## A multivector Lagrangian for Maxwell’s equation: A summary of previous exploration.

This summarizes the significant parts of the last 8 blog posts.

## STA form of Maxwell’s equation.

Maxwell’s equations, with electric and fictional magnetic sources (useful for antenna theory and other engineering applications), are
\label{eqn:maxwellLagrangian:220}
\begin{aligned}
\spacegrad \cdot \BE &= \frac{\rho}{\epsilon} \\
\spacegrad \cross \BE &= – \BM – \mu \PD{t}{\BH} \\
\spacegrad \cdot \BH &= \frac{\rho_\txtm}{\mu} \\
\spacegrad \cross \BH &= \BJ + \epsilon \PD{t}{\BE}.
\end{aligned}

We can assemble these into a single geometric algebra equation,
\label{eqn:maxwellLagrangian:240}
\lr{ \spacegrad + \inv{c} \PD{t}{} } F = \eta \lr{ c \rho – \BJ } + I \lr{ c \rho_{\mathrm{m}} – \BM },

where $$F = \BE + \eta I \BH = \BE + I c \BB$$, $$c = 1/\sqrt{\mu\epsilon}, \eta = \sqrt{(\mu/\epsilon)}$$.

By multiplying through by $$\gamma_0$$, making the identification $$\Be_k = \gamma_k \gamma_0$$, and
\label{eqn:maxwellLagrangian:300}
\begin{aligned}
J^0 &= \frac{\rho}{\epsilon}, \quad J^k = \eta \lr{ \BJ \cdot \Be_k }, \quad J = J^\mu \gamma_\mu \\
M^0 &= c \rho_{\mathrm{m}}, \quad M^k = \BM \cdot \Be_k, \quad M = M^\mu \gamma_\mu \\
\end{aligned}

we find the STA form of Maxwell’s equation, including magnetic sources
\label{eqn:maxwellLagrangian:320}
\grad F = J – I M.

## Decoupling the electric and magnetic fields and sources.

We can utilize two separate four-vector potential fields to split Maxwell’s equation into two parts. Let
\label{eqn:maxwellLagrangian:1740}
F = F_{\mathrm{e}} + I F_{\mathrm{m}},

where
\label{eqn:maxwellLagrangian:1760}
\begin{aligned}
F_{\mathrm{e}} &= \grad \wedge A \\
\end{aligned}

and $$A, K$$ are independent four-vector potential fields. Plugging this into Maxwell’s equation, and employing a duality transformation, gives us two coupled vector grade equations
\label{eqn:maxwellLagrangian:1780}
\begin{aligned}
\grad \cdot F_{\mathrm{e}} – I \lr{ \grad \wedge F_{\mathrm{m}} } &= J \\
\grad \cdot F_{\mathrm{m}} + I \lr{ \grad \wedge F_{\mathrm{e}} } &= M.
\end{aligned}

However, since $$\grad \wedge F_{\mathrm{m}} = \grad \wedge F_{\mathrm{e}} = 0$$, by construction, the curls above are killed. We may also add in $$\grad \wedge F_{\mathrm{e}} = 0$$ and $$\grad \wedge F_{\mathrm{m}} = 0$$ respectively, yielding two independent gradient equations
\label{eqn:maxwellLagrangian:1810}
\begin{aligned}
\end{aligned}

one for each of the electric and magnetic sources and their associated fields.

## Tensor formulation.

The electromagnetic field $$F$$, is a vector-bivector multivector in the multivector representation of Maxwell’s equation, but is a bivector in the STA representation. The split of $$F$$ into it’s electric and magnetic field components is observer dependent, but we may write it without reference to a specific observer frame as
\label{eqn:maxwellLagrangian:1830}
F = \inv{2} \gamma_\mu \wedge \gamma_\nu F^{\mu\nu},

where $$F^{\mu\nu}$$ is an arbitrary antisymmetric 2nd rank tensor. Maxwell’s equation has a vector and trivector component, which may be split out explicitly using grade selection, to find
\label{eqn:maxwellLagrangian:360}
\begin{aligned}
\grad \cdot F &= J \\
\grad \wedge F &= -I M.
\end{aligned}

Further dotting and wedging these equations with $$\gamma^\mu$$ allows for extraction of scalar relations
\label{eqn:maxwellLagrangian:460}
\partial_\nu F^{\nu\mu} = J^{\mu}, \quad \partial_\nu G^{\nu\mu} = M^{\mu},

where $$G^{\mu\nu} = -(1/2) \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$$ is also an antisymmetric 2nd rank tensor.

If we treat $$F^{\mu\nu}$$ and $$G^{\mu\nu}$$ as independent fields, this pair of equations is the coordinate equivalent to \ref{eqn:maxwellLagrangian:1760}, also decoupling the electric and magnetic source contributions to Maxwell’s equation.

## Coordinate representation of the Lagrangian.

As observed above, we may choose to express the decoupled fields as curls $$F_{\mathrm{e}} = \grad \wedge A$$ or $$F_{\mathrm{m}} = \grad \wedge K$$. The coordinate expansion of either field component, given such a representation, is straight forward. For example
\label{eqn:maxwellLagrangian:1850}
\begin{aligned}
F_{\mathrm{e}}
&= \lr{ \gamma_\mu \partial^\mu } \wedge \lr{ \gamma_\nu A^\nu } \\
&= \inv{2} \lr{ \gamma_\mu \wedge \gamma_\nu } \lr{ \partial^\mu A^\nu – \partial^\nu A^\mu }.
\end{aligned}

We make the identification $$F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu$$, the usual definition of $$F^{\mu\nu}$$ in the tensor formalism. In that tensor formalism, the Maxwell Lagrangian is
\label{eqn:maxwellLagrangian:1870}
\LL = – \inv{4} F_{\mu\nu} F^{\mu\nu} – A_\mu J^\mu.

We may show this though application of the Euler-Lagrange equations
\label{eqn:maxwellLagrangian:600}
\PD{A_\mu}{\LL} = \partial_\nu \PD{(\partial_\nu A_\mu)}{\LL}.

\label{eqn:maxwellLagrangian:1930}
\begin{aligned}
\PD{(\partial_\nu A_\mu)}{\LL}
&= -\inv{4} (2) \lr{ \PD{(\partial_\nu A_\mu)}{F_{\alpha\beta}} } F^{\alpha\beta} \\
&= -\inv{2} \delta^{[\nu\mu]}_{\alpha\beta} F^{\alpha\beta} \\
&= -\inv{2} \lr{ F^{\nu\mu} – F^{\mu\nu} } \\
&= F^{\mu\nu}.
\end{aligned}

So $$\partial_\nu F^{\nu\mu} = J^\mu$$, the equivalent of $$\grad \cdot F = J$$, as expected.

## Coordinate-free representation and variation of the Lagrangian.

Because
\label{eqn:maxwellLagrangian:200}
F^2 =
-\inv{2}
F^{\mu\nu} F_{\mu\nu}
+
\lr{ \gamma_\alpha \wedge \gamma^\beta }
F_{\alpha\mu}
F^{\beta\mu}
+
\frac{I}{4}
\epsilon_{\mu\nu\alpha\beta} F^{\mu\nu} F^{\alpha\beta},

we may express the Lagrangian \ref{eqn:maxwellLagrangian:1870} in a coordinate free representation
\label{eqn:maxwellLagrangian:1890}
\LL = \inv{2} F \cdot F – A \cdot J,

where $$F = \grad \wedge A$$.

We will now show that it is also possible to apply the variational principle to the following multivector Lagrangian
\label{eqn:maxwellLagrangian:1910}
\LL = \inv{2} F^2 – A \cdot J,

and recover the geometric algebra form $$\grad F = J$$ of Maxwell’s equation in it’s entirety, including both vector and trivector components in one shot.

We will need a few geometric algebra tools to do this.

