Spoiling Karl: a productive day of fishing for cat6 flavoured wall trout.

November 13, 2022 Uncategorized

When we moved into the new house, we said to Karl that we could probably run ethernet wiring up to his room from my office where the router lives.  He’s been anxious for us to try that project, to say the least.

Today was the day to try that.  I started by cutting a very large hole in his wall to see into the big triangular roof space.  I wanted a hole that was big enough that we could potentially reach into the back, since I was pretty sure that I could get a line up in that location.  Here’s that hole with the fishing wire poking out:

The house is old, and the walls have been finished with drywall over plaster and lathe.

In my office I had to cut two holes, one near the ceiling

I cut a nice little rectangle with the intention of using my 4.5′ flexible 3/4″ drill bit between the lathe and the brick, but changed my strategy once I saw the hole.  We’ve got the following layers in this space:

  • drywall (1/2″)
  • plaster (~1/2″)
  • lathe (~1/2″)
  • 5/8-3/4″ gap (no insulation)
  • brick.

I was worried that trying to jam my drill bit into the space between the lathe and the brick would wreck it, since the space is so small.  Instead I opted to try to drill upwards through the plaster layer, into the lathe, and then up through the ceiling.  This wasn’t the easiest path to drill and the bit wandered significantly, but I did get the hole made, and fished my pulling line up.  With Karl’s help, we got the pulling line out of our big hole.  I was then ready to cut my second hole, and try to get the line down from the ceiling area to closer to the floor, where I’ll put the outlet and the ethernet jacks.  Here’s that hole with the pulling line fished through:


I chose to run 4 lines.  Two for Karl’s room, and two for the back room.  The two lines for the back room, have just been left in the crawl space.  I tossed them in a bit, so that if we open up the wall in that room, it should be possible to crawl in from the other side and grab them.  We are thinking that it would be good to open up that triangular dead space and build in some sort of integrated storage solution — at which point we could also run ethernet to that room.  Even if we don’t use it, it’s easy to leave it there for the future at this point when the walls are opened up.

Here’s Karl’s room temporarily closed up with one jack connected:

The end result from Karl’s point of view is the following speed test:

He was very happy with this result, about 5x faster than his wifi speed (which in turn, is also way better than his wifi speed at the old house.)

There is still more to do for this little project:

  • reinsert the insulation in the big hole, and anchor the drywall in place, and the mud and sanding to patch things up.
  • patch up things in my office and repaint that little wall (hopefully, I can get away with just that single wall.)
  • connect jacks for the second wire, and put on covers (on order.)
  • (maybe) connect jacks for the “future expansion” wires for the back room.  I may just leave those in the wall for now (but have ordered a 4-port jack plate.)

 

 

 

 

Verifying dimensions of Planck length

October 31, 2022 math and physics play

[Click here for a PDF version of this post]

I’m reading [1], which has problems, despite being a sort of pop-sci book. The first such problem is showing that the particular constant
\begin{equation*}
\sqrt{ \frac{h G}{c^3} }
\end{equation*}
has dimensions of length.

My first thought for this was that we have lots of ways of expressing energy in ways that bring in some, but not all of those constants. Examples are
\begin{equation*}
m c^2
,\quad
h \nu
,\quad
i \,\hbar \PD{t}{}
,\quad
– \frac{\hbar^2}{2m} \PDSq{x}{}
,\quad
– \frac{G m M}{r^2}.
\end{equation*}

Some of these are identical with respect to dimensions, for example:
\begin{equation*}
[h\nu] = [i \,\hbar \PD{t}{}] = [h]/T.
\end{equation*}
Let’s use the fact that the dimensions of a particle’s rest energy match that of the photon energy, to find a way to eliminate mass from the dimensions of the gravitation potential energy, that is
\begin{equation*}
[ m c^2 ] = [m] \frac{L^2}{T^2} = [h]/T,
\end{equation*}
or
\begin{equation*}
M L^2/T^2 = [h]/T,
\end{equation*}
so
\begin{equation*}
M
= [h] \frac{T}{L^2}
= [h/c] \inv{L}.
\end{equation*}

Now we can relate the photon energy dimensions with the dimensions of gravitational potential energy, to find

\begin{equation*}
\begin{aligned}
\frac{[h]}{T}
&=
\frac{[G] M^2}{L} \\
&=
\frac{[G]}{L}
[h^2/c^2] \inv{L^2},
\end{aligned}
\end{equation*}
or
\begin{equation*}
[h G/c^3] = L^2.
\end{equation*}
so, we see that the root of this odd combination of units, does, as claimed, have dimensions of length.

