Processing math: 100%

Day: January 21, 2025

A contour integral with a third order pole.

January 21, 2025 math and physics play , , ,

[Click here for a PDF version of this post]

Here’s problem 31(e) from [1]. Find
\begin{equation}\label{eqn:thirdOrderPole:20} I = \int_0^\infty \frac{x^2 dx}{\lr{ a^2 + x^2 }^3 }. \end{equation}
Again, we use the contour C illustrated in fig. 1

fig. 1. Standard above the x-axis, semicircular contour.

Along the infinite semicircle, with z = R e^{i\theta} ,
\begin{equation}\label{eqn:thirdOrderPole:40} \Abs{ \int \frac{z^2 dz}{\lr{ a^2 + z^2 }^3 } } = O(R^3/R^6), \end{equation}
which tends to zero. We are left to just evaluate some residues
\begin{equation}\label{eqn:thirdOrderPole:60} \begin{aligned} I &= \inv{2} \oint \frac{z^2 dz}{ \lr{ a^2 + z^2 }^3 } \\ &= \inv{2} \oint \frac{z^2 dz}{ \lr{ z – i a }^3 \lr{ z + i a }^3 } \\ &= \inv{2} \lr{ 2 \pi i } \inv{2!} \evalbar{ \frac{d^2}{dz^2} \lr{ \frac{z^2}{ \lr{ z + i a }^3 } } }{z = i a} \end{aligned} \end{equation}
Evaluating the derivatives, we have
\begin{equation}\label{eqn:thirdOrderPole:80} \begin{aligned} \lr{ \frac{z^2}{ \lr{ z + i a }^3 } }’ &= \frac{ 2 z \lr{ z + i a } – 3 z^2 }{ \lr{ z + i a }^4 } \\ &= \frac{ – z^2 + 2 i a z } { \lr{ z + i a }^4 }, \end{aligned} \end{equation}
and
\begin{equation}\label{eqn:thirdOrderPole:100} \begin{aligned} \frac{d^2}{dz^2} \lr{ \frac{z^2}{ \lr{ z + i a }^3 } } &= \lr{ \frac{ – z^2 + 2 i a z } { \lr{ z + i a }^4 } }’ \\ &= \frac{ \lr{ – 2 z + 2 i a }\lr{ z + i a} – 4 \lr{ – z^2 + 2 i a z }}{ \lr{ z + i a }^5 }, \end{aligned} \end{equation}
so
\begin{equation}\label{eqn:thirdOrderPole:120} \begin{aligned} \evalbar{ \frac{d^2}{dz^2} \lr{ \frac{z^2}{ \lr{ z + i a }^3 } } }{z = i a} &= \frac{ \lr{ – 2 i a + 2 i a }\lr{ 2 i a} – 4 \lr{ a^2 – 2 a^2 }}{ \lr{ 2 i a }^5 } \\ &= \frac{ 4 a^2 }{ \lr{ 2 i a }^5 } \\ &= \inv{8 a^3 i}. \end{aligned} \end{equation}
Putting all the pieces together, we have
\begin{equation}\label{eqn:thirdOrderPole:140} \boxed{ I = \frac{\pi}{16 a^3}. } \end{equation}

References

[1] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics. Dover Publications, 1992.

Another real integral using contour integration.

January 21, 2025 math and physics play , , ,

[Click here for a PDF version of this post]

Here’s (31(d)) from [1]. Find
\begin{equation}\label{eqn:fourPoles:20} I = \int_0^\infty \frac{dx}{1 + x^4} = \inv{2}\int_{-\infty}^\infty \frac{dx}{1 + x^4}. \end{equation}
This one is easy conceptually, but a bit messy algebraically. We integrate over the contour C illustrated in fig. 1.

fig. 1. Standard above the x-axis, semicircular contour.

We want to evaluate
\begin{equation}\label{eqn:fourPoles:40} 2 I = \oint_C \frac{dz}{1 + z^4}, \end{equation}
because the semicircular part of the integral is O(R^{-3}) , which tends to zero in the R \rightarrow \infty limit.

The poles are at the points
\begin{equation}\label{eqn:fourPoles:60} \begin{aligned} z^4 &= -1 \\ &= e^{i \pi + 2 \pi i k}, \end{aligned} \end{equation}
or
\begin{equation}\label{eqn:fourPoles:80} \begin{aligned} z &= e^{i \pi/4 + \pi i k/2}, \end{aligned} \end{equation}
These are the points z = (\pm 1 \pm i)/\sqrt{2} , two of which are enclosed by our contour. Specifically
\begin{equation}\label{eqn:fourPoles:100} \begin{aligned} 2 I &= \oint_C \frac{dz}{ \lr{ z – \frac{1 + i}{\sqrt{2}} } \lr{ z – \frac{-1 + i}{\sqrt{2}} } \lr{ z – \frac{1 – i}{\sqrt{2}} } \lr{ z – \frac{-1 – i}{\sqrt{2}} } } \\ &= \oint_C \frac{dz}{ \lr{ z – \frac{1 + i}{\sqrt{2}} } \lr{ z – \frac{-1 + i}{\sqrt{2}} } \lr{ \lr{z + \frac{i}{\sqrt{2}}}^2 – \inv{2} } } \\ &= \evalbar{ \frac{ 2 \pi i } { \lr{ z – \frac{-1 + i}{\sqrt{2}} } \lr{ \lr{z + \frac{i}{\sqrt{2}}}^2 – \inv{2} } } }{z = \frac{1 + i}{\sqrt{2}}} + \evalbar{ \frac{ 2 \pi i } { \lr{ z – \frac{1 + i}{\sqrt{2}} } \lr{ \lr{z + \frac{i}{\sqrt{2}}}^2 – \inv{2} } } } {z = \frac{-1 + i}{\sqrt{2}} } \\ &= \evalbar{ \frac{(2 \pi i )(2 \sqrt{2})} { \lr{ z’ + 1 – i } \lr{ \lr{z’ + i}^2 – 1 } } }{z’ = 1 + i} + \evalbar{ \frac{(2 \pi i )(2 \sqrt{2})} { \lr{ z’ – 1 – i } \lr{ \lr{z’ + i}^2 – 1 } } } {z’ = -1 + i} \\ &= \frac{2 \pi i \sqrt{2}} { \lr{2 i + 1}^2 – 1 } – \frac{2 \pi i \sqrt{2}} { \lr{2 i – 1}^2 – 1 } \\ &= \frac{\pi i \sqrt{2}} { 2 (-1 + i) } + \frac{\pi i \sqrt{2}} { 2(1 + i) } \\ &= \lr{ -1 – i } \frac{\pi i} { 2 \sqrt{2} } + \lr{ 1 – i } \frac{\pi i} { 2 \sqrt{2} } \\ &= \frac{\pi} { \sqrt{2} } \end{aligned} \end{equation}
or
\begin{equation}\label{eqn:fourPoles:120} \boxed{ I = \frac{\pi}{2 \sqrt{2}}. } \end{equation}

References

[1] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics. Dover Publications, 1992.