phy1520

Quadratic Zeeman effect

December 13, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr. 5.18

Work out the quadratic Zeeman effect for the ground state hydrogen atom due to the usually neglected \( e^2 \BA^2/2 m_e c^2 \) term in the Hamiltonian.

A:

The first order energy shift is

For a z-oriented magnetic field we can use

\begin{equation}\label{eqn:quadraticZeeman:20}
\BA = \frac{B}{2} \setlr{ -y, x, 0 },
\end{equation}

so the perturbation potential is

\begin{equation}\label{eqn:quadraticZeeman:40}
\begin{aligned}
V
&= \frac{e^2 \BA^2}{2 m_e c^2} \\
&= \frac{e^2 \BB^2 (x^2 + y^2)}{8 m_e c^2} \\
&= \frac{ e^2 \BB^2 r^2 \sin^2\theta }{8 m_e c^2}
\end{aligned}
\end{equation}

The ground state wave function is

\begin{equation}\label{eqn:quadraticZeeman:60}
\begin{aligned}
\psi_0
&= \braket{\Bx}{0} \\
&= \inv{\sqrt{\pi a_0^3}} e^{-r/a_0},
\end{aligned}
\end{equation}

so the energy shift is

\begin{equation}\label{eqn:quadraticZeeman:80}
\begin{aligned}
\Delta
&= \bra{0} V \ket{0} \\
&= \inv{ \pi a_0^3 } 2 \pi \frac{ e^2 \BB^2 }{8 m_e c^2} \int_0^\infty r^2 \sin\theta e^{-2r/a_0} r^2 \sin^2\theta dr d\theta \\
&=
\frac{ e^2 \BB^2 }{4 a_0^3 m_e c^2}
\int_0^\infty r^4 e^{-2r/a_0} dr \int_0^\pi \sin^3\theta d\theta \\
&= –
\frac{ e^2 \BB^2 }{4 a_0^3 m_e c^2}
\frac{4!}{(2/a_0)^{4+1} } \evalrange{\lr{u – \frac{u^3}{3}}}{1}{-1} \\
&=
\frac{ e^2 a_0^2 \BB^2 }{4 m_e c^2}.
\end{aligned}
\end{equation}

If this energy shift is written in terms of a diamagnetic susceptibility \( \chi \) defined by

\begin{equation}\label{eqn:quadraticZeeman:100}
\Delta = -\inv{2} \chi \BB^2,
\end{equation}

the diamagnetic susceptibility is

\begin{equation}\label{eqn:quadraticZeeman:120}
\chi = -\frac{ e^2 a_0^2 }{2 m_e c^2}.
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

L_y perturbation

December 13, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: \( L_y \) perturbation. [1] pr. 5.17

Find the first non-zero energy shift for the perturbed Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:20}
H = A \BL^2 + B L_z + C L_y = H_0 + V.
\end{equation}

A:

The energy eigenvalues for state \( \ket{l, m} \) prior to perturbation are

\begin{equation}\label{eqn:LyPerturbation:40}
A \Hbar^2 l(l+1) + B \Hbar m.
\end{equation}

The first order energy shift is zero

\begin{equation}\label{eqn:LyPerturbation:60}
\begin{aligned}
\Delta^1
&=
\bra{l, m} C L_y \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
0,
\end{aligned}
\end{equation}

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

\begin{equation}\label{eqn:LyPerturbation:80}
\ket{l, m}’ = \sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m},
\end{equation}

and the next order energy shift is
\begin{equation}\label{eqn:LyPerturbation:100}
\begin{aligned}
\Delta^2
&=
\bra{l m} V
\sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{\bra{l, m} V \ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{ \Abs{ \bra{l’, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l’, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
\lr{ A \Hbar^2 l(l+1) + B \Hbar m }
-\lr{ A \Hbar^2 l(l+1) + B \Hbar m’ }
} \\
&=
\inv{B \Hbar} \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
m – m’
}.
\end{aligned}
\end{equation}

The sum over \( l’ \) was eliminated because \( V \) only changes the \( m \) of any state \( \ket{l,m} \), so the matrix element \( \bra{l’,m’} V \ket{l, m} \) must includes a \( \delta_{l’, l} \) factor.
Since we are now summing over \( m’ \ne m \), some of the matrix elements in the numerator should now be non-zero, unlike the case when the zero first order energy shift was calculated above.

\begin{equation}\label{eqn:LyPerturbation:120}
\begin{aligned}
\bra{l, m’} C L_y \ket{l, m}
&=
\frac{C}{2 i}
\bra{l, m’} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m’}
\lr{
L_{+}
\ket{l, m}
– L_{-}
\ket{l, m}
} \\
&=
\frac{C \Hbar}{2 i}
\bra{l, m’}
\lr{
\sqrt{(l – m)(l + m + 1)} \ket{l, m + 1}

