end{equation}

Now all the pieces can be put back together again

\begin{equation}\label{eqn:scalarFieldHamiltonian:160} \begin{aligned} H &= \inv{4} \int d^3 k \inv{\omega_k} \lr{ -\omega_k^2 \lr{ a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } + a_{-k} a_k e^{- 2 i \omega_k t } – a_k^\dagger a_k – a_k a_k^\dagger } + \Bk^2 \lr{ a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } + a_{-k} a_k e^{- 2 i \omega_k t } + a_k^\dagger a_k + a_k a_k^\dagger } + \mu^2 \lr{ a_{-k} a_k e^{- 2 i \omega_k t } +a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } +a_k a_k^\dagger +a_k^\dagger a_k } } \\ &= \inv{4} \int d^3 k \inv{\omega_k} \lr{ a_{-k}^\dagger a_k^\dagger e^{2 i \omega_k t } \lr{ -\omega_k^2 + \Bk^2 + \mu^2 } + a_{-k} a_k e^{- 2 i \omega_k t } \lr{ -\omega_k^2 + \Bk^2 + \mu^2 } + a_k a_k^\dagger \lr{ \omega_k^2 + \Bk^2 + \mu^2 } + a_k^\dagger a_k \lr{ \omega_k^2 + \Bk^2 + \mu^2 } }. \end{aligned} \end{equation}

With \omega_k^2 = \Bk^2 + \mu^2 , the time dependent terms are killed leaving
\begin{equation}\label{eqn:scalarFieldHamiltonian:180} H = \inv{2} \int d^3 k \omega_k \lr{ a_k a_k^\dagger + a_k^\dagger a_k }. \end{equation}

References

[1] Michael Luke. PHY2403F Lecture Notes: Quantum Field Theory, 2015. URL lecturenotes.pdf. [Online; accessed 02-Jan-2016].