The first such tool is the notational freedom to let the gradient act bidirectionally on multivectors to the left and right. We will designate such action with over-arrows, sometimes also using braces to limit the scope of the action in question. If $$Q, R$$ are multivectors, then the bidirectional action of the gradient in a $$Q, R$$ sandwich is
\label{eqn:maxwellLagrangian:1950}
\begin{aligned}
&= \lr{ Q \gamma^\mu \lpartial_\mu } R + Q \lr{ \gamma^\mu \rpartial_\mu R } \\
&= \lr{ \partial_\mu Q } \gamma^\mu R + Q \gamma^\mu \lr{ \partial_\mu R }.
\end{aligned}

In the final statement, the partials are acting exclusively on $$Q$$ and $$R$$ respectively, but the $$\gamma^\mu$$ factors must remain in place, as they do not necessarily commute with any of the multivector factors.

This bidirectional action is a critical aspect of the Fundamental Theorem of Geometric calculus, another tool that we will require. The specific form of that theorem that we will utilize here is
\label{eqn:maxwellLagrangian:1970}
\int_V Q d^4 \Bx \lrgrad R = \int_{\partial V} Q d^3 \Bx R,

where $$d^4 \Bx = I d^4 x$$ is the pseudoscalar four-volume element associated with a parameterization of space time. For our purposes, we may assume that parameterization are standard basis coordinates associated with the basis $$\setlr{ \gamma_0, \gamma_1, \gamma_2, \gamma_3 }$$. The surface differential form $$d^3 \Bx$$ can be given specific meaning, but we do not actually care what that form is here, as all our surface integrals will be zero due to the boundary constraints of the variational principle.

Finally, we will utilize the fact that bivector products can be split into grade $$0,4$$ and $$2$$ components using anticommutator and commutator products, namely, given two bivectors $$F, G$$, we have
\label{eqn:maxwellLagrangian:1990}
\begin{aligned}
\gpgrade{ F G }{0,4} &= \inv{2} \lr{ F G + G F } \\
\gpgrade{ F G }{2} &= \inv{2} \lr{ F G – G F }.
\end{aligned}

We may now proceed to evaluate the variation of the action for our presumed Lagrangian
\label{eqn:maxwellLagrangian:2010}
S = \int d^4 x \lr{ \inv{2} F^2 – A \cdot J }.

We seek solutions of the variational equation $$\delta S = 0$$, that are satisfied for all variations $$\delta A$$, where the four-potential variations $$\delta A$$ are zero on the boundaries of this action volume (i.e. an infinite spherical surface.)

We may start our variation in terms of $$F$$ and $$A$$
\label{eqn:maxwellLagrangian:1540}
\begin{aligned}
\delta S
&=
\int d^4 x \lr{ \inv{2} \lr{ \delta F } F + F \lr{ \delta F } } – \lr{ \delta A } \cdot J \\
&=
\int d^4 x \gpgrade{ \lr{ \delta F } F – \lr{ \delta A } J }{0,4} \\
&=
\int d^4 x \gpgrade{ \lr{ \grad \wedge \lr{\delta A} } F – \lr{ \delta A } J }{0,4} \\
&=
-\int d^4 x \gpgrade{ \lr{ \lr{\delta A} \lgrad } F – \lr{ \lr{ \delta A } \cdot \lgrad } F + \lr{ \delta A } J }{0,4} \\
&=
-\int d^4 x \gpgrade{ \lr{ \lr{\delta A} \lgrad } F + \lr{ \delta A } J }{0,4} \\
&=
-\int d^4 x \gpgrade{ \lr{\delta A} \lrgrad F – \lr{\delta A} \rgrad F + \lr{ \delta A } J }{0,4},
\end{aligned}

where we have used arrows, when required, to indicate the directional action of the gradient.

Writing $$d^4 x = -I d^4 \Bx$$, we have
\label{eqn:maxwellLagrangian:1600}
\begin{aligned}
\delta S
&=
-\int_V d^4 x \gpgrade{ \lr{\delta A} \lrgrad F – \lr{\delta A} \rgrad F + \lr{ \delta A } J }{0,4} \\
&=
-\int_V \gpgrade{ -\lr{\delta A} I d^4 \Bx \lrgrad F – d^4 x \lr{\delta A} \rgrad F + d^4 x \lr{ \delta A } J }{0,4} \\
&=
\int_{\partial V} \gpgrade{ \lr{\delta A} I d^3 \Bx F }{0,4}
+ \int_V d^4 x \gpgrade{ \lr{\delta A} \lr{ \rgrad F – J } }{0,4}.
\end{aligned}

The first integral is killed since $$\delta A = 0$$ on the boundary. The remaining integrand can be simplified to
\label{eqn:maxwellLagrangian:1660}

where the grade-4 filter has also been discarded since $$\grad F = \grad \cdot F + \grad \wedge F = \grad \cdot F$$ since $$\grad \wedge F = \grad \wedge \grad \wedge A = 0$$ by construction, which implies that the only non-zero grades in the multivector $$\grad F – J$$ are vector grades. Also, the directional indicator on the gradient has been dropped, since there is no longer any ambiguity. We seek solutions of $$\gpgrade{ \lr{\delta A} \lr{ \grad F – J } }{0} = 0$$ for all variations $$\delta A$$, namely
\label{eqn:maxwellLagrangian:1620}
\boxed{
}

This is Maxwell’s equation in it’s coordinate free STA form, found using the variational principle from a coordinate free multivector Maxwell Lagrangian, without having to resort to a coordinate expansion of that Lagrangian.

## Lagrangian for fictitious magnetic sources.

The generalization of the Lagrangian to include magnetic charge and current densities can be as simple as utilizing two independent four-potential fields
\label{eqn:maxwellLagrangian:n}
\LL = \inv{2} \lr{ \grad \wedge A }^2 – A \cdot J + \alpha \lr{ \inv{2} \lr{ \grad \wedge K }^2 – K \cdot M },

where $$\alpha$$ is an arbitrary multivector constant.

Variation of this Lagrangian provides two independent equations
\label{eqn:maxwellLagrangian:1840}
\begin{aligned}
\end{aligned}

We may add these, scaling the second by $$-I$$ (recall that $$I, \grad$$ anticommute), to find
\label{eqn:maxwellLagrangian:1860}
\grad \lr{ F_{\mathrm{e}} + I F_{\mathrm{m}} } = J – I M,

which is $$\grad F = J – I M$$, as desired.

It would be interesting to explore whether it is possible find Lagrangian that is dependent on a multivector potential, that would yield $$\grad F = J – I M$$ directly, instead of requiring a superposition operation from the two independent solutions. One such possible potential is $$\tilde{A} = A – I K$$, for which $$F = \gpgradetwo{ \grad \tilde{A} } = \grad \wedge A + I \lr{ \grad \wedge K }$$. The author was not successful constructing such a Lagrangian.

## Gauge freedom and four-potentials in the STA form of Maxwell’s equation.

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

## Motivation.

In a recent video on the tensor structure of Maxwell’s equation, I made a little side trip down the road of potential solutions and gauge transformations. I thought that was worth writing up in text form.

The initial point of that side trip was just to point out that the Faraday tensor can be expressed in terms of four potential coordinates
\label{eqn:gaugeFreedomAndPotentialsMaxwell:20}
F_{\mu\nu} = \partial_\mu A_\nu – \partial_\nu A_\mu,

but before I got there I tried to motivate this. In this post, I’ll outline the same ideas.