\sqrt{(l + m)(l – m + 1)} \ket{l, m – 1}
} \\
&=
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.
\end{aligned}
\end{equation}

After squaring and summing, the cross terms will be zero since they involve products of delta functions with different indices. That leaves

\begin{equation}\label{eqn:LyPerturbation:140}
\begin{aligned}
\Delta^2
&=
\frac{C^2 \Hbar}{4 B} \sum_{m’ \ne m} \frac{
(l – m)(l + m + 1) \delta_{m’, m + 1}

(l + m)(l – m + 1) \delta_{m’, m – 1}
}{
m – m’
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{
\frac{ (l – m)(l + m + 1) }{ m – (m+1) }

\frac{ (l + m)(l – m + 1) }{ m – (m-1)}
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{

(l^2 – m^2 + l – m)

(l^2 – m^2 + l + m)
} \\
&=
-\frac{C^2 \Hbar}{2 B} (l^2 – m^2 + l ),
\end{aligned}
\end{equation}

so to first order the energy shift is

\begin{equation}\label{eqn:LyPerturbation:160}
\boxed{
A \Hbar^2 l(l+1) + B \Hbar m \rightarrow
\Hbar l(l+1)
\lr{
A \Hbar
-\frac{C^2}{2 B}
}
+ B \Hbar m
+\frac{C^2 m^2 \Hbar}{2 B} .
}
\end{equation}

Exact perturbation equation

If we wanted to solve the Hamiltonian exactly, we’ve have to diagonalize the \( 2 m + 1 \) dimensional Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:180}
\bra{l, m’} H \ket{l, m}
=
\lr{ A \Hbar^2 l(l+1) + B \Hbar m } \delta_{m’, m}
+
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.
\end{equation}

This Hamiltonian matrix has a very regular structure

\begin{equation}\label{eqn:LyPerturbation:200}
\begin{aligned}
H &=
(A l(l+1) \Hbar^2 – B \Hbar (l+1)) I \\
&+ B \Hbar
\begin{bmatrix}
1 & & & & \\
& 2 & & & \\
& & 3 & & \\
& & & \ddots & \\
& & & & 2 l + 1
\end{bmatrix} \\
&+
\frac{C \Hbar}{i}
\begin{bmatrix}
0 & -\sqrt{(2l-1)(1)} & & & \\
\sqrt{(2l-1)(1)} & 0 & -\sqrt{(2l-2)(2)}& & \\
& \sqrt{(2l-2)(2)} & & & \\
& & \ddots & & \\
& & & 0 & – \sqrt{(1)(2l-1)} \\
& & & \sqrt{(1)(2l-1)} & 0
\end{bmatrix}
\end{aligned}
\end{equation}

Solving for the eigenvalues of this Hamiltonian for increasing \( l \) in Mathematica (sakuraiProblem5.17a.nb), it appears that the eigenvalues are

\begin{equation}\label{eqn:LyPerturbation:220}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \sqrt{ 1 + \frac{4 C^2}{B^2} },
\end{equation}

so to first order in \( C^2 \), these are

\begin{equation}\label{eqn:LyPerturbation:221}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \lr{ 1 + \frac{2 C^2}{B^2} }.
\end{equation}

We have a \( C^2 \Hbar/B \) term in both the perturbative energy shift, and the first order expansion of the exact solution. Comparing this for the \( l = 5 \) case, the coefficients of \( C^2 \Hbar/B \) in the perturbative solution are all negative \( -17.5, -17., -16.5, -16., -15.5, -15., -14.5, -14., -13.5, -13., -12.5 \), whereas the coefficient of \( C^2 \Hbar/B \) in the first order expansion of the exact solution are \( 2 m \), ranging from \( [-10, 10] \).

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

L_z and L^2 eigenvalues and probabilities for a given wave function

December 13, 2015 phy1520 , , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] 3.17

Given a wave function

\begin{equation}\label{eqn:LsquaredLzProblem:20}
\psi(r,\theta, \phi) = f(r) \lr{ x + y + 3 z },
\end{equation}

  • (a) Determine if this wave function is an eigenfunction of \( \BL^2 \), and the value of \( l \) if it is an eigenfunction.

  • (b) Determine the probabilities for the particle to be found in any given \( \ket{l, m} \) state,
  • (c) If it is known that \( \psi \) is an energy eigenfunction with energy \( E \) indicate how we can find \( V(r) \).

