[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [1] ch. 5 content.

Perturbation theory

Given a 2 \times 2 Hamiltonian H = H_0 + V , where

\begin{equation}\label{eqn:qmLecture20:20} H = \begin{bmatrix} a & c \\ c^\conj & b \end{bmatrix} \end{equation}

which has eigenvalues

\begin{equation}\label{eqn:qmLecture20:40} \lambda_\pm = \frac{a + b}{2} \pm \sqrt{ \lr{ \frac{a – b}{2}}^2 + \Abs{c}^2 }. \end{equation}

If c = 0 ,

\begin{equation}\label{eqn:qmLecture20:60} H_0 = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}, \end{equation}

so

\begin{equation}\label{eqn:qmLecture20:80} V = \begin{bmatrix} 0 & c \\ c^\conj & 0 \end{bmatrix}. \end{equation}

Suppose that \Abs{c} \ll \Abs{a – b} , then

\begin{equation}\label{eqn:qmLecture20:100} \lambda_\pm \approx \frac{a + b}{2} \pm \Abs{ \frac{a – b}{2} } \lr{ 1 + 2 \frac{\Abs{c}^2}{\Abs{a – b}^2} }. \end{equation}

If a > b , then

\begin{equation}\label{eqn:qmLecture20:120} \lambda_\pm \approx \frac{a + b}{2} \pm \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} }. \end{equation}

\begin{equation}\label{eqn:qmLecture20:140} \begin{aligned} \lambda_{+} &= \frac{a + b}{2} + \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} } \\ &= a + \lr{a – b} \frac{\Abs{c}^2}{\lr{a – b}^2} \\ &= a + \frac{\Abs{c}^2}{a – b}, \end{aligned} \end{equation}

and
\begin{equation}\label{eqn:qmLecture20:680} \begin{aligned} \lambda_{-} &= \frac{a + b}{2} – \frac{a – b}{2} \lr{ 1 + 2 \frac{\Abs{c}^2}{\lr{a – b}^2} } \\ &= b + \lr{a – b} \frac{\Abs{c}^2}{\lr{a – b}^2} \\ &= b + \frac{\Abs{c}^2}{a – b}. \end{aligned} \end{equation}

This adiabatic evolution displays a “level repulsion”, quadradic in \Abs{c} as sketched in fig. 1, and is described as a non-degenerate perbutation.

fig. 1.  Adiabatic (non-degenerate) perturbation

fig. 1. Adiabatic (non-degenerate) perturbation

If \Abs{c} \gg \Abs{a -b} , then

\begin{equation}\label{eqn:qmLecture20:160} \begin{aligned} \lambda_\pm &= \frac{a + b}{2} \pm \Abs{c} \sqrt{ 1 + \inv{\Abs{c}^2} \lr{ \frac{a – b}{2}}^2 } \\ &\approx \frac{a + b}{2} \pm \Abs{c} \lr{ 1 + \inv{2 \Abs{c}^2} \lr{ \frac{a – b}{2}}^2 } \\ &= \frac{a + b}{2} \pm \Abs{c} \pm \frac{\lr{a – b}^2}{8 \Abs{c}}. \end{aligned} \end{equation}

Here we loose the adiabaticity, and have “level repulsion” that is linear in \Abs{c} , as sketched in fig. 2. We no longer have the sign of a – b in the expansion. This is described as a degenerate perbutation.

fig. 2.  Degenerate perbutation

fig. 2. Degenerate perbutation

General non-degenerate perturbation

Given an unperturbed system with solutions of the form

\begin{equation}\label{eqn:qmLecture20:180} H_0 \ket{n^{(0)}} = E_n^{(0)} \ket{n^{(0)}}, \end{equation}

we want to solve the perturbed Hamiltonian equation

\begin{equation}\label{eqn:qmLecture20:200} \lr{ H_0 + \lambda V } \ket{ n } = \lr{ E_n^{(0)} + \Delta n } \ket{n}. \end{equation}

Here \Delta n is an energy shift as that goes to zero as \lambda \rightarrow 0 . We can write this as

\begin{equation}\label{eqn:qmLecture20:220} \lr{ E_n^{(0)} – H_0 } \ket{ n } = \lr{ \lambda V – \Delta_n } \ket{n}. \end{equation}

We are hoping to iterate with application of the inverse to an initial estimate of \ket{n}

\begin{equation}\label{eqn:qmLecture20:240} \ket{n} = \lr{ E_n^{(0)} – H_0 }^{-1} \lr{ \lambda V – \Delta_n } \ket{n}. \end{equation}