## STA representation of Maxwell’s equation.

We’d gone through the work to show that Maxwell’s equation has the STA form
\label{eqn:gaugeFreedomAndPotentialsMaxwell:40}

This is a deceptively compact representation, as it requires all of the following definitions
\label{eqn:gaugeFreedomAndPotentialsMaxwell:60}
\grad = \gamma^\mu \partial_\mu = \gamma_\mu \partial^\mu,

\label{eqn:gaugeFreedomAndPotentialsMaxwell:80}
\partial_\mu = \PD{x^\mu}{},

\label{eqn:gaugeFreedomAndPotentialsMaxwell:100}
\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu,

\label{eqn:gaugeFreedomAndPotentialsMaxwell:160}
\gamma_\mu \cdot \gamma_\nu = g_{\mu\nu},

\label{eqn:gaugeFreedomAndPotentialsMaxwell:120}
\begin{aligned}
F
&= \BE + I c \BB \\
&= -E^k \gamma^k \gamma^0 – \inv{2} c B^r \gamma^s \gamma^t \epsilon^{r s t} \\
&= \inv{2} \gamma^{\mu} \wedge \gamma^{\nu} F_{\mu\nu},
\end{aligned}

and
\label{eqn:gaugeFreedomAndPotentialsMaxwell:140}
\begin{aligned}
J &= \gamma_\mu J^\mu \\
J^\mu &= \frac{\rho}{\epsilon} \gamma_0 + \eta (\BJ \cdot \Be_k).
\end{aligned}

## Four-potentials in the STA representation.

In order to find the tensor form of Maxwell’s equation (starting from the STA representation), we first split the equation into two, since
\label{eqn:gaugeFreedomAndPotentialsMaxwell:180}

The dot product is a four-vector, the wedge term is a trivector, and the current is a four-vector, so we have one grade-1 equation and one grade-3 equation
\label{eqn:gaugeFreedomAndPotentialsMaxwell:200}
\begin{aligned}
\grad \cdot F &= J \\
\end{aligned}

The potential comes into the mix, since the curl equation above means that $$F$$ necessarily can be written as the curl of some four-vector
\label{eqn:gaugeFreedomAndPotentialsMaxwell:220}

One justification of this is that $$a \wedge (a \wedge b) = 0$$, for any vectors $$a, b$$. Expanding such a double-curl out in coordinates is also worthwhile
\label{eqn:gaugeFreedomAndPotentialsMaxwell:240}
\begin{aligned}
&=
\lr{ \gamma_\mu \partial^\mu }
\wedge
\lr{ \gamma_\nu \partial^\nu }
\wedge
A \\
&=
\gamma^\mu \wedge \gamma^\nu \wedge \lr{ \partial_\mu \partial_\nu A }.
\end{aligned}

Provided we have equality of mixed partials, this is a product of an antisymmetric factor and a symmetric factor, so the full sum is zero.

Things get interesting if one imposes a $$\grad \cdot A = \partial_\mu A^\mu = 0$$ constraint on the potential. If we do so, then
\label{eqn:gaugeFreedomAndPotentialsMaxwell:260}

Observe that $$\grad^2$$ is the wave equation operator (often written as a square-box symbol.) That is
\label{eqn:gaugeFreedomAndPotentialsMaxwell:280}
\begin{aligned}
&= \partial^\mu \partial_\mu \\
&= \partial_0 \partial_0
– \partial_1 \partial_1
– \partial_2 \partial_2
– \partial_3 \partial_3 \\
\end{aligned}

This is also an operator for which the Green’s function is well known ([1]), which means that we can immediately write the solutions
\label{eqn:gaugeFreedomAndPotentialsMaxwell:300}
A(x) = \int G(x,x’) J(x’) d^4 x’.

However, we have no a-priori guarantee that such a solution has zero divergence. We can fix that by making a gauge transformation of the form
\label{eqn:gaugeFreedomAndPotentialsMaxwell:320}
A \rightarrow A – \grad \chi.

Observe that such a transformation does not change the electromagnetic field
\label{eqn:gaugeFreedomAndPotentialsMaxwell:340}

since
\label{eqn:gaugeFreedomAndPotentialsMaxwell:360}

(also by equality of mixed partials.) Suppose that $$\tilde{A}$$ is a solution of $$\grad^2 \tilde{A} = J$$, and $$\tilde{A} = A + \grad \chi$$, where $$A$$ is a zero divergence field to be determined, then
\label{eqn:gaugeFreedomAndPotentialsMaxwell:380}
=

or
\label{eqn:gaugeFreedomAndPotentialsMaxwell:400}

So if $$\tilde{A}$$ does not have zero divergence, we can find a $$\chi$$
\label{eqn:gaugeFreedomAndPotentialsMaxwell:420}
\chi(x) = \int G(x,x’) \grad’ \cdot \tilde{A}(x’) d^4 x’,

so that $$A = \tilde{A} – \grad \chi$$ does have zero divergence.

# References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

## Fundamental theorem of geometric calculus for line integrals (relativistic.)

[This post is best viewed in PDF form, due to latex elements that I could not format with wordpress mathjax.]

Background for this particular post can be found in

## Motivation.

I’ve been slowly working my way towards a statement of the fundamental theorem of integral calculus, where the functions being integrated are elements of the Dirac algebra (space time multivectors in the geometric algebra parlance.)

This is interesting because we want to be able to do line, surface, 3-volume and 4-volume space time integrals. We have many $$\mathbb{R}^3$$ integral theorems
\label{eqn:fundamentalTheoremOfGC:40a}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A),

\label{eqn:fundamentalTheoremOfGC:60a}
\int_S dA\, \ncap \cross \spacegrad f = \int_{\partial S} d\Bx\, f,

\label{eqn:fundamentalTheoremOfGC:80a}
\int_S dA\, \ncap \cdot \lr{ \spacegrad \cross \Bf} = \int_{\partial S} d\Bx \cdot \Bf,

\label{eqn:fundamentalTheoremOfGC:100a}
\int_S dx dy \lr{ \PD{y}{P} – \PD{x}{Q} }
=
\int_{\partial S} P dx + Q dy,

\label{eqn:fundamentalTheoremOfGC:120a}
\int_V dV\, \spacegrad f = \int_{\partial V} dA\, \ncap f,

\label{eqn:fundamentalTheoremOfGC:140a}
\int_V dV\, \spacegrad \cross \Bf = \int_{\partial V} dA\, \ncap \cross \Bf,

\label{eqn:fundamentalTheoremOfGC:160a}
\int_V dV\, \spacegrad \cdot \Bf = \int_{\partial V} dA\, \ncap \cdot \Bf,

and want to know how to generalize these to four dimensions and also make sure that we are handling the relativistic mixed signature correctly. If our starting point was the mess of equations above, we’d be in trouble, since it is not obvious how these generalize. All the theorems with unit normals have to be handled completely differently in four dimensions since we don’t have a unique normal to any given spacetime plane.
What comes to our rescue is the Fundamental Theorem of Geometric Calculus (FTGC), which has the form
\label{eqn:fundamentalTheoremOfGC:40}
\int F d^n \Bx\, \lrpartial G = \int F d^{n-1} \Bx\, G,

where $$F,G$$ are multivectors functions (i.e. sums of products of vectors.) We’ve seen ([2], [1]) that all the identities above are special cases of the fundamental theorem.

Do we need any special care to state the FTGC correctly for our relativistic case? It turns out that the answer is no! Tangent and reciprocal frame vectors do all the heavy lifting, and we can use the fundamental theorem as is, even in our mixed signature space. The only real change that we need to make is use spacetime gradient and vector derivative operators instead of their spatial equivalents. We will see how this works below. Note that instead of starting with \ref{eqn:fundamentalTheoremOfGC:40} directly, I will attempt to build up to that point in a progressive fashion that is hopefully does not require the reader to make too many unjustified mental leaps.

## Multivector line integrals.

We want to define multivector line integrals to start with. Recall that in $$\mathbb{R}^3$$ we would say that for scalar functions $$f$$, the integral
\label{eqn:fundamentalTheoremOfGC:180b}
\int d\Bx\, f = \int f d\Bx,

is a line integral. Also, for vector functions $$\Bf$$ we call
\label{eqn:fundamentalTheoremOfGC:200}
\int d\Bx \cdot \Bf = \inv{2} \int d\Bx\, \Bf + \Bf d\Bx.

a line integral. In order to generalize line integrals to multivector functions, we will allow our multivector functions to be placed on either or both sides of the differential.

## Definition 1.1: Line integral.

Given a single variable parameterization $$x = x(u)$$, we write $$d^1\Bx = \Bx_u du$$, and call
\label{eqn:fundamentalTheoremOfGC:220a}
\int F d^1\Bx\, G,

a line integral, where $$F,G$$ are arbitrary multivector functions.

We must be careful not to reorder any of the factors in the integrand, since the differential may not commute with either $$F$$ or $$G$$. Here is a simple example where the integrand has a product of a vector and differential.

## Problem: Circular parameterization.

Given a circular parameterization $$x(\theta) = \gamma_1 e^{-i\theta}$$, where $$i = \gamma_1 \gamma_2$$, the unit bivector for the $$x,y$$ plane. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:100}
\int_0^{\pi/4} F(\theta)\, d^1 \Bx\, G(\theta),

where $$F(\theta) = \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0$$ is a multivector valued function, and $$G(\theta) = \gamma_0$$ is vector valued.

