[Click here for a PDF of this post with nicer formatting]

In class we derived the field for the non-homogeneous Klein-Gordon equation
\begin{equation}\label{eqn:nonhomoKGhamiltonian:20} \begin{aligned} \phi(x) &= \int \frac{d^3 p}{(2\pi)^3} \inv{\sqrt{2 \omega_\Bp}} \evalbar{ \lr{ e^{-i p \cdot x} \lr{ a_\Bp + \frac{ i \tilde{j}(p) }{\sqrt{2 \omega_\Bp}} } + e^{i p \cdot x} \lr{ a_\Bp^\dagger – \frac{ i \tilde{j}^\conj(p) }{\sqrt{2 \omega_\Bp}} } } } { p^0 = \omega_\Bp } \\ &= \int \frac{d^3 p}{(2\pi)^3} \inv{\sqrt{2 \omega_\Bp}} \lr{ e^{-i \omega_\Bp t + i \Bp \cdot \Bx} \lr{ a_\Bp + \frac{ i \tilde{j}(p) }{\sqrt{2 \omega_\Bp}} } + e^{i \omega_\Bp t – i \Bp \cdot \Bx} \lr{ a_\Bp^\dagger – \frac{ i \tilde{j}^\conj(p) }{\sqrt{2 \omega_\Bp}} } }. \end{aligned} \end{equation}
This means that we have
\begin{equation}\label{eqn:nonhomoKGhamiltonian:40} \begin{aligned} \pi = \dot{\phi} &= \int \frac{d^3 p}{(2\pi)^3} \frac{i \omega_\Bp}{\sqrt{2 \omega_\Bp}} \lr{ – e^{-i \omega_\Bp t + i \Bp \cdot \Bx} \lr{ a_\Bp + \frac{ i \tilde{j}(p) }{\sqrt{2 \omega_\Bp}} } + e^{i \omega_\Bp t – i \Bp \cdot \Bx} \lr{ a_\Bp^\dagger – \frac{ i \tilde{j}^\conj(p) }{\sqrt{2 \omega_\Bp}} } } \\ (\spacegrad \phi)_k = &= \int \frac{d^3 p}{(2\pi)^3} \frac{i p_k}{\sqrt{2 \omega_\Bp}} \lr{ e^{-i \omega_\Bp t + i \Bp \cdot \Bx} \lr{ a_\Bp + \frac{ i \tilde{j}(p) }{\sqrt{2 \omega_\Bp}} } – e^{i \omega_\Bp t – i \Bp \cdot \Bx} \lr{ a_\Bp^\dagger – \frac{ i \tilde{j}^\conj(p) }{\sqrt{2 \omega_\Bp}} } }, \end{aligned} \end{equation}
and could plug these into the Hamiltonian
\begin{equation}\label{eqn:nonhomoKGhamiltonian:60} H = \int d^3 p \lr{ \inv{2} \pi^2 + \inv{2} \lr{ \spacegrad \phi}^2 + \frac{m^2}{2} \phi^2 }, \end{equation}
to find H in terms of \tilde{j} and a_\Bp^\dagger, a_\Bp . The result was mentioned in class, and it was left as an exercise to verify.

There’s an easy way and a dumb way to do this exercise. I did it the dumb way, and then after suffering through two long pages, where the equations were so long that I had to write on the paper sideways, I realized the way I should have done it.

The easy way is to observe that we’ve already done exactly this for the case \tilde{j} = 0 , which had the answer
\begin{equation}\label{eqn:nonhomoKGhamiltonian:80} H = \inv{2} \int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp \lr{ a_\Bp^\dagger a_\Bp + a_\Bp a_\Bp^\dagger }. \end{equation}
To handle this more general case, all we have to do is apply a transformation
\begin{equation}\label{eqn:nonhomoKGhamiltonian:100} a_\Bp \rightarrow a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}}, \end{equation}
to \ref{eqn:nonhomoKGhamiltonian:80}, which gives
\begin{equation}\label{eqn:nonhomoKGhamiltonian:120} \begin{aligned} H &= \inv{2} \int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp \lr{\lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }^\dagger\lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} } +\lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }\lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }^\dagger } \\ &= \inv{2} \int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp \lr{\lr{ a_\Bp^\dagger – \frac{i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} } \lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} } +\lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }\lr{ a_\Bp^\dagger – \frac{i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} } }. \end{aligned} \end{equation}

Like the \tilde{j} = 0 case, we can use normal ordering. This is easily seen by direct expansion:
\begin{equation}\label{eqn:nonhomoKGhamiltonian:140} \begin{aligned} \lr{ a_\Bp^\dagger – \frac{i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} } \lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} } &= a_\Bp^\dagger a_\Bp – \frac{i \tilde{j}^\conj(p) a_\Bp}{\sqrt{2 \omega_\Bp}} + \frac{ a_\Bp^\dagger i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} + \frac{\Abs{j}^2}{2 \omega_\Bp} \\ \lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }\lr{ a_\Bp^\dagger – \frac{i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} } &= a_\Bp^\dagger a_\Bp + \frac{i \tilde{j}^\conj(p) a_\Bp^\dagger}{\sqrt{2 \omega_\Bp}} – \frac{ a_\Bp i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}} + \frac{\Abs{j}^2}{2 \omega_\Bp}. \end{aligned} \end{equation}
Because \tilde{j} is just a complex valued function, it commutes with a_\Bp, a_\Bp^\dagger , and these are equal up to the normal ordering, allowing us to write
\begin{equation}\label{eqn:nonhomoKGhamiltonian:160} :H: = \int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp \lr{ a_\Bp^\dagger – \frac{i \tilde{j}^\conj(p)}{\sqrt{2 \omega_\Bp}}} \lr{ a_\Bp + \frac{i \tilde{j}(p)}{\sqrt{2 \omega_\Bp}} }, \end{equation}
which is the result mentioned in class.