I’ve uploaded a new aggregate notes collection of my UofT phy2403 Quantum Field Theory I class notes (taught by Prof. Erich Poppitz), which now includes up to Wed Oct 17th’s lecture 11 (but doesn’t have my problem set I solution)
- 1 Introduction
- 1.1 What is a field?
- 1.2 Scales.
- 1.2.1 Bohr radius
- 1.2.2 Compton wavelength.
- 1.2.3 Relations.
- 2 Units, scales, and Lorentz transformations.
- 2.1 Natural units.
- 2.2 Gravity.
- 2.3 Cross section.
- 2.4 Lorentz transformations.
- 3 Lorentz transformations and a scalar action.
- 3.1 Determinant of Lorentz transformations.
- 3.2 Field theory.
- 3.3 Actions.
- 3.4 Problems.
- 4 Scalar action, least action principle, Euler-Lagrange equations for a field, canonical quantization.
- 4.1 Principles cont.
- 4.2 d = 2 .
- 4.3 d = 3 .
- 4.4 d = 4 .
- 4.5 d = 5 .
- 4.6 Least action principle (classical field theory)
- 4.7 Canonical quantization.
- 5 Klein-Gordon equation, SHOs, momentum space representation, raising and lowering operators.
- 5.1 Canonical quantization.
- 5.2 Momentum space representation.
- 6 Canonical quantization, Simple Harmonic Oscillators, Symmetries
- 6.1 Quantization of Field Theory.
- 6.2 Free Hamiltonian.
- 6.3 QM SHO review.
- 6.4 Discussion.
- 6.5 Switching gears: Symmetries.
- 7 Symmetries, translation currents, energy momentum tensor.
- 7.1 Symmetries.
- 7.2 Spacetime translation.
- 8 1st Noether theorem, spacetime translation current, energy momentum tensor, dilatation current.
- 8.1 1st Noether theorem.
- 8.2 Unitary operators.
- 8.3 Continuous symmetries.
- 8.4 Classical scalar theory.
- 9 Unbroken and spontaneously broken symmetries, Higgs Lagrangian, scale invariance, Lorentz invariance, angular momentum quantization
- 9.1 Last time.
- 9.2 Examples of symmetries.
- 9.3 Scale invariance.
- 9.4 Lorentz invariance.
- 10 Lorentz boosts, generator of spacetime translation, Lorentz invariant field representation.
- 10.1 Lorentz transform symmetries.
- 10.2 Transformation of momentum states.
- 11 Microcausality, Lorentz invariant measure, retarded time SHO Green’s function.
- 11.1 Relativistic normalization.
- 11.2 Spacelike surfaces.
- 11.3 Condition on microcausality.
- 11.4 Harmonic oscillator.
- 11.5 Field theory (where we are going).
- 12 Independent study problems
- Appendices
- A Useful formulas and review
- Index
- Bibliography