The tangent vector for the curve is
\label{eqn:fundamentalTheoremOfGC:60}
\Bx_\theta
= -\gamma_1 \gamma_1 \gamma_2 e^{-i\theta}
= \gamma_2 e^{-i\theta},

with reciprocal vector $$\Bx^\theta = e^{i \theta} \gamma^2$$. The differential element is $$d^1 \Bx = \gamma_2 e^{-i\theta} d\theta$$, so the integrand is
\label{eqn:fundamentalTheoremOfGC:80}
\begin{aligned}
\int_0^{\pi/4} \lr{ \Bx^\theta + \gamma_3 + \gamma_1 \gamma_0 } d^1 \Bx\, \gamma_0
&=
\int_0^{\pi/4} \lr{ e^{i\theta} \gamma^2 + \gamma_3 + \gamma_1 \gamma_0 } \gamma_2 e^{-i\theta} d\theta\, \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \lr{ \gamma_{32} + \gamma_{102} } \inv{-i} \lr{ e^{-i\pi/4} – 1 } \gamma_0 \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{32} + \gamma_{102} } \gamma_{120} \lr{ 1 – \gamma_{12} } \\
&=
\frac{\pi}{4} \gamma_0 + \inv{\sqrt{2}} \lr{ \gamma_{310} + 1 } \lr{ 1 – \gamma_{12} }.
\end{aligned}

Observe how care is required not to reorder any terms. This particular end result is a multivector with scalar, vector, bivector, and trivector grades, but no pseudoscalar component. The grades in the end result depend on both the function in the integrand and on the path. For example, had we integrated all the way around the circle, the end result would have been the vector $$2 \pi \gamma_0$$ (i.e. a $$\gamma_0$$ weighted unit circle circumference), as all the other grades would have been killed by the complex exponential integrated over a full period.

## Problem: Line integral for boosted time direction vector.

Let $$x = e^{\vcap \alpha/2} \gamma_0 e^{-\vcap \alpha/2}$$ represent the spacetime curve of all the boosts of $$\gamma_0$$ along a specific velocity direction vector, where $$\vcap = (v \wedge \gamma_0)/\Norm{v \wedge \gamma_0}$$ is a unit spatial bivector for any constant vector $$v$$. Compute the line integral
\label{eqn:fundamentalTheoremOfGC:240}
\int x\, d^1 \Bx.

Observe that $$\vcap$$ and $$\gamma_0$$ anticommute, so we may write our boost as a one sided exponential
\label{eqn:fundamentalTheoremOfGC:260}
x(\alpha) = \gamma_0 e^{-\vcap \alpha} = e^{\vcap \alpha} \gamma_0 = \lr{ \cosh\alpha + \vcap \sinh\alpha } \gamma_0.

The tangent vector is just
\label{eqn:fundamentalTheoremOfGC:280}
\Bx_\alpha = \PD{\alpha}{x} = e^{\vcap\alpha} \vcap \gamma_0.

Let’s get a bit of intuition about the nature of this vector. It’s square is
\label{eqn:fundamentalTheoremOfGC:300}
\begin{aligned}
\Bx_\alpha^2
&=
e^{\vcap\alpha} \vcap \gamma_0
e^{\vcap\alpha} \vcap \gamma_0 \\
&=
-e^{\vcap\alpha} \vcap e^{-\vcap\alpha} \vcap (\gamma_0)^2 \\
&=
-1,
\end{aligned}

so we see that the tangent vector is a spacelike unit vector. As the vector representing points on the curve is necessarily timelike (due to Lorentz invariance), these two must be orthogonal at all points. Let’s confirm this algebraically
\label{eqn:fundamentalTheoremOfGC:320}
\begin{aligned}
x \cdot \Bx_\alpha
&=
\gpgradezero{ e^{\vcap \alpha} \gamma_0 e^{\vcap \alpha} \vcap \gamma_0 } \\
&=
\gpgradezero{ e^{-\vcap \alpha} e^{\vcap \alpha} \vcap (\gamma_0)^2 } \\
&=
&= 0.
\end{aligned}

Here we used $$e^{\vcap \alpha} \gamma_0 = \gamma_0 e^{-\vcap \alpha}$$, and $$\gpgradezero{A B} = \gpgradezero{B A}$$. Geometrically, we have the curious fact that the direction vectors to points on the curve are perpendicular (with respect to our relativistic dot product) to the tangent vectors on the curve, as illustrated in fig. 1.

fig. 1. Tangent perpendicularity in mixed metric.

### Perfect differentials.

Having seen a couple examples of multivector line integrals, let’s now move on to figure out the structure of a line integral that has a “perfect” differential integrand. We can take a hint from the $$\mathbb{R}^3$$ vector result that we already know, namely
\label{eqn:fundamentalTheoremOfGC:120}
\int_A^B d\Bl \cdot \spacegrad f = f(B) – f(A).

It seems reasonable to guess that the relativistic generalization of this is
\label{eqn:fundamentalTheoremOfGC:140}
\int_A^B dx \cdot \grad f = f(B) – f(A).

Let’s check that, by expanding in coordinates
\label{eqn:fundamentalTheoremOfGC:160}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \partial_\mu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f} \\
&=
\int_A^B d\tau \frac{df}{d\tau} \\
&=
f(B) – f(A).
\end{aligned}

If we drop the dot product, will we have such a nice result? Let’s see:
\label{eqn:fundamentalTheoremOfGC:180}
\begin{aligned}
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \gamma_\mu \gamma^\nu \partial_\nu f \\
&=
\int_A^B d\tau \frac{dx^\mu}{d\tau} \PD{x^\mu}{f}
+
\int_A^B
d\tau
\sum_{\mu \ne \nu} \gamma_\mu \gamma^\nu
\frac{dx^\mu}{d\tau} \PD{x^\nu}{f}.
\end{aligned}

This scalar component of this integrand is a perfect differential, but the bivector part of the integrand is a complete mess, that we have no hope of generally integrating. It happens that if we consider one of the simplest parameterization examples, we can get a strong hint of how to generalize the differential operator to one that ends up providing a perfect differential. In particular, let’s integrate over a linear constant path, such as $$x(\tau) = \tau \gamma_0$$. For this path, we have
\label{eqn:fundamentalTheoremOfGC:200a}
\begin{aligned}
&=
\int_A^B \gamma_0 d\tau \lr{
\gamma^0 \partial_0 +
\gamma^1 \partial_1 +
\gamma^2 \partial_2 +
\gamma^3 \partial_3 } f \\
&=
\int_A^B d\tau \lr{
\PD{\tau}{f} +
\gamma_0 \gamma^1 \PD{x^1}{f} +
\gamma_0 \gamma^2 \PD{x^2}{f} +
\gamma_0 \gamma^3 \PD{x^3}{f}
}.
\end{aligned}

Just because the path does not have any $$x^1, x^2, x^3$$ component dependencies does not mean that these last three partials are neccessarily zero. For example $$f = f(x(\tau)) = \lr{ x^0 }^2 \gamma_0 + x^1 \gamma_1$$ will have a non-zero contribution from the $$\partial_1$$ operator. In that particular case, we can easily integrate $$f$$, but we have to know the specifics of the function to do the integral. However, if we had a differential operator that did not include any component off the integration path, we would ahve a perfect differential. That is, if we were to replace the gradient with the projection of the gradient onto the tangent space, we would have a perfect differential. We see that the function of the dot product in \ref{eqn:fundamentalTheoremOfGC:140} has the same effect, as it rejects any component of the gradient that does not lie on the tangent space.

## Definition 1.2: Vector derivative.

Given a spacetime manifold parameterized by $$x = x(u^0, \cdots u^{N-1})$$, with tangent vectors $$\Bx_\mu = \PDi{u^\mu}{x}$$, and reciprocal vectors $$\Bx^\mu \in \textrm{Span}\setlr{\Bx_\nu}$$, such that $$\Bx^\mu \cdot \Bx_\nu = {\delta^\mu}_\nu$$, the vector derivative is defined as
\label{eqn:fundamentalTheoremOfGC:240a}
\partial = \sum_{\mu = 0}^{N-1} \Bx^\mu \PD{u^\mu}{}.