A: (a)

Using
\begin{equation}\label{eqn:LsquaredLzProblem:40}
\BL^2
=
-\Hbar^2 \lr{ \inv{\sin^2\theta} \partial_{\phi\phi} + \inv{\sin\theta} \partial_\theta \lr{ \sin\theta \partial_\theta} },
\end{equation}

and

\begin{equation}\label{eqn:LsquaredLzProblem:60}
\begin{aligned}
x &= r \sin\theta \cos\phi \\
y &= r \sin\theta \sin\phi \\
z &= r \cos\theta
\end{aligned}
\end{equation}

it’s a quick computation to show that

\begin{equation}\label{eqn:LsquaredLzProblem:80}
\BL^2 \psi = 2 \Hbar^2 \psi = 1(1 + 1) \Hbar^2 \psi,
\end{equation}

so this function is an eigenket of \( \BL^2 \) with an eigenvalue of \( 2 \Hbar^2 \), which corresponds to \( l = 1 \), a p-orbital state.

(b)

Recall that the angular representation of \( L_z \) is

\begin{equation}\label{eqn:LsquaredLzProblem:100}
L_z = -i \Hbar \PD{\phi},
\end{equation}

so we have

\begin{equation}\label{eqn:LsquaredLzProblem:120}
\begin{aligned}
L_z x &= i \Hbar y \\
L_z y &= – i \Hbar x \\
L_z z &= 0,
\end{aligned}
\end{equation}

The \( L_z \) action on \( \psi \) is

\begin{equation}\label{eqn:LsquaredLzProblem:140}
L_z \psi = -i \Hbar r f(r) \lr{ – y + x }.
\end{equation}

This wave function is not an eigenket of \( L_z \). Expressed in terms of the \( L_z \) basis states \( e^{i m \phi} \), this wave function is

\begin{equation}\label{eqn:LsquaredLzProblem:160}
\begin{aligned}
\psi
&= r f(r) \lr{ \sin\theta \lr{ \cos\phi + \sin\phi} + \cos\theta } \\
&= r f(r) \lr{ \frac{\sin\theta}{2} \lr{ e^{i \phi} \lr{ 1 + \inv{i}} + e^{-i\phi} \lr{ 1 – \inv{i} } } + \cos\theta } \\
&= r f(r) \lr{
\frac{(1-i)\sin\theta}{2} e^{1 i \phi}
+
\frac{(1+i)\sin\theta}{2} e^{- 1 i \phi}
+ \cos\theta e^{0 i \phi}
}
\end{aligned}
\end{equation}

Assuming that \( \psi \) is normalized, the probabilities for measuring \( m = 1,-1,0 \) respectively are

\begin{equation}\label{eqn:LsquaredLzProblem:180}
\begin{aligned}
P_{\pm 1}
&= 2 \pi \rho \Abs{\frac{1\mp i}{2}}^2 \int_0^\pi \sin\theta d\theta \sin^2 \theta \\
&= -2 \pi \rho \int_1^{-1} du (1-u^2) \\
&= 2 \pi \rho \evalrange{ \lr{ u – \frac{u^3}{3} } }{-1}{1} \\
&= 2 \pi \rho \lr{ 2 – \frac{2}{3}} \\
&= \frac{ 8 \pi \rho}{3},
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:LsquaredLzProblem:200}
P_{0} = 2 \pi \rho \int_0^\pi \sin\theta \cos\theta = 0,
\end{equation}

where

\begin{equation}\label{eqn:LsquaredLzProblem:220}
\rho = \int_0^\infty r^4 \Abs{f(r)}^2 dr.
\end{equation}

Because the probabilities must sum to 1, this means the \( m = \pm 1 \) states are equiprobable with \( P_{\pm} = 1/2 \), fixing \( \rho = 3/16\pi \), even without knowing \( f(r) \).

(c)

The operator \( r^2 \Bp^2 \) can be decomposed into a \( \BL^2 \) component and some other portions, from which we can write

\begin{equation}\label{eqn:LsquaredLzProblem:240}
\begin{aligned}
H \psi
&= \lr{ \frac{\Bp^2}{2m} + V(r) } \psi \\
&=
\lr{
– \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \inv{\Hbar^2 r^2} \BL^2 } + V(r) } \psi.
\end{aligned}
\end{equation}

(See: [1] eq. 6.21)

In this case where \( \BL^2 \psi = 2 \Hbar^2 \psi \) we can rearrange for \( V(r) \)

\begin{equation}\label{eqn:LsquaredLzProblem:260}
\begin{aligned}
V(r)
&= E + \inv{\psi} \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \frac{2}{r^2} } \psi \\
&= E + \inv{f(r)} \frac{\Hbar^2}{2m} \lr{ \partial_{rr} + \frac{2}{r} \partial_r – \frac{2}{r^2} } f(r).
\end{aligned}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

PHY1520H Graduate Quantum Mechanics. Lecture 22: Van der Wall potential and Stark effect. Taught by Prof. Arun Paramekanti

December 10, 2015 phy1520 , , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering [1] ch. 5 content.

Another approach (for last time?)