This gets us into trouble if \lambda \rightarrow 0 , which can be fixed by using

\begin{equation}\label{eqn:qmLecture20:260} \ket{n} = \lr{ E_n^{(0)} – H_0 }^{-1} \lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} }, \end{equation}

which can be seen to be a solution to \ref{eqn:qmLecture20:220}. We want to ask if

\begin{equation}\label{eqn:qmLecture20:280} \lr{ \lambda V – \Delta_n } \ket{n} , \end{equation}

contains a bit of \ket{ n^{(0)} } ? To determine this act with \bra{n^{(0)}} on the left

\begin{equation}\label{eqn:qmLecture20:300} \begin{aligned} \bra{ n^{(0)} } \lr{ \lambda V – \Delta_n } \ket{n} &= \bra{ n^{(0)} } \lr{ E_n^{(0)} – H_0 } \ket{n} \\ &= \lr{ E_n^{(0)} – E_n^{(0)} } \braket{n^{(0)}}{n} \\ &= 0. \end{aligned} \end{equation}

This shows that \ket{n} is entirely orthogonal to \ket{n^{(0)}} .

Define a projection operator

\begin{equation}\label{eqn:qmLecture20:320} P_n = \ket{n^{(0)}}\bra{n^{(0)}}, \end{equation}

which has the idempotent property P_n^2 = P_n that we expect of a projection operator.

Define a rejection operator
\begin{equation}\label{eqn:qmLecture20:340} \overline{{P}}_n = 1 – \ket{n^{(0)}}\bra{n^{(0)}} = \sum_{m \ne n} \ket{m^{(0)}}\bra{m^{(0)}}. \end{equation}

Because \ket{n} has no component in the direction \ket{n^{(0)}} , the rejection operator can be inserted much like we normally do with the identity operator, yielding

\begin{equation}\label{eqn:qmLecture20:360} \ket{n}’ = \lr{ E_n^{(0)} – H_0 }^{-1} \overline{{P}}_n \lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} }, \end{equation}

valid for any initial \ket{n} .

Power series perturbation expansion

Instead of iterating, suppose that the unknown state and unknown energy difference operator can be expanded in a \lambda power series, say

\begin{equation}\label{eqn:qmLecture20:380} \ket{n} = \ket{n_0} + \lambda \ket{n_1} + \lambda^2 \ket{n_2} + \lambda^3 \ket{n_3} + \cdots \end{equation}

and

\begin{equation}\label{eqn:qmLecture20:400} \Delta_{n} = \Delta_{n_0} + \lambda \Delta_{n_1} + \lambda^2 \Delta_{n_2} + \lambda^3 \Delta_{n_3} + \cdots \end{equation}

We usually interpret functions of operators in terms of power series expansions. In the case of \lr{ E_n^{(0)} – H_0 }^{-1} , we have a concrete interpretation when acting on one of the unpertubed eigenstates

\begin{equation}\label{eqn:qmLecture20:420} \inv{ E_n^{(0)} – H_0 } \ket{m^{(0)}} = \inv{ E_n^{(0)} – E_m^0 } \ket{m^{(0)}}. \end{equation}

This gives

\begin{equation}\label{eqn:qmLecture20:440} \ket{n} = \inv{ E_n^{(0)} – H_0 } \sum_{m \ne n} \ket{m^{(0)}}\bra{m^{(0)}} \lr{ \lambda V – \Delta_n } \ket{n} + \ket{ n^{(0)} }, \end{equation}

or

\begin{equation}\label{eqn:qmLecture20:460} \boxed{ \ket{n} = \ket{ n^{(0)} } + \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ \lambda V – \Delta_n } \ket{n}. } \end{equation}

From \ref{eqn:qmLecture20:220}, note that

\begin{equation}\label{eqn:qmLecture20:500} \Delta_n = \frac{\bra{n^{(0)}} \lambda V \ket{n}}{\braket{n^0}{n}}, \end{equation}

however, we will normalize by setting \braket{n^0}{n} = 1 , so

\begin{equation}\label{eqn:qmLecture20:521} \boxed{ \Delta_n = \bra{n^{(0)}} \lambda V \ket{n}. } \end{equation}

to O(\lambda^0)

If all \lambda^n, n > 0 are zero, then we have

\label{eqn:qmLecture20:780}
\begin{equation}\label{eqn:qmLecture20:740} \ket{n_0} = \ket{ n^{(0)} } + \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ – \Delta_{n_0} } \ket{n_0} \end{equation}
\begin{equation}\label{eqn:qmLecture20:800} \Delta_{n_0} \braket{n^{(0)}}{n_0} = 0 \end{equation}

so

\begin{equation}\label{eqn:qmLecture20:540} \begin{aligned} \ket{n_0} &= \ket{n^{(0)}} \\ \Delta_{n_0} &= 0. \end{aligned} \end{equation}

to O(\lambda^1)