References

[1] Carlo Rovelli. General Relativity: The Essentials. Cambridge University Press, 2021.

C++ compiler diagnostic gone horribly wrong: error: explicit specialization in non-namespace scope

September 23, 2022 C/C++ development and debugging. , , , , , , , ,

Here is a g++ error message that took me an embarrassingly long time to figure out:

In file included from /home/llvm-project/llvm/lib/IR/Constants.cpp:15:
/home/llvm-project/llvm/lib/IR/LLVMContextImpl.h:447:11: error: explicit specialization in non-namespace scope ‘struct llvm::MDNodeKeyImpl<llvm::DIBasicType>’
 template <> struct MDNodeKeyImpl<DIStringType> {
           ^

This is the code:

template <> struct MDNodeKeyImpl<DIStringType> {
  unsigned Tag;
  MDString *Name;
  Metadata *StringLength;
  Metadata *StringLengthExp;
  Metadata *StringLocationExp;
  uint64_t SizeInBits;
  uint32_t AlignInBits;
  unsigned Encoding;

This specialization isn’t materially different than the one that preceded it:

template <> struct MDNodeKeyImpl<DIBasicType> {
  unsigned Tag;
  MDString *Name;
  MDString *PictureString;
  uint64_t SizeInBits;
  uint32_t AlignInBits;
  unsigned Encoding;
  unsigned Flags;
  Optional<DIBasicType::DecimalInfo> DecimalAttrInfo;

  MDNodeKeyImpl(unsigned Tag, MDString *Name, MDString *PictureString,
               uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding,
                unsigned Flags,
                Optional<DIBasicType::DecimalInfo> DecimalAttrInfo)
      : Tag(Tag), Name(Name), PictureString(PictureString),
        SizeInBits(SizeInBits), AlignInBits(AlignInBits), Encoding(Encoding),
        Flags(Flags), DecimalAttrInfo(DecimalAttrInfo) {}
  MDNodeKeyImpl(const DIBasicType *N)
      : Tag(N->getTag()), Name(N->getRawName()), PictureString(N->getRawPictureString()), SizeInBits(N->getSizeInBits()),
        AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()),
        Flags(N->getFlags(), DecimalAttrInfo(N->getDecimalInfo()) {}

  bool isKeyOf(const DIBasicType *RHS) const {
    return Tag == RHS->getTag() && Name == RHS->getRawName() &&
           PictureString == RHS->getRawPictureString() &&
           SizeInBits == RHS->getSizeInBits() &&
           AlignInBits == RHS->getAlignInBits() &&
           Encoding == RHS->getEncoding() && Flags == RHS->getFlags() &&
           DecimalAttrInfo == RHS->getDecimalInfo();
  }

  unsigned getHashValue() const {
    return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding);
  }
};

However, there is an error hiding above it on this line:

        Flags(N->getFlags(), DecimalAttrInfo(N->getDecimalInfo()) {}

i.e. a single missing brace in the initializer for the Flags member, a consequence of a cut and paste during rebase that clobbered that one character, when adding a comma after it.

It turns out that the compiler was giving me a hint that something was wrong before this in the message:

error: explicit specialization in non-namespace scope

as it states that the scope is:

‘struct llvm::MDNodeKeyImpl

which is the previous class definition. Inspection of the code made me think that the scope was ‘namespace llvm {…}’, and I’d gone looking for a rebase error that would have incorrectly terminated that llvm namespace scope. This is a classic example of not paying enough attention to what is in front of you, and going off looking based on hunches instead. I didn’t understand the compiler message, but in retrospect, non-namespace scope meant that something in that scope was incomplete. The compiler wasn’t smart enough to tell me that the previous specialization was completed due to the missing brace, but it did tell me that something was wrong in that previous specialization (which was explicitly named), and I didn’t look at that because of my “what the hell does that mean” reaction to the compilation error message.

In this case, I was building on RHEL8.3, which uses an ancient GCC toolchain. I wonder if newer versions of g++ fare better (i.e.: a message like “possibly unterminated brace on line …” would have been much nicer)? I wasn’t able to try with clang++ as I was building llvm+clang+lldb (V14), and had uninstalled all of the llvm related toolchain to avoid interference.

More “interesting” electrical.

