Day: August 13, 2015

Heisenberg picture spin precession

August 13, 2015 phy1520 No comments , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Heisenberg picture spin precession ([1] pr. 2.1)

For the spin Hamiltonian

\begin{equation}\label{eqn:heisenbergSpinPrecession:20}
H = -\frac{e B}{m c} S_z = \omega S_z,
\end{equation}

express and solve the Heisenberg equations of motion for \( S_x(t), S_y(t) \), and \( S_z(t) \).

Answer

The equations of motion are of the form

\begin{equation}\label{eqn:heisenbergSpinPrecession:40}
\begin{aligned}
\frac{dS_i^\textrm{H}}{dt}
&= \inv{i \Hbar} \antisymmetric{S_i^\textrm{H}}{H} \\
&= \inv{i \Hbar} \antisymmetric{U^\dagger S_i U}{H} \\
&= \inv{i \Hbar} \lr{U^\dagger S_i U H – H U^\dagger S_i U } \\
&= \inv{i \Hbar} U^\dagger \lr{ S_i H – H S_i } U \\
&= \frac{\omega}{i \Hbar} U^\dagger \antisymmetric{ S_i}{S_z } U.
\end{aligned}
\end{equation}

These are

\begin{equation}\label{eqn:heisenbergSpinPrecession:60}
\begin{aligned}
\frac{dS_x^\textrm{H}}{dt} &= -\omega U^\dagger S_y U \\
\frac{dS_y^\textrm{H}}{dt} &= \omega U^\dagger S_x U \\
\frac{dS_z^\textrm{H}}{dt} &= 0.
\end{aligned}
\end{equation}

To completely specify these equations, we need to expand \( U(t) \), which is

\begin{equation}\label{eqn:heisenbergSpinPrecession:80}
\begin{aligned}
U(t)
&= e^{-i H t /\Hbar} \\
&= e^{-i \omega S_z t /\Hbar} \\
&= e^{-i \omega \sigma_z t /2} \\
&= \cos\lr{ \omega t/2 } -i \sigma_z \sin\lr{ \omega t/2 } \\
&=
\begin{bmatrix}
\cos\lr{ \omega t/2 } -i \sin\lr{ \omega t/2 } & 0 \\
0 & \cos\lr{ \omega t/2 } + i \sin\lr{ \omega t/2 }
\end{bmatrix} \\
&=
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix}.
\end{aligned}
\end{equation}

The equations of motion can now be written out in full. To do so seems a bit silly since we also know that \( S_x^\textrm{H} = U^\dagger S_x U, S_y^\textrm{H} U^\dagger S_x U \). However, if that is temporarily forgotten, we can show that the Heisenberg equations of motion can be solved for these too.

\begin{equation}\label{eqn:heisenbergSpinPrecession:100}
\begin{aligned}
U^\dagger S_x U
&=
\frac{\Hbar}{2}
\begin{bmatrix}
e^{i\omega t/2} & 0 \\
0 & e^{-i\omega t/2}
\end{bmatrix}
\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t/2} \\
e^{-i\omega t/2} & 0
\end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix},
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:heisenbergSpinPrecession:120}
\begin{aligned}
U^\dagger S_y U
&=
\frac{\Hbar}{2}
\begin{bmatrix}
e^{i\omega t/2} & 0 \\
0 & e^{-i\omega t/2}
\end{bmatrix}
\begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{i\Hbar}{2}
\begin{bmatrix}
0 & -e^{i\omega t/2} \\
e^{-i\omega t/2} & 0
\end{bmatrix}
\begin{bmatrix}
e^{-i\omega t/2} & 0 \\
0 & e^{i\omega t/2}
\end{bmatrix} \\
&=
\frac{i \Hbar}{2}
\begin{bmatrix}
0 & -e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix}.
\end{aligned}
\end{equation}

The equations of motion are now fully specified

\begin{equation}\label{eqn:heisenbergSpinPrecession:140}
\begin{aligned}
\frac{dS_x^\textrm{H}}{dt} &=
-\frac{i \Hbar \omega}{2}
\begin{bmatrix}
0 & -e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
\frac{dS_y^\textrm{H}}{dt} &=
\frac{\Hbar \omega}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
\frac{dS_z^\textrm{H}}{dt} &= 0.
\end{aligned}
\end{equation}

Integration gives

\begin{equation}\label{eqn:heisenbergSpinPrecession:160}
\begin{aligned}
S_x^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} + C \\
S_y^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & -i e^{i\omega t} \\
i e^{-i\omega t} & 0
\end{bmatrix} + C \\
S_z^\textrm{H} &= C.
\end{aligned}
\end{equation}

The integration constants are fixed by the boundary condition \( S_i^\textrm{H}(0) = S_i \), so

\begin{equation}\label{eqn:heisenbergSpinPrecession:180}
\begin{aligned}
S_x^\textrm{H} &=
\frac{\Hbar}{2}
\begin{bmatrix}
0 & e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
S_y^\textrm{H} &=
\frac{i \Hbar}{2}
\begin{bmatrix}
0 & – e^{i\omega t} \\
e^{-i\omega t} & 0
\end{bmatrix} \\
S_z^\textrm{H} &= S_z.
\end{aligned}
\end{equation}

Observe that these integrated values \( S_x^\textrm{H}, S_y^\textrm{H} \) match \ref{eqn:heisenbergSpinPrecession:100}, and \ref{eqn:heisenbergSpinPrecession:120} as expected.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Dynamics of non-Hermitian Hamiltonian

August 13, 2015 phy1520 No comments , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Dynamics of non-Hermitian Hamiltonian ([1] pr. 2.2)

Revisiting an earlier Hamiltonian, but assuming it was entered incorrectly as

\begin{equation}\label{eqn:dynamicsNonHermitian:20}
H = H_{11} \ket{1}\bra{1}
+ H_{22} \ket{2}\bra{2}
+ H_{12} \ket{1}\bra{2}.
\end{equation}

What principle is now violated? Illustrate your point explicitly by attempting to solve the most generaqtl time-dependent problem using an illegal Hamiltonian of this kind. You may assume that \( H_{11} = H_{22} \) for simplicity.