Imagine we perturb a potential, say a harmonic oscillator with an electric field

\begin{equation}\label{eqn:qmLecture22:20}
V_0(x) = \inv{2} k x^2
\end{equation}
\begin{equation}\label{eqn:qmLecture22:40}
V(x) = \mathcal{E} e x
\end{equation}

After minimizing the energy, using \( \PDi{x}{V} = 0 \), we get

\begin{equation}\label{eqn:qmLecture22:60}
\inv{2} k x^2 + \mathcal{E} e x \rightarrow k x^\conj = – e \mathcal{E}
\end{equation}

\begin{equation}\label{eqn:qmLecture22:80}
p^\conj = -e x^\conj = – \frac{e^2 \mathcal{E}}{k}
\end{equation}

For such a system the polarizability is

\begin{equation}\label{eqn:qmLecture22:100}
\alpha = \frac{e^2 }{k}
\end{equation}

\begin{equation}\label{eqn:qmLecture22:120}
\begin{aligned}
\inv{2} k \lr{ -\frac{ e \mathcal{E}}{k} }^2 + \mathcal{E} e \lr{ – \frac{e \mathcal{E}}{k} }
&= – \inv{2} \lr{ \frac{e^2}{k} } \mathcal{E}^2 \\
&= – \inv{2} \alpha \mathcal{E}^2
\end{aligned}
\end{equation}

Van der Wall potential

\begin{equation}\label{eqn:qmLecture22:140}
H_0 =
H_{0 1} + H_{0 2},
\end{equation}

where

\begin{equation}\label{eqn:qmLecture22:160}
H_{0 \alpha} = \frac{p_\alpha^2}{2m} – \frac{e^2}{4 \pi \epsilon_0 \Abs{ \Br_\alpha – \BR_\alpha} }, \qquad \alpha = 1,2
\end{equation}

The full interaction potential is

\begin{equation}\label{eqn:qmLecture22:180}
V =
\frac{e^2}{4 \pi \epsilon_0} \lr{
\inv{\Abs{\BR_1 – \BR_2}}
+
\inv{\Abs{\Br_1 – \Br_2}}

\inv{\Abs{\Br_1 – \BR_2}}

\inv{\Abs{\Br_2 – \BR_1}}
}
\end{equation}

Let

\begin{equation}\label{eqn:qmLecture22:200}
\Bx_\alpha = \Br_\alpha – \BR_\alpha,
\end{equation}

\begin{equation}\label{eqn:qmLecture22:220}
\BR = \BR_1 – \BR_2,
\end{equation}

as sketched in fig. 1.

fig. 1.  Two atom interaction.

fig. 1. Two atom interaction.

\begin{equation}\label{eqn:qmLecture22:240}
H_{0 \alpha}
=
\frac{\Bp^2}{2m}
-\frac{e^2}{4 \pi \epsilon_0 \Abs{\Bx_\alpha}}
\end{equation}

which allows the total interaction potential to be written
\begin{equation}\label{eqn:qmLecture22:260}
V =
\frac{e^2}{4 \pi \epsilon_0 R}
\lr{
1
+
\frac{R}{\Abs{\Bx_1 – \Bx_2 + \BR}}

\frac{R}{\Abs{\Bx_1 + \BR}}

\frac{R}{\Abs{-\Bx_2 + \BR}}
}
\end{equation}

For \( R \gg x_1, x_2 \), this interaction potential, after a multipole expansion, is approximately

\begin{equation}\label{eqn:qmLecture22:280}
V =
\frac{e^2}{4 \pi \epsilon_0} \lr{
\frac{\Bx_1 \cdot \Bx_2}{\Abs{\BR}^3}
-3 \frac{
(\Bx_1 \cdot \BR)
(\Bx_2 \cdot \BR)
}{\Abs{\BR}^5}
}
\end{equation}

1. \( O(\lambda) \)

.

With

\begin{equation}\label{eqn:qmLecture22:300}
\psi_0 = \ket{ 1s, 1s }
\end{equation}

\begin{equation}\label{eqn:qmLecture22:320}
\Delta E^{(1)} = \bra{\psi_0} V \ket{\psi_0}
\end{equation}

The two particle wave functions are of the form

\begin{equation}\label{eqn:qmLecture22:340}
\braket{ \Bx_1, \Bx_2 }{\psi_0} =
\psi_{1s}(\Bx_1)
\psi_{1s}(\Bx_2),
\end{equation}

so braket integrals must be evaluated over a six-fold space. Recall that

\begin{equation}\label{eqn:qmLecture22:740}
\psi_{1s} = \inv{\sqrt{\pi} a_0^{3/2} } e^{-r/a_0},
\end{equation}

so

\begin{equation}\label{eqn:qmLecture22:760}
\bra{\psi_{1s}} x_i \ket{\psi_{1s}}
\propto
\int_0^\pi \sin\theta d\theta \int_0^{2\pi} d\phi x_i
\end{equation}

where
\begin{equation}\label{eqn:qmLecture22:780}
x_i \in \setlr{ r \sin\theta \cos\phi, r \sin\theta \sin\phi, r \cos\theta }.
\end{equation}