Requiring identity for all \lambda^1 terms means

\begin{equation}\label{eqn:qmLecture20:760} \ket{n_1} \lambda = \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ \lambda V – \Delta_{n_1} \lambda } \ket{n_0}, \end{equation}

so

\begin{equation}\label{eqn:qmLecture20:560} \ket{n_1} = \sum_{m \ne n} \frac{ \ket{m^{(0)}} \bra{ m^{(0)}} } { E_n^{(0)} – E_m^{(0)} } \lr{ V – \Delta_{n_1} } \ket{n_0}. \end{equation}

With the assumption that \ket{n^{(0)}} is normalized, and with the shorthand

\begin{equation}\label{eqn:qmLecture20:600} V_{m n} = \bra{ m^{(0)}} V \ket{n^{(0)}}, \end{equation}

that is

\begin{equation}\label{eqn:qmLecture20:580} \begin{aligned} \ket{n_1} &= \sum_{m \ne n} \frac{ \ket{m^{(0)}} } { E_n^{(0)} – E_m^{(0)} } V_{m n} \\ \Delta_{n_1} &= \bra{ n^{(0)} } V \ket{ n^0} = V_{nn}. \end{aligned} \end{equation}

to O(\lambda^2)

The second order perturbation states are found by selecting only the \lambda^2 contributions to

\begin{equation}\label{eqn:qmLecture20:820} \lambda^2 \ket{n_2} = \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ \lambda V – (\lambda \Delta_{n_1} + \lambda^2 \Delta_{n_2}) } \lr{ \ket{n_0} + \lambda \ket{n_1} }. \end{equation}

Because \ket{n_0} = \ket{n^{(0)}} , the \lambda^2 \Delta_{n_2} is killed, leaving

\begin{equation}\label{eqn:qmLecture20:840} \begin{aligned} \ket{n_2} &= \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ V – \Delta_{n_1} } \ket{n_1} \\ &= \sum_{m \ne n} \frac{\ket{m^{(0)}}\bra{m^{(0)}}} { E_n^{(0)} – E_m^{(0)} } \lr{ V – \Delta_{n_1} } \sum_{l \ne n} \frac{ \ket{l^{(0)}} } { E_n^{(0)} – E_l^{(0)} } V_{l n}, \end{aligned} \end{equation}

which can be written as

\begin{equation}\label{eqn:qmLecture20:620} \ket{n_2} = \sum_{l,m \ne n} \ket{m^{(0)}} \frac{V_{m l} V_{l n}} { \lr{ E_n^{(0)} – E_m^{(0)} } \lr{ E_n^{(0)} – E_l^{(0)} } } – \sum_{m \ne n} \ket{m^{(0)}} \frac{V_{n n} V_{m n}} { \lr{ E_n^{(0)} – E_m^{(0)} }^2 }. \end{equation}

For the second energy perturbation we have

\begin{equation}\label{eqn:qmLecture20:860} \lambda^2 \Delta_{n_2} = \bra{n^{(0)}} \lambda V \lr{ \lambda \ket{n_1} }, \end{equation}

or

\begin{equation}\label{eqn:qmLecture20:880} \begin{aligned} \Delta_{n_2} &= \bra{n^{(0)}} V \ket{n_1} \\ &= \bra{n^{(0)}} V \sum_{m \ne n} \frac{ \ket{m^{(0)}} } { E_n^{(0)} – E_m^{(0)} } V_{m n}. \end{aligned} \end{equation}

That is

\begin{equation}\label{eqn:qmLecture20:900} \Delta_{n_2} = \sum_{m \ne n} \frac{V_{n m} V_{m n} }{E_n^{(0)} – E_m^{(0)}}. \end{equation}

to O(\lambda^3)

Similarily, it can be shown that

\begin{equation}\label{eqn:qmLecture20:640} \Delta_{n_3} = \sum_{l, m \ne n} \frac{V_{n m} V_{m l} V_{l n} }{ \lr{ E_n^{(0)} – E_m^{(0)} } \lr{ E_n^{(0)} – E_l^{(0)} } } – \sum_{ m \ne n} \frac{V_{n m} V_{n n} V_{m n} }{ \lr{ E_n^{(0)} – E_m^{(0)} }^2 }. \end{equation}

In general, the energy perturbation is given by

\begin{equation}\label{eqn:qmLecture20:660} \Delta_n^{(l)} = \bra{n^{(0)}} V \ket{n^{(l-1)}}. \end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.