Answer

In matrix form this Hamiltonian is

\begin{equation}\label{eqn:dynamicsNonHermitian:40}
\begin{aligned}
H
&=
\begin{bmatrix}
\bra{1} H \ket{1} & \bra{1} H \ket{2} \\
\bra{2} H \ket{1} & \bra{2} H \ket{2} \\
\end{bmatrix} \\
&=
\begin{bmatrix}
H_{11} & H_{12} \\
0 & H_{22} \\
\end{bmatrix}.
\end{aligned}
\end{equation}

This is not a Hermitian operator. What is the physical implication of this non-Hermicity? Consider the simpler case where \( H_{11} = H_{22} \). Such a Hamiltonian has the form

\begin{equation}\label{eqn:dynamicsNonHermitian:60}
H =
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}.
\end{equation}

This has only one unique eigenvector ( \( (1,0) \), but we can still solve the time evolution equation

\begin{equation}\label{eqn:dynamicsNonHermitian:80}
i \Hbar \PD{t}{U} = H U,
\end{equation}

since for constant \( H \), we have

\begin{equation}\label{eqn:dynamicsNonHermitian:100}
U = e^{-i H t/\Hbar}.
\end{equation}

To exponentiate, note that we have

\begin{equation}\label{eqn:dynamicsNonHermitian:120}
{\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}}^n
=
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}.
\end{equation}

To prove the induction, the \( n = 2 \) case follows easily

\begin{equation}\label{eqn:dynamicsNonHermitian:140}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^2 & 2 a b \\
0 & a^2
\end{bmatrix},
\end{equation}

as does the general case

\begin{equation}\label{eqn:dynamicsNonHermitian:160}
\begin{bmatrix}
a^n & n a^{n-1} b \\
0 & a^n
\end{bmatrix}
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
=
\begin{bmatrix}
a^{n+1} & (n +1 ) a^{n} b \\
0 & a^{n+1}
\end{bmatrix}.
\end{equation}

The exponential sum is thus
\begin{equation}\label{eqn:dynamicsNonHermitian:180}
e^{H \tau}
=
\begin{bmatrix}
e^{a \tau} & 0 + \frac{b \tau}{1!} + \frac{2 a b \tau^2}{2!} + \frac{3 a^2 b \tau^3}{3!} + \cdots \\
0 & e^{a \tau}
\end{bmatrix}.
\end{equation}

That sum simplifies to

\begin{equation}\label{eqn:dynamicsNonHermitian:200}
\frac{b \tau}{0!} + \frac{a b \tau^2}{1!} + \frac{a^2 b \tau^3}{2!} + \cdots \\
=
b \tau \lr{ 1 + \frac{a \tau}{1!} + \frac{(a \tau)^2}{2!} + \cdots }
=
b \tau e^{a \tau}.
\end{equation}

The exponential is thus
\begin{equation}\label{eqn:dynamicsNonHermitian:220}
e^{H \tau}
=
\begin{bmatrix}
e^{a\tau} & b \tau e^{a\tau} \\
0 & e^{a\tau}
\end{bmatrix}
=
\begin{bmatrix}
1 & b \tau \\
0 & 1
\end{bmatrix}
e^{a\tau}.
\end{equation}

In particular

\begin{equation}\label{eqn:dynamicsNonHermitian:240}
U = e^{-i H t/\Hbar} =
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar }.
\end{equation}

We can verify that this is a solution to \ref{eqn:dynamicsNonHermitian:80}. The left hand side is

\begin{equation}\label{eqn:dynamicsNonHermitian:260}
\begin{aligned}
i \Hbar \PD{t}{U}
&=
i \Hbar
\begin{bmatrix}
-i a/\Hbar & -i b /\Hbar + (-i b t/\Hbar)(-i a/\Hbar) \\
0 & -i a /\Hbar
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar },
\end{aligned}
\end{equation}

and for the right hand side
\begin{equation}\label{eqn:dynamicsNonHermitian:280}
\begin{aligned}
H U
&=
\begin{bmatrix}
a & b \\
0 & a
\end{bmatrix}
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
a & b – i a b t/\Hbar \\
0 & a
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
i \Hbar \PD{t}{U}.
\end{aligned}
\end{equation}

While the Schr\”{o}dinger is satisfied, we don’t have the unitary invertion physical property that is desired for the time evolution operator \( U \). Namely

\begin{equation}\label{eqn:dynamicsNonHermitian:300}
\begin{aligned}
U^\dagger U
&=
\begin{bmatrix}
1 & 0 \\
i b t/\Hbar & 1
\end{bmatrix}
e^{i a t /\Hbar }
\begin{bmatrix}
1 & -i b t/\Hbar \\
0 & 1
\end{bmatrix}
e^{-i a t /\Hbar } \\
&=
\begin{bmatrix}
1 & -i b t/\Hbar \\
i b t/\Hbar & (b t)^2/\Hbar^2
\end{bmatrix} \\
&\ne I.
\end{aligned}
\end{equation}

We required \( U^\dagger U = I \) for the time evolution operator, but don’t have that property for this non-Hermitian Hamiltonian.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.