Observe that if this is a full parameterization of the space ($$N = 4$$), then the vector derivative is identical to the gradient. The vector derivative is the projection of the gradient onto the tangent space at the point of evaluation.Furthermore, we designate $$\lrpartial$$ as the vector derivative allowed to act bidirectionally, as follows
\label{eqn:fundamentalTheoremOfGC:260a}
R \lrpartial S
=
R \Bx^\mu \PD{u^\mu}{S}
+
\PD{u^\mu}{R} \Bx^\mu S,

where $$R, S$$ are multivectors, and summation convention is implied. In this bidirectional action,
the vector factors of the vector derivative must stay in place (as they do not neccessarily commute with $$R,S$$), but the derivative operators apply in a chain rule like fashion to both functions.

Noting that $$\Bx_u \cdot \grad = \Bx_u \cdot \partial$$, we may rewrite the scalar line integral identity \ref{eqn:fundamentalTheoremOfGC:140} as
\label{eqn:fundamentalTheoremOfGC:220}
\int_A^B dx \cdot \partial f = f(B) – f(A).

However, as our example hinted at, the fundamental theorem for line integrals has a multivector generalization that does not rely on a dot product to do the tangent space filtering, and is more powerful. That generalization has the following form.

## Theorem 1.1: Fundamental theorem for line integrals.

Given multivector functions $$F, G$$, and a single parameter curve $$x(u)$$ with line element $$d^1 \Bx = \Bx_u du$$, then
\label{eqn:fundamentalTheoremOfGC:280a}
\int_A^B F d^1\Bx \lrpartial G = F(B) G(B) – F(A) G(A).

### Start proof:

Writing out the integrand explicitly, we find
\label{eqn:fundamentalTheoremOfGC:340}
\int_A^B F d^1\Bx \lrpartial G
=
\int_A^B \lr{
\PD{\alpha}{F} d\alpha\, \Bx_\alpha \Bx^\alpha G
+
F d\alpha\, \Bx_\alpha \Bx^\alpha \PD{\alpha}{G }
}

However for a single parameter curve, we have $$\Bx^\alpha = 1/\Bx_\alpha$$, so we are left with
\label{eqn:fundamentalTheoremOfGC:360}
\begin{aligned}
\int_A^B F d^1\Bx \lrpartial G
&=
\int_A^B d\alpha\, \PD{\alpha}{(F G)} \\
&=
\evalbar{F G}{B}

\evalbar{F G}{A}.
\end{aligned}

## More to come.

In the next installment we will explore surface integrals in spacetime, and the generalization of the fundamental theorem to multivector space time integrals.

# References

[1] Peeter Joot. Geometric Algebra for Electrical Engineers. Kindle Direct Publishing, 2019.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

## Lorentz transformations in Space Time Algebra (STA)

[If mathjax doesn’t display properly for you, click here for a PDF of this post]

## Motivation.

One of the remarkable features of geometric algebra are the complex exponential sandwiches that can be used to encode rotations in any dimension, or rotation like operations like Lorentz transformations in Minkowski spaces. In this post, we show some examples that unpack the geometric algebra expressions for Lorentz transformations operations of this sort. In particular, we will look at the exponential sandwich operations for spatial rotations and Lorentz boosts in the Dirac algebra, known as Space Time Algebra (STA) in geometric algebra circles, and demonstrate that these sandwiches do have the desired effects.

## Theorem 1.1: Lorentz transformation.

The transformation
\label{eqn:lorentzTransform:580}
x \rightarrow e^{B} x e^{-B} = x’,

where $$B = a \wedge b$$, is an STA 2-blade for any two linearly independent four-vectors $$a, b$$, is a norm preserving, that is
\label{eqn:lorentzTransform:600}
x^2 = {x’}^2.

### Start proof:

The proof is disturbingly trivial in this geometric algebra form
\label{eqn:lorentzTransform:40}
\begin{aligned}
{x’}^2
&=
e^{B} x e^{-B} e^{B} x e^{-B} \\
&=
e^{B} x x e^{-B} \\
&=
x^2 e^{B} e^{-B} \\
&=
x^2.
\end{aligned}

### End proof.

In particular, observe that we did not need to construct the usual infinitesimal representations of rotation and boost transformation matrices or tensors in order to demonstrate that we have spacetime invariance for the transformations. The rough idea of such a transformation is that the exponential commutes with components of the four-vector that lie off the spacetime plane specified by the bivector $$B$$, and anticommutes with components of the four-vector that lie in the plane. The end result is that the sandwich operation simplifies to
\label{eqn:lorentzTransform:60}
x’ = x_\parallel e^{-B} + x_\perp,

where $$x = x_\perp + x_\parallel$$ and $$x_\perp \cdot B = 0$$, and $$x_\parallel \wedge B = 0$$. In particular, using $$x = x B B^{-1} = \lr{ x \cdot B + x \wedge B } B^{-1}$$, we find that
\label{eqn:lorentzTransform:80}
\begin{aligned}
x_\parallel &= \lr{ x \cdot B } B^{-1} \\
x_\perp &= \lr{ x \wedge B } B^{-1}.
\end{aligned}

When $$B$$ is a spacetime plane $$B = b \wedge \gamma_0$$, then this exponential has a hyperbolic nature, and we end up with a Lorentz boost. When $$B$$ is a spatial bivector, we end up with a single complex exponential, encoding our plane old 3D rotation. More general $$B$$’s that encode composite boosts and rotations are also possible, but $$B$$ must be invertible (it should have no lightlike factors.) The rough geometry of these projections is illustrated in fig 1, where the spacetime plane is represented by $$B$$.

fig 1. Projection and rejection geometry.

What is not so obvious is how to pick $$B$$’s that correspond to specific rotation axes or boost directions. Let’s consider each of those cases in turn.

## Theorem 1.2: Boost.

The boost along a direction vector $$\vcap$$ and rapidity $$\alpha$$ is given by
\label{eqn:lorentzTransform:620}
x’ = e^{-\vcap \alpha/2} x e^{\vcap \alpha/2},

where $$\vcap = \gamma_{k0} \cos\theta^k$$ is an STA bivector representing a spatial direction with direction cosines $$\cos\theta^k$$.

### Start proof:

We want to demonstrate that this is equivalent to the usual boost formulation. We can start with decomposition of the four-vector $$x$$ into components that lie in and off of the spacetime plane $$\vcap$$.
\label{eqn:lorentzTransform:100}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx \vcap^2 } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap + \lr{ \Bx \wedge \vcap} \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$. The first two components lie in the boost plane, whereas the last is the spatial component of the vector that lies perpendicular to the boost plane. Observe that $$\vcap$$ anticommutes with the dot product term and commutes with he wedge product term, so we have
\label{eqn:lorentzTransform:120}
\begin{aligned}
x’
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha/2 }
e^{\vcap \alpha/2 }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0
e^{-\vcap \alpha/2 }
e^{\vcap \alpha/2 } \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap } \vcap } \gamma_0
e^{\vcap \alpha }
+
\lr{ \Bx \wedge \vcap } \vcap \gamma_0.
\end{aligned}

Noting that $$\vcap^2 = 1$$, we may expand the exponential in hyperbolic functions, and find that the boosted portion of the vector expands as
\label{eqn:lorentzTransform:260}
\begin{aligned}
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 e^{\vcap \alpha}
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0 \lr{ \cosh\alpha + \vcap \sinh \alpha} \\
&=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \lr{ \cosh\alpha – \vcap \sinh \alpha} \gamma_0 \\
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ -x^0 \sinh \alpha + \lr{ \Bx \cdot \vcap} \cosh \alpha } \vcap \gamma_0.
\end{aligned}

We are left with
\label{eqn:lorentzTransform:320}
\begin{aligned}
x’
&=
\lr{ x^0 \cosh\alpha – \lr{ \Bx \cdot \vcap} \sinh \alpha} \gamma_0
+
\lr{ \lr{ \Bx \cdot \vcap} \cosh \alpha -x^0 \sinh \alpha } \vcap \gamma_0
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0 \\
&=
\begin{bmatrix}
\gamma_0 & \vcap \gamma_0
\end{bmatrix}
\begin{bmatrix}
\cosh\alpha & – \sinh\alpha \\
-\sinh\alpha & \cosh\alpha
\end{bmatrix}
\begin{bmatrix}
x^0 \\
\Bx \cdot \vcap
\end{bmatrix}
+
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

which has the desired Lorentz boost structure. Of course, this is usually seen with $$\vcap = \gamma_{10}$$ so that the components in the coordinate column vector are $$(ct, x)$$.