The \( x, y \) integrals are zero because of the \( \phi \) integral, and the \( z \) integral is proportional to \( \int_0^\pi \sin(2 \theta) d\theta \), which is also zero. This leads to zero averages

\begin{equation}\label{eqn:qmLecture22:360}
\expectation{\Bx_1} = 0 = \expectation{\Bx_2}
\end{equation}

so

\begin{equation}\label{eqn:qmLecture22:380}
\Delta E^{(1)} = 0.
\end{equation}

2. \( O(\lambda^2) \)

.

\begin{equation}\label{eqn:qmLecture22:400}
\begin{aligned}
\Delta E^{(2)}
&= \sum_{n \ne 0} \frac{ \Abs{ \bra{\psi_n } V \ket{\psi_0} }^2 }{E_0 – E_n} \\
&= \sum_{n \ne 0} \frac{ \bra{\psi_0 } V \ket{\psi_n} \bra{\psi_n } V \ket{\psi_0} }{E_0 – E_n}.
\end{aligned}
\end{equation}

This is a sum over all excited states. We expect that this will be of the form

\begin{equation}\label{eqn:qmLecture22:420}
\Delta E^{(2)} = – \lr{ \frac{e^2}{4 \pi \epsilon_0} }^2 \frac{C_6}{R^6}
\end{equation}

\( \Bx_1 \) and \( \Bx_2 \) are dipole operators. The first time this has a non-zero expectation is when we go from the 1s to the 2p states (both 1s and 2s states are spherically symmetric).

Noting that \( E_n = -e^2/2 n^2 a_0 \), we can compute a minimum bound for the energy denominator

\begin{equation}\label{eqn:qmLecture22:440}
\begin{aligned}
\lr{E_n – E_0}^{\mathrm{min}}
&= 2 \lr{ E_{2p} – E_{1s} } \\
&= 2 E_{1s} \lr{ \inv{4} – 1 } \\
&= 2 \frac{3}{4} \Abs{E_{1s}} \\
&= \frac{3}{2} \Abs{E_{1s}}.
\end{aligned}
\end{equation}

Note that the factor of two above comes from summing over the energies for both electrons. This gives us

\begin{equation}\label{eqn:qmLecture22:460}
C_6
=
\frac{3}{2} \Abs{E_{1s}}
\bra{\psi_0 } \tilde{V} \ket{\psi_0},
\end{equation}

where

\begin{equation}\label{eqn:qmLecture22:480}
\tilde{V} =
\lr{
\Bx_1 \cdot \Bx_2
-3
(\Bx_1 \cdot \Rcap)
(\Bx_2 \cdot \Rcap)
}
\end{equation}

What about degeneracy?

\begin{equation}\label{eqn:qmLecture22:500}
\Delta E^{(2)}_n
= \sum_{m \ne n} \frac{ \Abs{ \bra{\psi_n } V \ket{\psi_0} }^2 }{E_0 – E_n}
\end{equation}

If \( \bra{\psi_n} V \ket{\psi_m} \propto \delta_{n m} \) then it’s okay.
In general the we can’t expect the matrix element will be anything but fully populated, say

\begin{equation}\label{eqn:qmLecture22:520}
V =
\begin{bmatrix}
V_{11} & V_{12} & V_{13} & V_{14} \\
V_{21} & V_{22} & V_{23} & V_{24} \\
V_{31} & V_{32} & V_{33} & V_{34} \\
V_{41} & V_{42} & V_{43} & V_{44} \\
\end{bmatrix},
\end{equation}

If we choose a basis so that

\begin{equation}\label{eqn:qmLecture22:540}
V =
\begin{bmatrix}
V_{11} & & & \\
& V_{22} & & \\
& & V_{33} & \\
& & & V_{44} \\
\end{bmatrix}.
\end{equation}

When this is the case, we have no mixing of elements in the sum of \ref{eqn:qmLecture22:500}

Degeneracy in the Stark effect

\begin{equation}\label{eqn:qmLecture22:560}
H = H_0 + e \mathcal{E} z,
\end{equation}

where

\begin{equation}\label{eqn:qmLecture22:580}
H_0 = \frac{\Bp^2}{2m} – \frac{e}{4 \pi \epsilon_0} \inv{\Abs{\Bx}}
\end{equation}

Consider the states \( 2s, 2 p_x, 2p_y, 2p_z \), for which \( E_n^{(0)} \equiv E_{2 s} \), as sketched in fig. 2.

fig. 2.  2s 2p degeneracy.

fig. 2. 2s 2p degeneracy.

