[Click here for a PDF of this post with nicer formatting]

Motivation

Our midterm posed a (low mark “quick question”) that I didn’t complete (or at least not properly). This shouldn’t have been a difficult question, but I spend way too much time on it, costing me time that I needed for other questions.

It turns out that there isn’t anything fancy required for this question, just perseverance and careful work.

Guts

The question asked for the time evolution of a two particle state

\begin{equation}\label{eqn:twoSpinHamiltonian:20}
\psi = \inv{\sqrt{2}} \lr{ \ket{\uparrow \downarrow} – \ket{\downarrow \uparrow} }
\end{equation}

under the action of the Hamiltonian

\begin{equation}\label{eqn:twoSpinHamiltonian:40}
H = – B S_{z,1} + 2 B S_{x,2} = \frac{\Hbar B}{2}\lr{ -\sigma_{z,1} + 2 \sigma_{x,2} } .
\end{equation}

We have to know the action of the Hamiltonian on all the states

\begin{equation}\label{eqn:twoSpinHamiltonian:60}
\begin{aligned}
H \ket{\uparrow \uparrow} &= \frac{B \Hbar}{2} \lr{ -\ket{\uparrow \uparrow} + 2 \ket{\uparrow \downarrow} } \\
H \ket{\uparrow \downarrow} &= \frac{B \Hbar}{2} \lr{ -\ket{\uparrow \downarrow} + 2 \ket{\uparrow \uparrow} } \\
H \ket{\downarrow \uparrow} &= \frac{B \Hbar}{2} \lr{ \ket{\downarrow \uparrow} + 2 \ket{\downarrow \downarrow} } \\
H \ket{\downarrow \downarrow} &= \frac{B \Hbar}{2} \lr{ \ket{\downarrow \downarrow} + 2 \ket{\downarrow \uparrow} } \\
\end{aligned}
\end{equation}

With respect to the basis \( \setlr{ \ket{\uparrow \uparrow}, \ket{\uparrow \downarrow}, \ket{\downarrow \uparrow}, \ket{\downarrow \downarrow} } \), the matrix of the Hamiltonian is

\begin{equation}\label{eqn:twoSpinHamiltonian:80}
H =
\frac{ \Hbar B }{2}
\begin{bmatrix}
-1 & 2 & 0 & 0 \\
2 & -1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 2 & 1 \\
\end{bmatrix}
\end{equation}

Utilizing the block diagonal form (and ignoring the \( \Hbar B/2 \) factor for now), the characteristic equation is

\begin{equation}\label{eqn:twoSpinHamiltonian:100}
0
=
\begin{vmatrix}
-1 -\lambda & 2 \\
2 & -1 – \lambda
\end{vmatrix}
\begin{vmatrix}
1 -\lambda & 2 \\
2 & 1 – \lambda
\end{vmatrix}
=
\lr{(1 + \lambda)^2 – 4}
\lr{(1 – \lambda)^2 – 4}.
\end{equation}

This has solutions

\begin{equation}\label{eqn:twoSpinHamiltonian:120}
1 \pm \lambda = \pm 2,
\end{equation}

or, with the \( \Hbar B/2 \) factors put back in

\begin{equation}\label{eqn:twoSpinHamiltonian:140}
\lambda = \pm \Hbar B/2 , \pm 3 \Hbar B/2.
\end{equation}

I was thinking that we needed to compute the time evolution operator

\begin{equation}\label{eqn:twoSpinHamiltonian:160}
U = e^{-i H t/\Hbar},
\end{equation}

but we actually only need the eigenvectors, and the inverse relations. We can find the eigenvectors by inspection in each case from

\begin{equation}\label{eqn:twoSpinHamiltonian:180}
\begin{aligned}
H – (1) \frac{ \Hbar B }{2}
&=
\frac{ \Hbar B }{2}
\begin{bmatrix}
-2 & 2 & 0 & 0 \\
2 & -2 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 \\
\end{bmatrix} \\
H – (-1) \frac{ \Hbar B }{2}
&=
\frac{ \Hbar B }{2}
\begin{bmatrix}
0 & 2 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 0 & 2 & 2 \\
0 & 0 & 2 & 2 \\
\end{bmatrix} \\
H – (3) \frac{ \Hbar B }{2}
&=
\frac{ \Hbar B }{2}
\begin{bmatrix}
-4 & 2 & 0 & 0 \\
2 & -4 & 0 & 0 \\
0 & 0 &-2 & 2 \\
0 & 0 & 2 &-2 \\
\end{bmatrix} \\
H – (-3) \frac{ \Hbar B }{2}
&=
\frac{ \Hbar B }{2}
\begin{bmatrix}
2 & 2 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 2 & 1 \\
\end{bmatrix}.
\end{aligned}
\end{equation}