## Theorem 1.3: Spatial rotation.

Given two linearly independent spatial bivectors $$\Ba = a^k \gamma_{k0}, \Bb = b^k \gamma_{k0}$$, a rotation of $$\theta$$ radians in the plane of $$\Ba, \Bb$$ from $$\Ba$$ towards $$\Bb$$, is given by
\label{eqn:lorentzTransform:640}
x’ = e^{-i\theta} x e^{i\theta},

where $$i = (\Ba \wedge \Bb)/\Abs{\Ba \wedge \Bb}$$, is a unit (spatial) bivector.

### Start proof:

Without loss of generality, we may pick $$i = \acap \bcap$$, where $$\acap^2 = \bcap^2 = 1$$, and $$\acap \cdot \bcap = 0$$. With such an orthonormal basis for the plane, we can decompose our four vector into portions that lie in and off the plane
\label{eqn:lorentzTransform:400}
\begin{aligned}
x
&= \lr{ x^0 + \Bx } \gamma_0 \\
&= \lr{ x^0 + \Bx i i^{-1} } \gamma_0 \\
&= \lr{ x^0 + \lr{ \Bx \cdot i } i^{-1} + \lr{ \Bx \wedge i } i^{-1} } \gamma_0.
\end{aligned}

The projective term lies in the plane of rotation, whereas the timelike and spatial rejection term are perpendicular. That is
\label{eqn:lorentzTransform:420}
\begin{aligned}
x_\parallel &= \lr{ \Bx \cdot i } i^{-1} \gamma_0 \\
x_\perp &= \lr{ x^0 + \lr{ \Bx \wedge i } i^{-1} } \gamma_0,
\end{aligned}

where $$x_\parallel \wedge i = 0$$, and $$x_\perp \cdot i = 0$$. The plane pseudoscalar $$i$$ anticommutes with $$x_\parallel$$, and commutes with $$x_\perp$$, so
\label{eqn:lorentzTransform:440}
\begin{aligned}
x’
&= e^{-i\theta/2} \lr{ x_\parallel + x_\perp } e^{i\theta/2} \\
&= x_\parallel e^{i\theta} + x_\perp.
\end{aligned}

However
\label{eqn:lorentzTransform:460}
\begin{aligned}
\lr{ \Bx \cdot i } i^{-1}
&=
\lr{ \Bx \cdot \lr{ \acap \wedge \bcap } } \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \bcap \bcap \acap
-\lr{\Bx \cdot \bcap} \acap \bcap \acap \\
&=
\lr{\Bx \cdot \acap} \acap
+\lr{\Bx \cdot \bcap} \bcap,
\end{aligned}

so
\label{eqn:lorentzTransform:480}
\begin{aligned}
x_\parallel e^{i\theta}
&=
\lr{
\lr{\Bx \cdot \acap} \acap
+
\lr{\Bx \cdot \bcap} \bcap
}
\gamma_0
\lr{
\cos\theta + \acap \bcap \sin\theta
} \\
&=
\acap \lr{
\lr{\Bx \cdot \acap} \cos\theta

\lr{\Bx \cdot \bcap} \sin\theta
}
\gamma_0
+
\bcap \lr{
\lr{\Bx \cdot \acap} \sin\theta
+
\lr{\Bx \cdot \bcap} \cos\theta
}
\gamma_0,
\end{aligned}

so
\label{eqn:lorentzTransform:500}
x’
=
\begin{bmatrix}
\acap & \bcap
\end{bmatrix}
\begin{bmatrix}
\cos\theta & – \sin\theta \\
\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
\Bx \cdot \acap \\
\Bx \cdot \bcap \\
\end{bmatrix}
\gamma_0
+
\lr{ x \wedge i} i^{-1} \gamma_0.

Observe that this rejection term can be explicitly expanded to
\label{eqn:lorentzTransform:520}
\lr{ \Bx \wedge i} i^{-1} \gamma_0 =
x –
\lr{ \Bx \cdot \acap } \acap \gamma_0

\lr{ \Bx \cdot \acap } \acap \gamma_0.

This is the timelike component of the vector, plus the spatial component that is normal to the plane. This exponential sandwich transformation rotates only the portion of the vector that lies in the plane, and leaves the rest (timelike and normal) untouched.

## Problem: Verify components relative to boost direction.

In the proof of thm. 1.2, the vector $$x$$ was expanded in terms of the spacetime split. An alternate approach, is to expand as
\label{eqn:lorentzTransform:340}
\begin{aligned}
x
&= x \vcap^2 \\
&= \lr{ x \cdot \vcap + x \wedge \vcap } \vcap \\
&= \lr{ x \cdot \vcap } \vcap + \lr{ x \wedge \vcap } \vcap.
\end{aligned}

Show that
\label{eqn:lorentzTransform:360}
\lr{ x \cdot \vcap } \vcap
=
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

and
\label{eqn:lorentzTransform:380}
\lr{ x \wedge \vcap } \vcap
=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0.

Let $$x = x^\mu \gamma_\mu$$, so that
\label{eqn:lorentzTransform:160}
\begin{aligned}
x \cdot \vcap
&=
\gpgradeone{ x^\mu \gamma_\mu \cos\theta^b \gamma_{b 0} } \\
&=
x^\mu \cos\theta^b \gpgradeone{ \gamma_\mu \gamma_{b 0} }
.
\end{aligned}

The $$\mu = 0$$ component of this grade selection is
\label{eqn:lorentzTransform:180}
=
-\gamma_b,

and for $$\mu = a \ne 0$$, we have
\label{eqn:lorentzTransform:200}
=
-\delta_{a b} \gamma_0,

so we have
\label{eqn:lorentzTransform:220}
\begin{aligned}
x \cdot \vcap
&=
x^0 \cos\theta^b (-\gamma_b)
+
x^a \cos\theta^b (-\delta_{ab} \gamma_0 ) \\
&=
-x^0 \vcap \gamma_0

x^b \cos\theta^b \gamma_0 \\
&=
– \lr{ x^0 \vcap + \Bx \cdot \vcap } \gamma_0,
\end{aligned}

where $$\Bx = x \wedge \gamma_0$$ is the spatial portion of the four vector $$x$$ relative to the stationary observer frame. Since $$\vcap$$ anticommutes with $$\gamma_0$$, the component of $$x$$ in the spacetime plane $$\vcap$$ is
\label{eqn:lorentzTransform:240}
\lr{ x \cdot \vcap } \vcap =
\lr{ x^0 + \lr{ \Bx \cdot \vcap} \vcap } \gamma_0,

as expected.

For the rejection term, we have
\label{eqn:lorentzTransform:280}
x \wedge \vcap
=
x^\mu \cos\theta^s \gpgradethree{ \gamma_\mu \gamma_{s 0} }.

The $$\mu = 0$$ term clearly contributes nothing, leaving us with:
\label{eqn:lorentzTransform:300}
\begin{aligned}
\lr{ x \wedge \vcap } \vcap
&=
\lr{ x \wedge \vcap } \cdot \vcap \\
&=
x^r \cos\theta^s \cos\theta^t \lr{ \lr{ \gamma_r \wedge \gamma_{s}} \gamma_0 } \cdot \lr{ \gamma_{t0} } \\
&=
\lr{ \gamma_r \wedge \gamma_{s} } \gamma_0 \gamma_{t0}
} \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ \gamma_r \wedge \gamma_{s}} \cdot \gamma_t \\
&=
-x^r \cos\theta^s \cos\theta^t \lr{ -\gamma_r \delta_{st} + \gamma_s \delta_{rt} } \\
&=
x^r \cos\theta^t \cos\theta^t \gamma_r

x^t \cos\theta^s \cos\theta^t \gamma_s \\
&=
\Bx \gamma_0
– (\Bx \cdot \vcap) \vcap \gamma_0 \\
&=
\lr{ \Bx \wedge \vcap} \vcap \gamma_0,
\end{aligned}

as expected. Is there a clever way to demonstrate this without resorting to coordinates?