Because of spherical symmetry

\begin{equation}\label{eqn:qmLecture22:600}
\begin{aligned}
\bra{2 s} e \mathcal{E} z \ket{ 2 s} &= 0 \\
\bra{2 p_x} e \mathcal{E} z \ket{ 2 p_x} &= 0 \\
\bra{2 p_y} e \mathcal{E} z \ket{ 2 p_y} &= 0 \\
\bra{2 p_z} e \mathcal{E} z \ket{ 2 p_z} &= 0 \\
\end{aligned}
\end{equation}

Looking at odd and even properties, it turns out that the only off-diagonal matrix element is

\begin{equation}\label{eqn:qmLecture22:620}
\bra{2 s} e \mathcal{E} z \ket{ 2 p_z } = V_1 = -3 e \mathcal{E} a_0.
\end{equation}

With a \( \setlr{ 2s, 2p_x, 2p_y, 2p_z } \) basis the potential matrix is

\begin{equation}\label{eqn:qmLecture22:640}
\begin{bmatrix}
0 & 0 & 0 & V_1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
V_1^\conj & 0 & 0 & 0 \\
\end{bmatrix}
\end{equation}

\begin{equation}\label{eqn:qmLecture22:660}
\begin{bmatrix}
0 & -\Abs{V_1} \\
-\Abs{V_1} & 0 \\
\end{bmatrix}
\end{equation}

implies that the energy splitting goes as

\begin{equation}\label{eqn:qmLecture22:680}
E_{2s} \rightarrow
E_{2s} \pm \Abs{V_1},
\end{equation}

as sketched in fig. 3.

fig. 3.  Stark effect energy level splitting.

fig. 3. Stark effect energy level splitting.

The diagonalizing states corresponding to eigenvalues \( \pm 3 a_0 \mathcal{E} \), are \( (\ket{2s} \mp \ket{2p_z})/\sqrt{2} \).

The matrix element above is calculated explicitly in lecture22Integrals.nb.

The degeneracy that is left unsplit here, and has to be accounted for should we attempt higher order perturbation calculations.

Appendix. Multipole expansion

Noting that

\begin{equation}\label{eqn:qmLecture22:700}
\begin{aligned}
\lr{1 + \epsilon}^{-1/2}
&=
1 -\inv{2} \epsilon -\inv{2}\lr{\frac{-3}{2}}\inv{2!} \epsilon^2 \\
&=
1 -\inv{2} \epsilon + \frac{3}{8} \epsilon^2,
\end{aligned}
\end{equation}

we have

\begin{equation}\label{eqn:qmLecture22:720}
\begin{aligned}
\frac{R}{\Abs{\Bepsilon + \BR}}
&=
\frac{1}{\Abs{\frac{\Bepsilon}{R} + \Rcap}} \\
&=
\lr{ 1 + 2 \frac{\Bepsilon}{R} \cdot \Rcap + \lr{\frac{\Bepsilon}{R}}^2 }^{-1/2} \\
&=
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{8}
\lr{ 2 \frac{\Bepsilon}{R} \cdot \Rcap + \lr{\frac{\Bepsilon}{R}}^2 }^2 \\
&=
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{8}
\lr{ 4 \lr{ \frac{\Bepsilon}{R} \cdot \Rcap}^2 + \lr{\frac{\Bepsilon}{R}}^4
+ 4 \frac{\Bepsilon}{R} \cdot \Rcap \lr{\frac{\Bepsilon}{R}}^2
} \\
&\approx
1 – \frac{\Bepsilon}{R} \cdot \Rcap -\inv{2} \lr{\frac{\Bepsilon}{R}}^2
+ \frac{3}{2}
\lr{ \frac{\Bepsilon}{R} \cdot \Rcap}^2 .
\end{aligned}
\end{equation}

Inserting the values from the brackets of \ref{eqn:qmLecture22:260} we have

\begin{equation}\label{eqn:qmLecture22:800}
\begin{aligned}
1
+
\frac{R}{\Abs{\Bx_1 – \Bx_2 + \BR}}
&-
\frac{R}{\Abs{\Bx_1 + \BR}}

\frac{R}{\Abs{-\Bx_2 + \BR}} \\
&=
– \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap -\inv{2} \lr{\frac{\lr{ \Bx_1 – \Bx_2 }}{R}}^2
+ \frac{3}{2}
\lr{ \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap}^2 \\
&\quad + \frac{\Bx_1}{R} \cdot \Rcap +\inv{2} \lr{\frac{\Bx_1}{R}}^2
– \frac{3}{2}
\lr{ \frac{\Bx_1}{R} \cdot \Rcap}^2 \\
&\quad – \frac{\Bx_2}{R} \cdot \Rcap +\inv{2} \lr{\frac{\Bx_2}{R}}^2
– \frac{3}{2}
\lr{ \frac{\Bx_2}{R} \cdot \Rcap}^2 \\
&=
\frac{\Bx_1}{R} \cdot \frac{\Bx_2 }{R}
+ \frac{3}{2}
\lr{ \frac{\lr{ \Bx_1 – \Bx_2 }}{R} \cdot \Rcap}^2 \\
&\quad
– \frac{3}{2}
\lr{ \frac{\Bx_1}{R} \cdot \Rcap}^2 \\
&\quad
– \frac{3}{2}
\lr{ \frac{\Bx_2}{R} \cdot \Rcap}^2 \\
&=
\frac{\Bx_1}{R} \cdot \frac{\Bx_2 }{R}
– 3 \frac{\Bx_1}{R} \cdot \Rcap \frac{\Bx_2}{R} \cdot \Rcap.
\end{aligned}
\end{equation}