September 17, 2022 Home renos

We naively thought we could swap a couple of sconce lights, but this is what we found

Neither of the existing lights was mounted in a box, instead there was a “clever” surface mounting method used, with the wires and marrettes tucked into little cavities.  I see why this was done, especially on the exterior wall, since there is not enough space for a standard size octagon box between the brick and the drywall.  We have about a one inch gap, then lathe, then the drywall.

I’ll see if I can find and install a shallow octagon box instead.  It will be tricky to do so, because there are no studs to connect to, and not enough space to retrofit any into the wall.  As Sofia said, “nothing is ever easy, is it.”

Angular momentum bivector in cylindrical and spherical bases.

September 15, 2022 math and physics play , , , , , , ,

[Click here for a PDF version of this post]

Motivation

In a discord thread on the bivector group (a geometric algebra group chat), MoneyKills posts about trouble he has calculating the correct expression for the angular momentum bivector or it’s dual.

This blog post is a more long winded answer than my bivector response and includes this calculation using both cylindrical and spherical coordinates.

Cylindrical coordinates.

The position vector for any point on a plane can be expressed as
\begin{equation}\label{eqn:amomentum:20}
\Br = r \rcap,
\end{equation}
where \( \rcap = \rcap(\phi) \) encodes all the angular dependence of the position vector, and \( r \) is the length along that direction to our point, as illustrated in fig. 1.

fig. 1. Cylindrical coordinates position vector.

The radial unit vector has a compact GA representation
\begin{equation}\label{eqn:amomentum:40}
\rcap = \Be_1 e^{i\phi},
\end{equation}
where \( i = \Be_1 \Be_2 \).

The velocity (or momentum) will have both \( \rcap \) and \( \phicap \) dependence. By chain rule, that velocity is
\begin{equation}\label{eqn:amomentum:60}
\Bv = \dot{r} \rcap + r \dot{\rcap},
\end{equation}
where
\begin{equation}\label{eqn:amomentum:80}
\begin{aligned}
\dot{\rcap}
&= \Be_1 i e^{i\phi} \dot{\phi} \\
&= \Be_2 e^{i\phi} \dot{\phi} \\
&= \phicap \dot{\phi}.
\end{aligned}
\end{equation}
It is left to the reader to show that the vector designated \( \phicap \), is a unit vector and perpendicular to \( \rcap \) (Hint: compute the grade-0 selection of the product of the two to show that they are perpendicular.)

We can now compute the momentum, which is
\begin{equation}\label{eqn:amomentum:100}
\Bp = m \Bv = m \lr{ \dot{r} \rcap + r \dot{\phi} \phicap },
\end{equation}
and the angular momentum bivector
\begin{equation}\label{eqn:amomentum:120}
\begin{aligned}
L
&= \Br \wedge \Bp \\
&= m \lr{ r \rcap } \wedge \lr{ \dot{r} \rcap + r \dot{\phi} \phicap } \\
&= m r^2 \dot{\phi} \rcap \phicap.
\end{aligned}
\end{equation}

This has the \( m r^2 \dot{\phi} \) magnitude that the OP was seeking.

Spherical coordinates.

In spherical coordinates, our position vector is
\begin{equation}\label{eqn:amomentum:140}
\Br = r \lr{ \Be_1 \sin\theta \cos\phi + \Be_2 \sin\theta \sin\phi + \Be_3 \cos\theta },
\end{equation}
as sketched in fig. 2.

fig. 2. Spherical coordinates.

We can factor this into a more compact representation
\begin{equation}\label{eqn:amomentum:160}
\begin{aligned}
\Br
&= r \lr{ \sin\theta \Be_1 (\cos\phi + \Be_{12} \sin\phi ) + \Be_3 \cos\theta } \\
&= r \lr{ \sin\theta \Be_1 e^{\Be_{12} \phi } + \Be_3 \cos\theta } \\
&= r \Be_3 \lr{ \cos\theta + \sin\theta \Be_3 \Be_1 e^{\Be_{12} \phi } }.
\end{aligned}
\end{equation}

It is useful to name two of the bivector terms above, first, we write \( i \) for the azimuthal plane bivector sketched in fig. 3.

Spherical coordinates, azimuthal plane.

\begin{equation}\label{eqn:amomentum:180}
i = \Be_{12},
\end{equation}
and introduce a bivector \( j \) that encodes the \( \Be_3, \rcap \) plane as sketched in fig. 4.