## Problem: Rotation transformation components.

Given a unit spatial bivector $$i = \acap \bcap$$, where $$\acap \cdot \bcap = 0$$ and $$i^2 = -1$$, show that
\label{eqn:lorentzTransform:540}
\lr{ x \cdot i } i^{-1}
=
\lr{ \Bx \cdot i } i^{-1} \gamma_0
=
\lr{\Bx \cdot \acap } \acap \gamma_0
+
\lr{\Bx \cdot \bcap } \bcap \gamma_0,

and
\label{eqn:lorentzTransform:560}
\lr{ x \wedge i } i^{-1}
=
\lr{ \Bx \wedge i } i^{-1} \gamma_0
=
x –
\lr{\Bx \cdot \acap } \acap \gamma_0

\lr{\Bx \cdot \bcap } \bcap \gamma_0.

Also show that $$i$$ anticommutes with $$\lr{ x \cdot i } i^{-1}$$ and commutes with $$\lr{ x \wedge i } i^{-1}$$.

This problem is left for the reader, as I don’t feel like typing out my solution.

The first part of this problem can be done in the tedious coordinate approach used above, but hopefully there is a better way.

For the last (commutation) part of the problem, here is a hint. Let $$x \wedge i = n i$$, where $$n \cdot i = 0$$. The result then follows easily.

## Maxwell’s equation Lagrangian (geometric algebra and tensor formalism)

Maxwell’s equation using geometric algebra Lagrangian.

## Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians), but all of these seem more convoluted than they should be.
Here we do this from scratch, starting with the action principle for field variables, covering:

• Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of the action,
• Derivation of Maxwell’s equation (in it’s STA form) from the Maxwell Lagrangian,
• Relationship of the STA Maxwell Lagrangian to the tensor equivalent,
• Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,
• Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.
• Show that we may use a multivector valued Lagrangian with all of $$F^2$$, not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case, there is no better reference than [1].

## Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let $$\phi \rightarrow \phi + \delta \phi$$ be any variation of the field, such that the variation
$$\delta \phi = 0$$ vanishes at the boundaries of the action integral
\label{eqn:maxwells:2120}
S = \int d^4 x \LL(\phi, \partial_\nu \phi).

The extreme value of the action is found when the Euler-Lagrange equations
\label{eqn:maxwells:2140}
0 = \PD{\phi}{\LL} – \partial_\nu \PD{(\partial_\nu \phi)}{\LL},

are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each field.

### Start proof:

To ease the visual burden, designate the variation of the field by $$\delta \phi = \epsilon$$, and perform a first order expansion of the varied Lagrangian
\label{eqn:maxwells:20}
\begin{aligned}
\LL
&\rightarrow
\LL(\phi + \epsilon, \partial_\nu (\phi + \epsilon)) \\
&=
\LL(\phi, \partial_\nu \phi)
+
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon.
\end{aligned}

The variation of the Lagrangian is
\label{eqn:maxwells:40}
\begin{aligned}
\delta \LL
&=
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon \\
&=
\PD{\phi}{\LL} \epsilon +
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }

\epsilon \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{aligned}

which we may plug into the action integral to find
\label{eqn:maxwells:60}
\delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}
+
\int d^4 x
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }.

The last integral can be evaluated along the $$dx^\nu$$ direction, leaving
\label{eqn:maxwells:80}
\int d^3 x
\evalbar{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }{\Delta x^\nu},

where $$d^3 x = dx^\alpha dx^\beta dx^\gamma$$ is the product of differentials that does not include $$dx^\nu$$. By construction, $$\epsilon$$ vanishes on the boundary of the action integral so \ref{eqn:maxwells:80} is zero. The action takes its extreme value when
\label{eqn:maxwells:100}
0 = \delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}.

The proof is complete after noting that this must hold for all variations of the field $$\epsilon$$, which means that we must have
\label{eqn:maxwells:120}
0 =
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}.

### End proof.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian, which we will claim has the following form.

## Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian
\label{eqn:maxwells:2160}
\LL = – \frac{\epsilon_0 c}{2} F \cdot F + J \cdot A,

where $$F = \grad \wedge A$$, yields the vector portion of Maxwell’s equation
\label{eqn:maxwells:2180}
\grad \cdot F = \inv{\epsilon_0 c} J,

which implies
\label{eqn:maxwells:2200}
\grad F = \inv{\epsilon_0 c} J.

This is Maxwell’s equation.

### Start proof:

We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the four $$A_\mu$$ components of the potential), and cast it into four-vector form
\label{eqn:maxwells:140}
0 = \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL.

Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us
\label{eqn:maxwells:160}
0 = \gamma_\nu \lr{ \PD{A_\nu}{(A \cdot J)} + \frac{\epsilon_0 c}{2} \partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)} }.

The interaction term above is just
\label{eqn:maxwells:180}
\gamma_\nu \PD{A_\nu}{(A \cdot J)}
=
\gamma_\nu \PD{A_\nu}{(A_\mu J^\mu)}
=
\gamma_\nu J^\nu
=
J,

but the kinetic term takes a bit more work. Let’s start with evaluating
\label{eqn:maxwells:200}
\begin{aligned}
\PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
\PD{(\partial_\mu A_\nu)}{ F } \cdot F
+
F \cdot \PD{(\partial_\mu A_\nu)}{ F } \\
&=
2 \PD{(\partial_\mu A_\nu)}{ F } \cdot F \\
&=
2 \PD{(\partial_\mu A_\nu)}{ (\partial_\alpha A_\beta) } \lr{ \gamma^\alpha \wedge \gamma^\beta } \cdot F \\
&=
2 \lr{ \gamma^\mu \wedge \gamma^\nu } \cdot F.
\end{aligned}

We hit this with the $$\mu$$-partial and expand as a scalar selection to find
\label{eqn:maxwells:220}
\begin{aligned}
\partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
2 \lr{ \partial_\mu \gamma^\mu \wedge \gamma^\nu } \cdot F \\
&=
– 2 (\gamma^\nu \wedge \grad) \cdot F \\
&=
&=
&=
– 2 \gamma^\nu \cdot \lr{ \grad \cdot F }.
\end{aligned}

Putting all the pieces together yields
\label{eqn:maxwells:240}
0
= J – \epsilon_0 c \gamma_\nu \lr{ \gamma^\nu \cdot \lr{ \grad \cdot F } }
= J – \epsilon_0 c \lr{ \grad \cdot F },

but
\label{eqn:maxwells:260}
\begin{aligned}
&=
&=
&=
\end{aligned}

so the multivector field equations for this Lagrangian are
\label{eqn:maxwells:280}
\grad F = \inv{\epsilon_0 c} J,

as claimed.

## Problem: Correspondence with tensor formalism.

Cast the Lagrangian of \ref{eqn:maxwells:2160} into the conventional tensor form
\label{eqn:maxwells:300}
\LL = \frac{\epsilon_0 c}{4} F_{\mu\nu} F^{\mu\nu} + A^\mu J_\mu.

Also show that the four-vector component of Maxwell’s equation $$\grad \cdot F = J/(\epsilon_0 c)$$ is equivalent to the conventional tensor form of the Gauss-Ampere law
\label{eqn:maxwells:320}
\partial_\mu F^{\mu\nu} = \inv{\epsilon_0 c} J^\nu,

where $$F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu$$ as usual. Also show that the trivector component of Maxwell’s equation $$\grad \wedge F = 0$$ is equivalent to the tensor form of the Gauss-Faraday law
\label{eqn:maxwells:340}
\partial_\alpha \lr{ \epsilon^{\alpha \beta \mu \nu} F_{\mu\nu} } = 0.