This proves \ref{eqn:qmLecture22:280}.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

2D SHO xy perturbation

December 7, 2015 phy1520 , , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr. 5.4

Given a 2D SHO with Hamiltonian

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:20}
H_0 = \inv{2m} \lr{ p_x^2 + p_y^2 } + \frac{m \omega^2}{2} \lr{ x^2 + y^2 },
\end{equation}

  • (a)
    What are the energies and degeneracies of the three lowest states?

  • (b)
    With perturbation

    \begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:40}
    V = m \omega^2 x y,
    \end{equation}

    calculate the first order energy perturbations and the zeroth order perturbed states.

  • (c)
    Solve the \( H_0 + \delta V \) problem exactly, and compare.

A: part (a)

Recall that we have

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:60}
H \ket{n_1, n_2} =
\Hbar\omega
\lr{
n_1 + n_2 + 1
}
\ket{n_1, n_2},
\end{equation}

So the three lowest energy states are \( \ket{0,0}, \ket{1,0}, \ket{0,1} \) with energies \( \Hbar \omega, 2 \Hbar \omega, 2 \Hbar \omega \) respectively (with a two fold degeneracy for the second two energy eigenkets).

A: part (b)

Consider the action of \( x y \) on the \( \beta = \setlr{ \ket{0,0}, \ket{1,0}, \ket{0,1} } \) subspace. Those are

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:200}
\begin{aligned}
x y \ket{0,0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,0} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \ket{1,1}.
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:220}
\begin{aligned}
x y \ket{1, 0}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{1,0} \\
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{0,1} + \sqrt{2} \ket{2,1} } .
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:240}
\begin{aligned}
x y \ket{0, 1}
&=
\frac{x_0^2}{2} \lr{ a + a^\dagger } \lr{ b + b^\dagger } \ket{0,1} \\
&=
\frac{x_0^2}{2} \lr{ b + b^\dagger } \ket{1,1} \\
&=
\frac{x_0^2}{2} \lr{ \ket{1,0} + \sqrt{2} \ket{1,2} }.
\end{aligned}
\end{equation}

The matrix representation of \( m \omega^2 x y \) with respect to the subspace spanned by basis \( \beta \) above is

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:260}
x y
\sim
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}.
\end{equation}

This diagonalizes with

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:300}
U
=
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U}
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:320}
\tilde{U}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:340}
D =
\inv{2} \Hbar \omega
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
\end{bmatrix}
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:360}
x y = U D U^\dagger = U D U.
\end{equation}

The unperturbed Hamiltonian in the original basis is

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:380}
H_0
=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix},
\end{equation}

So the transformation to the diagonal \( x y \) basis leaves the initial Hamiltonian unaltered

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:400}
\begin{aligned}
H_0′
&= U^\dagger H_0 U \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & \tilde{U} 2 I \tilde{U}
\end{bmatrix} \\
&=
\Hbar \omega
\begin{bmatrix}
1 & 0 \\
0 & 2 I
\end{bmatrix}.
\end{aligned}
\end{equation}

Now we can compute the first order energy shifts almost by inspection. Writing the new basis as \( \beta’ = \setlr{ \ket{0}, \ket{1}, \ket{2} } \) those energy shifts are just the diagonal elements from the \( x y \) operators matrix representation

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:420}
\begin{aligned}
E^{{(1)}}_0 &= \bra{0} V \ket{0} = 0 \\
E^{{(1)}}_1 &= \bra{1} V \ket{1} = \inv{2} \Hbar \omega \\
E^{{(1)}}_2 &= \bra{2} V \ket{2} = -\inv{2} \Hbar \omega.
\end{aligned}
\end{equation}

The new energies are

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:440}
\begin{aligned}
E_0 &\rightarrow \Hbar \omega \\
E_1 &\rightarrow \Hbar \omega \lr{ 2 + \delta/2 } \\
E_2 &\rightarrow \Hbar \omega \lr{ 2 – \delta/2 }.
\end{aligned}
\end{equation}

A: part (c)

For the exact solution, it’s possible to rotate the coordinate system in a way that kills the explicit \( x y \) term of the perturbation. That we could do this for \( x, y \) operators wasn’t obvious to me, but after doing so (and rotating the momentum operators the same way) the new operators still have the required commutators. Let

