[Click here for a PDF of this post with nicer formatting]

Q: L_y perturbation. [1] pr. 5.17

Find the first non-zero energy shift for the perturbed Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:20} H = A \BL^2 + B L_z + C L_y = H_0 + V. \end{equation}

A:

The energy eigenvalues for state \ket{l, m} prior to perturbation are

\begin{equation}\label{eqn:LyPerturbation:40} A \Hbar^2 l(l+1) + B \Hbar m. \end{equation}

The first order energy shift is zero

\begin{equation}\label{eqn:LyPerturbation:60} \begin{aligned} \Delta^1 &= \bra{l, m} C L_y \ket{l, m} \\ &= \frac{C}{2 i} \bra{l, m} \lr{ L_{+} – L_{-} } \ket{l, m} \\ &= 0, \end{aligned} \end{equation}

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

\begin{equation}\label{eqn:LyPerturbation:80} \ket{l, m}’ = \sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m}, \end{equation}

and the next order energy shift is
\begin{equation}\label{eqn:LyPerturbation:100} \begin{aligned} \Delta^2 &= \bra{l m} V \sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\ &= \sum’ \frac{\bra{l, m} V \ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\ &= \sum’ \frac{ \Abs{ \bra{l’, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l’, m’}} \\ &= \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l, m’}} \\ &= \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{ \lr{ A \Hbar^2 l(l+1) + B \Hbar m } -\lr{ A \Hbar^2 l(l+1) + B \Hbar m’ } } \\ &= \inv{B \Hbar} \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{ m – m’ }. \end{aligned} \end{equation}

The sum over l’ was eliminated because V only changes the m of any state \ket{l,m} , so the matrix element \bra{l’,m’} V \ket{l, m} must includes a \delta_{l’, l} factor.
Since we are now summing over m’ \ne m , some of the matrix elements in the numerator should now be non-zero, unlike the case when the zero first order energy shift was calculated above.

\begin{equation}\label{eqn:LyPerturbation:120} \begin{aligned} \bra{l, m’} C L_y \ket{l, m} &= \frac{C}{2 i} \bra{l, m’} \lr{ L_{+} – L_{-} } \ket{l, m} \\ &= \frac{C}{2 i} \bra{l, m’} \lr{ L_{+} \ket{l, m} – L_{-} \ket{l, m} } \\ &= \frac{C \Hbar}{2 i} \bra{l, m’} \lr{ \sqrt{(l – m)(l + m + 1)} \ket{l, m + 1} – \sqrt{(l + m)(l – m + 1)} \ket{l, m – 1} } \\ &= \frac{C \Hbar}{2 i} \lr{ \sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1} – \sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1} }. \end{aligned} \end{equation}

After squaring and summing, the cross terms will be zero since they involve products of delta functions with different indices. That leaves

\begin{equation}\label{eqn:LyPerturbation:140} \begin{aligned} \Delta^2 &= \frac{C^2 \Hbar}{4 B} \sum_{m’ \ne m} \frac{ (l – m)(l + m + 1) \delta_{m’, m + 1} – (l + m)(l – m + 1) \delta_{m’, m – 1} }{ m – m’ } \\ &= \frac{C^2 \Hbar}{4 B} \lr{ \frac{ (l – m)(l + m + 1) }{ m – (m+1) } – \frac{ (l + m)(l – m + 1) }{ m – (m-1)} } \\ &= \frac{C^2 \Hbar}{4 B} \lr{ – (l^2 – m^2 + l – m) – (l^2 – m^2 + l + m) } \\ &= -\frac{C^2 \Hbar}{2 B} (l^2 – m^2 + l ), \end{aligned} \end{equation}

so to first order the energy shift is

\begin{equation}\label{eqn:LyPerturbation:160} \boxed{ A \Hbar^2 l(l+1) + B \Hbar m \rightarrow \Hbar l(l+1) \lr{ A \Hbar -\frac{C^2}{2 B} } + B \Hbar m +\frac{C^2 m^2 \Hbar}{2 B} . } \end{equation}

Exact perturbation equation

If we wanted to solve the Hamiltonian exactly, we’ve have to diagonalize the 2 m + 1 dimensional Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:180} \bra{l, m’} H \ket{l, m} = \lr{ A \Hbar^2 l(l+1) + B \Hbar m } \delta_{m’, m} + \frac{C \Hbar}{2 i} \lr{ \sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1} – \sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1} }. \end{equation}

This Hamiltonian matrix has a very regular structure

\begin{equation}\label{eqn:LyPerturbation:200} \begin{aligned} H &= (A l(l+1) \Hbar^2 – B \Hbar (l+1)) I \\ &+ B \Hbar \begin{bmatrix} 1 & & & & \\ & 2 & & & \\ & & 3 & & \\ & & & \ddots & \\ & & & & 2 l + 1 \end{bmatrix} \\ &+ \frac{C \Hbar}{i} \begin{bmatrix} 0 & -\sqrt{(2l-1)(1)} & & & \\ \sqrt{(2l-1)(1)} & 0 & -\sqrt{(2l-2)(2)}& & \\ & \sqrt{(2l-2)(2)} & & & \\ & & \ddots & & \\ & & & 0 & – \sqrt{(1)(2l-1)} \\ & & & \sqrt{(1)(2l-1)} & 0 \end{bmatrix} \end{aligned} \end{equation}

Solving for the eigenvalues of this Hamiltonian for increasing l in Mathematica (sakuraiProblem5.17a.nb), it appears that the eigenvalues are

\begin{equation}\label{eqn:LyPerturbation:220} \lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \sqrt{ 1 + \frac{4 C^2}{B^2} }, \end{equation}

so to first order in C^2 , these are

\begin{equation}\label{eqn:LyPerturbation:221} \lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \lr{ 1 + \frac{2 C^2}{B^2} }. \end{equation}

We have a C^2 \Hbar/B term in both the perturbative energy shift, and the first order expansion of the exact solution. Comparing this for the l = 5 case, the coefficients of C^2 \Hbar/B in the perturbative solution are all negative -17.5, -17., -16.5, -16., -15.5, -15., -14.5, -14., -13.5, -13., -12.5 , whereas the coefficient of C^2 \Hbar/B in the first order expansion of the exact solution are 2 m , ranging from [-10, 10] .

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.