To show the Lagrangian correspondence we must expand $$F \cdot F$$ in coordinates
\label{eqn:maxwells:360}
\begin{aligned}
F \cdot F
&=
( \grad \wedge A ) \cdot
( \grad \wedge A ) \\
&=
\lr{ (\gamma^\mu \partial_\mu) \wedge (\gamma^\nu A_\nu) }
\cdot
\lr{ (\gamma^\alpha \partial_\alpha) \wedge (\gamma^\beta A_\beta) } \\
&=
\lr{ \gamma^\mu \wedge \gamma^\nu } \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta }
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
\lr{
{\delta^\mu}_\beta
{\delta^\nu}_\alpha

{\delta^\mu}_\alpha
{\delta^\nu}_\beta
}
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
– \partial_\mu A_\nu \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
– \partial_\mu A_\nu F^{\mu\nu} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu F^{\mu\nu}
+
\partial_\nu A_\mu F^{\nu\mu}
} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu

\partial_\nu A_\mu
}
F^{\mu\nu} \\
&=

\inv{2}
F_{\mu\nu}
F^{\mu\nu}.
\end{aligned}

With a substitution of this and $$A \cdot J = A_\mu J^\mu$$ back into the Lagrangian, we recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts
\label{eqn:maxwells:1580}

Now the vector component may be expanded in coordinates by dotting both sides with $$\gamma^\nu$$ to find
\label{eqn:maxwells:1600}
\inv{\epsilon_0 c} \gamma^\nu \cdot J = J^\nu,

and
\label{eqn:maxwells:1620}
\begin{aligned}
\gamma^\nu \cdot
&=
\partial_\mu \gamma^\nu \cdot \lr{ \gamma^\mu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } \partial^\alpha A^\beta } \\
&=
\lr{
{\delta^\mu}_\alpha
{\delta^\nu}_\beta

{\delta^\nu}_\alpha
{\delta^\mu}_\beta
}
\partial_\mu
\partial^\alpha A^\beta \\
&=
\partial_\mu
\lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
\partial_\mu F^{\mu\nu}.
\end{aligned}

Equating \ref{eqn:maxwells:1600} and \ref{eqn:maxwells:1620} finishes the first part of the job. For the trivector component, we have
\label{eqn:maxwells:1640}
0
= (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } \partial_\alpha A_\beta
= \inv{2} (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } F_{\alpha \beta}.

Wedging with $$\gamma^\tau$$ and then multiplying by $$-2 I$$ we find
\label{eqn:maxwells:1660}
0 = – \lr{ \gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau } I \partial_\mu F_{\alpha \beta},

but
\label{eqn:maxwells:1680}
\gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau = -I \epsilon^{\mu \alpha \beta \tau},

which leaves us with
\label{eqn:maxwells:1700}
\epsilon^{\mu \alpha \beta \tau} \partial_\mu F_{\alpha \beta} = 0,

as expected.

## Problem: Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications

\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,

and
\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t,

and
\label{eqn:maxwells:1560}
J^\mu = \lr{ c \rho, \BJ },

the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be recovered from \ref{eqn:maxwells:320}.

The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from [2].

## Problem: Correspondence with grad and curl form of Maxwell’s equations.

With $$J = c \rho \gamma_0 + J^k \gamma_k$$ and $$F = \BE + I c \BB$$ show that Maxwell’s equation, as stated in \ref{eqn:maxwells:2200} expand to the conventional div and curl expressions for Maxwell’s equations.

To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with $$\gamma_0$$
\label{eqn:maxwells:1720}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,

and then select each grade separately. First observe that the RHS above has scalar and bivector components, as
\label{eqn:maxwells:1740}
\gamma_0 J
=
c \rho + J^k \gamma_0 \gamma_k.

In terms of the spatial bivector basis $$\Be_k = \gamma_k \gamma_0$$, the RHS of \ref{eqn:maxwells:1720} is
\label{eqn:maxwells:1760}
\gamma_0 \frac{J}{\epsilon_0 c} = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.

For the LHS, first note that
\label{eqn:maxwells:1780}
\begin{aligned}
&=
\gamma_0
\lr{
\gamma_0 \partial^0 +
\gamma_k \partial^k
} \\
&=
\partial_0 – \gamma_0 \gamma_k \partial_k \\
&=
\end{aligned}

We can express all the the LHS of \ref{eqn:maxwells:1720} in the bivector spatial basis, so that Maxwell’s equation in multivector form is
\label{eqn:maxwells:1800}
\lr{ \inv{c} \PD{t}{} + \spacegrad } \lr{ \BE + I c \BB } = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.

Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the following set of respective equations
\label{eqn:maxwells:1840}

\label{eqn:maxwells:1860}
\inv{c} \partial_t \BE + I c \spacegrad \wedge \BB = – \mu_0 c \BJ

\label{eqn:maxwells:1880}
\spacegrad \wedge \BE + I \partial_t \BB = 0

\label{eqn:maxwells:1900}
I c \spacegrad \cdot B = 0,

which we can rewrite after some duality transformations (and noting that $$\mu_0 \epsilon_0 c^2 = 1$$), we have
\label{eqn:maxwells:1940}

\label{eqn:maxwells:1960}
\spacegrad \cross \BB – \mu_0 \epsilon_0 \PD{t}{\BE} = \mu_0 \BJ

\label{eqn:maxwells:1980}
\spacegrad \cross \BE + \PD{t}{\BB} = 0

\label{eqn:maxwells:2000}

which are Maxwell’s equations in their traditional form.

## Problem: Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form
\label{eqn:maxwells:2220}
\LL = – \frac{\epsilon_0 c}{2} F^2 + J \cdot A,

which omits the scalar selection of the Lagrangian in \ref{eqn:maxwells:2160}, also represents Maxwell’s equation. Discuss the scalar and pseudoscalar components of $$F^2$$, and show why the pseudoscalar inclusion is irrelevant.

The quantity $$F^2 = F \cdot F + F \wedge F$$ has both scalar and pseudoscalar
components. Note that unlike vectors, a bivector wedge in 4D with itself need not be zero (example: $$\gamma_0 \gamma_1 + \gamma_2 \gamma_3$$ wedged with itself).
We can see this multivector nature nicely by expansion in terms of the electric and magnetic fields
\label{eqn:maxwells:2020}
\begin{aligned}
F^2
&= \lr{ \BE + I c \BB }^2 \\
&= \BE^2 – c^2 \BB^2 + I c \lr{ \BE \BB + \BB \BE } \\
&= \BE^2 – c^2 \BB^2 + 2 I c \BE \cdot \BB.
\end{aligned}

Both the scalar and pseudoscalar parts of $$F^2$$ are Lorentz invariant, a requirement of our Lagrangian, but most Maxwell equation Lagrangians only include the scalar $$\BE^2 – c^2 \BB^2$$ component of the field square. If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we quickly find the same results
\label{eqn:maxwells:2040}
\begin{aligned}
0
&= \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL \\
&= \gamma_\nu \lr{ J^\nu + \frac{\epsilon_0 c}{2} \partial_\mu
\lr{
(\gamma^\mu \wedge \gamma^\nu) F
+
F (\gamma^\mu \wedge \gamma^\nu)
}
}.
\end{aligned}

Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since
\label{eqn:maxwells:2060}
\gpgrade{ X F }{0,4} = \inv{2} \lr{ X F + F X },

for any two bivectors $$X, F$$. This leaves
\label{eqn:maxwells:2080}
\begin{aligned}
0
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ (\grad \wedge \gamma^\nu) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F + (\gamma^\nu \cdot \grad) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F }{0,4} \\
&= J – \epsilon_0 c \gamma_\nu
\lr{
\gamma^\nu \cdot \lr{ \grad \cdot F } + \gamma^\nu \wedge \grad \wedge F
}.
\end{aligned}

However, since $$\grad \wedge F = \grad \wedge \grad \wedge A = 0$$, we see that there is no contribution from the $$F \wedge F$$ pseudoscalar component of the Lagrangian, and we are left with
\label{eqn:maxwells:2100}
\begin{aligned}
0
&= J – \epsilon_0 c (\grad \cdot F) \\
&= J – \epsilon_0 c \grad F,
\end{aligned}

which is Maxwell’s equation, as before.

# References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Quantum field theory. Kindle Direct Publishing, 2018.