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:80}
\begin{aligned}
\begin{bmatrix}
u \\
v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} \\
&=
\begin{bmatrix}
x \cos\theta + y \sin\theta \\
-x \sin\theta + y \cos\theta
\end{bmatrix}.
\end{aligned}
\end{equation}

Similarly, for the momentum operators, let
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:100}
\begin{aligned}
\begin{bmatrix}
p_u \\
p_v
\end{bmatrix}
&=
\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix} \\
&=
\begin{bmatrix}
p_x \cos\theta + p_y \sin\theta \\
-p_x \sin\theta + p_y \cos\theta
\end{bmatrix}.
\end{aligned}
\end{equation}

For the commutators of the new operators we have

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:120}
\begin{aligned}
\antisymmetric{u}{p_u}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{p_x \cos\theta + p_y \sin\theta} \\
&=
\antisymmetric{x}{p_x} \cos^2\theta + \antisymmetric{y}{p_y} \sin^2\theta \\
&=
i \Hbar \lr{ \cos^2\theta + \sin^2\theta } \\
&=
i\Hbar.
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:140}
\begin{aligned}
\antisymmetric{v}{p_v}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&=
\antisymmetric{x}{p_x} \sin^2\theta + \antisymmetric{y}{p_y} \cos^2\theta \\
&=
i \Hbar.
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:160}
\begin{aligned}
\antisymmetric{u}{p_v}
&=
\antisymmetric{x \cos\theta + y \sin\theta}{-p_x \sin\theta + p_y \cos\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:180}
\begin{aligned}
\antisymmetric{v}{p_u}
&=
\antisymmetric{-x \sin\theta + y \cos\theta}{p_x \cos\theta + p_y \sin\theta} \\
&= \cos\theta \sin\theta \lr{ -\antisymmetric{x}{p_x} + \antisymmetric{y}{p_p} } \\
&=
0.
\end{aligned}
\end{equation}

We see that the new operators are canonical conjugate as required. For this problem, we just want a 45 degree rotation, with

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:460}
\begin{aligned}
x &= \inv{\sqrt{2}} \lr{ u + v } \\
y &= \inv{\sqrt{2}} \lr{ u – v }.
\end{aligned}
\end{equation}

We have
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:480}
\begin{aligned}
x^2 + y^2
&=
\inv{2} \lr{ (u+v)^2 + (u-v)^2 } \\
&=
\inv{2} \lr{ 2 u^2 + 2 v^2 + 2 u v – 2 u v } \\
&=
u^2 + v^2,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:500}
\begin{aligned}
p_x^2 + p_y^2
&=
\inv{2} \lr{ (p_u+p_v)^2 + (p_u-p_v)^2 } \\
&=
\inv{2} \lr{ 2 p_u^2 + 2 p_v^2 + 2 p_u p_v – 2 p_u p_v } \\
&=
p_u^2 + p_v^2,
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:520}
\begin{aligned}
x y
&=
\inv{2} \lr{ (u+v)(u-v) } \\
&=
\inv{2} \lr{ u^2 – v^2 }.
\end{aligned}
\end{equation}

The perturbed Hamiltonian is

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:540}
\begin{aligned}
H_0 + \delta V
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2 + v^2 + \delta u^2 – \delta v^2 } \\
&=
\inv{2m} \lr{ p_u^2 + p_v^2 }
+ \inv{2} m \omega^2 \lr{ u^2(1 + \delta) + v^2 (1 – \delta) }.
\end{aligned}
\end{equation}

In this coordinate system, the corresponding eigensystem is

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:560}
H \ket{n_1, n_2}
= \Hbar \omega \lr{ 1 + n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta } } \ket{n_1, n_2}.
\end{equation}

For small \( \delta \)

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:580}
n_1 \sqrt{1 + \delta} + n_2 \sqrt{ 1 – \delta }
\approx
n_1 + n_2
+ \inv{2} n_1 \delta
– \inv{2} n_2 \delta,
\end{equation}

so
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:600}
H \ket{n_1, n_2}
\approx \Hbar \omega \lr{ 1 + n_1 + n_2 + \inv{2} n_1 \delta – \inv{2} n_2 \delta
} \ket{n_1, n_2}.
\end{equation}

The lowest order perturbed energy levels are

\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:620}
\ket{0,0} \rightarrow \Hbar \omega
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:640}
\ket{1,0} \rightarrow \Hbar \omega \lr{ 2 + \inv{2} \delta }
\end{equation}
\begin{equation}\label{eqn:2dHarmonicOscillatorXYPerturbation:660}
\ket{0,1} \rightarrow \Hbar \omega \lr{ 2 – \inv{2} \delta }
\end{equation}

The degeneracy of the \( \ket{0,1}, \ket{1,0} \) states has been split, and to first order match the zeroth order perturbation result.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.