Spherical coordinates, “j-plane”.

\begin{equation}\label{eqn:amomentum:200}
j = \Be_{31} e^{i \phi}.
\end{equation}

Having done so, we now have a compact representation for our position vector
\begin{equation}\label{eqn:amomentum:220}
\begin{aligned}
\Br
&= r \Be_3 \lr{ \cos\theta + j \sin\theta } \\
&= r \Be_3 e^{j \theta}.
\end{aligned}
\end{equation}

This provides us with a nice compact representation of the radial unit vector
\begin{equation}\label{eqn:amomentum:240}
\rcap = \Be_3 e^{j \theta}.
\end{equation}

Just as was the case in cylindrical coordinates, our azimuthal plane unit vector is
\begin{equation}\label{eqn:amomentum:280}
\phicap = \Be_2 e^{i\phi}.
\end{equation}

Now we want to compute the velocity vector. As was the case in cylindrical coordinates, we have
\begin{equation}\label{eqn:amomentum:300}
\Bv = \dot{r} \rcap + r \dot{\rcap},
\end{equation}
but now we need the spherical representation for the \( \rcap \) derivative, which is
\begin{equation}\label{eqn:amomentum:320}
\begin{aligned}
\dot{\rcap}
&=
\PD{\theta}{\rcap} \dot{\theta} + \PD{\phi}{\rcap} \dot{\phi} \\
&=
\Be_3 e^{j\theta} j \dot{\theta} + \Be_3 \sin\theta \PD{\phi}{j} \dot{\phi} \\
&=
\rcap j \dot{\theta} + \Be_3 \sin\theta j i \dot{\phi}.
\end{aligned}
\end{equation}
We can reduce the second multivector term without too much work
\begin{equation}\label{eqn:amomentum:340}
\begin{aligned}
\Be_3 j i
&=
\Be_3 \Be_{31} e^{i\phi} i \\
&=
\Be_3 \Be_{31} i e^{i\phi} \\
&=
\Be_{33112} e^{i\phi} \\
&=
\Be_{2} e^{i\phi} \\
&= \phicap,
\end{aligned}
\end{equation}
so we have
\begin{equation}\label{eqn:amomentum:360}
\dot{\rcap}
=
\rcap j \dot{\theta} + \sin\theta \phicap \dot{\phi}.
\end{equation}

The velocity is
\begin{equation}\label{eqn:amomentum:380}
\Bv = \dot{r} \rcap + r \lr{ \rcap j \dot{\theta} + \sin\theta \phicap \dot{\phi} }.
\end{equation}

Now we can finally compute the angular momentum bivector, which is
\begin{equation}\label{eqn:amomentum:400}
\begin{aligned}
L &=
\Br \wedge \Bp \\
&=
m r \rcap \wedge \lr{ \dot{r} \rcap + r \lr{ \rcap j \dot{\theta} + \sin\theta \phicap \dot{\phi} } } \\
&=
m r^2 \rcap \wedge \lr{ \rcap j \dot{\theta} + \sin\theta \phicap \dot{\phi} } \\
&=
m r^2 \gpgradetwo{ \rcap \lr{ \rcap j \dot{\theta} + \sin\theta \phicap \dot{\phi} } },
\end{aligned}
\end{equation}
which is just
\begin{equation}\label{eqn:amomentum:420}
L =
m r^2 \lr{ j \dot{\theta} + \sin\theta \rcap \phicap \dot{\phi} }.
\end{equation}

I was slightly surprised by this result, as I naively expected the cylindrical coordinate result. We have a \( m r^2 \rcap \phicap \dot{\phi} \) term, as was the case in cylindrical coordinates, but scaled down with a \( \sin\theta \) factor. However, this result does make sense. Consider for example, some fixed circular motion with \( \theta = \mathrm{constant} \), as sketched in fig. 5.

fig. 5. Circular motion for constant theta

The radius of this circle is actually \( r \sin\theta \), so the total angular momentum for that motion is scaled down to \( m r^2 \sin\theta \dot{\phi} \), smaller than the maximum circular angular momentum of \( m r^2 \dot{\phi} \) which occurs in the \( \theta = \pi/2 \) azimuthal plane. Similarly, if we have circular motion in the “j-plane”, sketched in fig. 6.

fig. 6. Circular motion for constant phi.

where \( \phi = \mathrm{constant} \), then our angular momentum is \( L = m r^2 j \dot{\theta} \).