The eigenkets are

\begin{equation}\label{eqn:twoSpinHamiltonian:280}
\begin{aligned}
\ket{1} &=
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
1 \\
0 \\
0 \\
\end{bmatrix} \\
\ket{-1} &=
\inv{\sqrt{2}}
\begin{bmatrix}
0 \\
0 \\
1 \\
-1 \\
\end{bmatrix} \\
\ket{3} &=
\inv{\sqrt{2}}
\begin{bmatrix}
0 \\
0 \\
1 \\
1 \\
\end{bmatrix} \\
\ket{-3} &=
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
-1 \\
0 \\
0 \\
\end{bmatrix},
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:twoSpinHamiltonian:300}
\begin{aligned}
\sqrt{2} \ket{1} &= \ket{\uparrow \uparrow} + \ket{\uparrow \downarrow} \\
\sqrt{2} \ket{-1} &= \ket{\downarrow \uparrow} – \ket{\downarrow \downarrow} \\
\sqrt{2} \ket{3} &= \ket{\downarrow \uparrow} + \ket{\downarrow \downarrow} \\
\sqrt{2} \ket{-3} &= \ket{\uparrow \uparrow} – \ket{\uparrow \downarrow}.
\end{aligned}
\end{equation}

We can invert these

\begin{equation}\label{eqn:twoSpinHamiltonian:220}
\begin{aligned}
\ket{\uparrow \uparrow} &= \inv{\sqrt{2}} \lr{ \ket{1} + \ket{-3} } \\
\ket{\uparrow \downarrow} &= \inv{\sqrt{2}} \lr{ \ket{1} – \ket{-3} } \\
\ket{\downarrow \uparrow} &= \inv{\sqrt{2}} \lr{ \ket{3} + \ket{-1} } \\
\ket{\downarrow \downarrow} &= \inv{\sqrt{2}} \lr{ \ket{3} – \ket{-1} } \\
\end{aligned}
\end{equation}

The original state of interest can now be expressed in terms of the eigenkets

\begin{equation}\label{eqn:twoSpinHamiltonian:240}
\psi
=
\inv{2} \lr{
\ket{1} – \ket{-3} –
\ket{3} – \ket{-1}
}
\end{equation}

The time evolution of this ket is

\begin{equation}\label{eqn:twoSpinHamiltonian:260}
\begin{aligned}
\psi(t)
&=
\inv{2}
\lr{
e^{-i B t/2} \ket{1}
– e^{3 i B t/2} \ket{-3}
– e^{-3 i B t/2} \ket{3}
– e^{i B t/2} \ket{-1}
} \\
&=
\inv{2 \sqrt{2}}
\Biglr{
e^{-i B t/2} \lr{ \ket{\uparrow \uparrow} + \ket{\uparrow \downarrow} }
– e^{3 i B t/2} \lr{ \ket{\uparrow \uparrow} – \ket{\uparrow \downarrow} }
– e^{-3 i B t/2} \lr{ \ket{\downarrow \uparrow} + \ket{\downarrow \downarrow} }
– e^{i B t/2} \lr{ \ket{\downarrow \uparrow} – \ket{\downarrow \downarrow} }
} \\
&=
\inv{2 \sqrt{2}}
\Biglr{
\lr{ e^{-i B t/2} – e^{3 i B t/2} } \ket{\uparrow \uparrow}
+ \lr{ e^{-i B t/2} + e^{3 i B t/2} } \ket{\uparrow \downarrow}
– \lr{ e^{-3 i B t/2} + e^{i B t/2} } \ket{\downarrow \uparrow}
+ \lr{ e^{i B t/2} – e^{-3 i B t/2} } \ket{\downarrow \downarrow}
} \\
&=
\inv{2 \sqrt{2}}
\Biglr{
e^{i B t/2} \lr{ e^{-2 i B t/2} – e^{2 i B t/2} } \ket{\uparrow \uparrow}
+ e^{i B t/2} \lr{ e^{-2 i B t/2} + e^{2 i B t/2} } \ket{\uparrow \downarrow}
– e^{- i B t/2} \lr{ e^{-2 i B t/2} + e^{2 i B t/2} } \ket{\downarrow \uparrow}
+ e^{- i B t/2} \lr{ e^{2 i B t/2} – e^{-2 i B t/2} } \ket{\downarrow \downarrow}
} \\
&=
\inv{\sqrt{2}}
\lr{
i \sin( B t )
\lr{
e^{- i B t/2} \ket{\downarrow \downarrow} – e^{i B t/2} \ket{\uparrow \uparrow}
}
+ \cos( B t ) \lr{
e^{i B t/2} \ket{\uparrow \downarrow}
– e^{- i B t/2} \ket{\downarrow \uparrow}
}
}
\end{aligned}
\end{equation}

Note that this returns to the original state when \( t = \frac{2 \pi n}{B}, n \in \mathbb{Z} \). I think I’ve got it right this time (although I got a slightly different answer on paper before typing it up.)

This doesn’t exactly seem like a quick answer question, at least to me. Is there some easier way to do it?