c++

C++ compiler diagnostic gone horribly wrong: error: explicit specialization in non-namespace scope

September 23, 2022 C/C++ development and debugging. , , , , , , , ,

Here is a g++ error message that took me an embarrassingly long time to figure out:

In file included from /home/llvm-project/llvm/lib/IR/Constants.cpp:15:
/home/llvm-project/llvm/lib/IR/LLVMContextImpl.h:447:11: error: explicit specialization in non-namespace scope ‘struct llvm::MDNodeKeyImpl<llvm::DIBasicType>’
 template <> struct MDNodeKeyImpl<DIStringType> {
           ^

This is the code:

template <> struct MDNodeKeyImpl<DIStringType> {
  unsigned Tag;
  MDString *Name;
  Metadata *StringLength;
  Metadata *StringLengthExp;
  Metadata *StringLocationExp;
  uint64_t SizeInBits;
  uint32_t AlignInBits;
  unsigned Encoding;

This specialization isn’t materially different than the one that preceded it:

template <> struct MDNodeKeyImpl<DIBasicType> {
  unsigned Tag;
  MDString *Name;
  MDString *PictureString;
  uint64_t SizeInBits;
  uint32_t AlignInBits;
  unsigned Encoding;
  unsigned Flags;
  Optional<DIBasicType::DecimalInfo> DecimalAttrInfo;

  MDNodeKeyImpl(unsigned Tag, MDString *Name, MDString *PictureString,
               uint64_t SizeInBits, uint32_t AlignInBits, unsigned Encoding,
                unsigned Flags,
                Optional<DIBasicType::DecimalInfo> DecimalAttrInfo)
      : Tag(Tag), Name(Name), PictureString(PictureString),
        SizeInBits(SizeInBits), AlignInBits(AlignInBits), Encoding(Encoding),
        Flags(Flags), DecimalAttrInfo(DecimalAttrInfo) {}
  MDNodeKeyImpl(const DIBasicType *N)
      : Tag(N->getTag()), Name(N->getRawName()), PictureString(N->getRawPictureString()), SizeInBits(N->getSizeInBits()),
        AlignInBits(N->getAlignInBits()), Encoding(N->getEncoding()),
        Flags(N->getFlags(), DecimalAttrInfo(N->getDecimalInfo()) {}

  bool isKeyOf(const DIBasicType *RHS) const {
    return Tag == RHS->getTag() && Name == RHS->getRawName() &&
           PictureString == RHS->getRawPictureString() &&
           SizeInBits == RHS->getSizeInBits() &&
           AlignInBits == RHS->getAlignInBits() &&
           Encoding == RHS->getEncoding() && Flags == RHS->getFlags() &&
           DecimalAttrInfo == RHS->getDecimalInfo();
  }

  unsigned getHashValue() const {
    return hash_combine(Tag, Name, SizeInBits, AlignInBits, Encoding);
  }
};

However, there is an error hiding above it on this line:

        Flags(N->getFlags(), DecimalAttrInfo(N->getDecimalInfo()) {}

i.e. a single missing brace in the initializer for the Flags member, a consequence of a cut and paste during rebase that clobbered that one character, when adding a comma after it.

It turns out that the compiler was giving me a hint that something was wrong before this in the message:

error: explicit specialization in non-namespace scope

as it states that the scope is:

‘struct llvm::MDNodeKeyImpl

which is the previous class definition. Inspection of the code made me think that the scope was ‘namespace llvm {…}’, and I’d gone looking for a rebase error that would have incorrectly terminated that llvm namespace scope. This is a classic example of not paying enough attention to what is in front of you, and going off looking based on hunches instead. I didn’t understand the compiler message, but in retrospect, non-namespace scope meant that something in that scope was incomplete. The compiler wasn’t smart enough to tell me that the previous specialization was completed due to the missing brace, but it did tell me that something was wrong in that previous specialization (which was explicitly named), and I didn’t look at that because of my “what the hell does that mean” reaction to the compilation error message.

In this case, I was building on RHEL8.3, which uses an ancient GCC toolchain. I wonder if newer versions of g++ fare better (i.e.: a message like “possibly unterminated brace on line …” would have been much nicer)? I wasn’t able to try with clang++ as I was building llvm+clang+lldb (V14), and had uninstalled all of the llvm related toolchain to avoid interference.

The C compiler is too forgiving! sizeof(variable_name+1) allowed?

April 28, 2022 C/C++ development and debugging. , , , ,

I carelessly passed:

sizeof(s.st_size+1)

to an allocator call, instead of:

s.st_size+1

and corrupted memory nicely.

What the hell would sizeof(variable+1) even mean, and why on earth would the compiler think that is anything close to valid? Both gcc and clang, each with -Wall, are completely quiet about this error!

Debugging a C coding error from an XPLINK assembly listing.

March 12, 2021 C/C++ development and debugging., Mainframe , , , , , , ,

There are at least two\({}^1\) z/OS C calling conventions, the traditional “LE” OSLINK calling convention, and the newer\({}^2\) XPLINK convention.  In the LE calling convention, parameters aren’t passed in registers, but in an array pointed to by R1.  Here’s an example of an OSLINK call to strtof():

*  float strtof(const char *nptr, char **endptr);
LA       r0,ep(,r13,408)
LA       r2,buf(,r13,280)
LA       r4,#wtemp_1(,r13,416)
L        r15,=V(STRTOF)(,r3,4)
LA       r1,#MX_TEMP3(,r13,224)
ST       r4,#MX_TEMP3(,r13,224)
ST       r2,#MX_TEMP3(,r13,228)
ST       r0,#MX_TEMP3(,r13,232)
BASR     r14,r15
LD       f0,#wtemp_1(,r13,416)

R1 is pointed to r13 + 224 (a location on the stack). If the original call was:

float f = strtof( mystring, &err );

The compiler has internally translated it into something of the form:

STRTOF( &f, mystring, &err );

where all of {&f, mystring, &err} are stuffed into the memory starting at the 224(R13) location. Afterwards the value has to be loaded from memory into a floating point register (F0) so that it can be used.  Compare this to a Linux strtof() call:

* char * e = 0;
* float x = strtof( "1.0", &e );
  400b74:       mov    $0x400ef8,%edi       ; first param is address of "1.0"
  400b79:       movq   $0x0,0x8(%rsp)       ; e = 0;
  400b82:       lea    0x8(%rsp),%rsi       ; second param is &e
  400b87:       callq  400810 <strtof@plt>  ; call the function, returning a value in %xmm0

Here the input parameters are RDI, RSI, and the output is XMM0. Nice and simple. Since XPLINK was designed for C code, we expect it to be more sensible. Let’s see what an XPLINK call looks like. Here’s a call to fmodf:

*      float r = fmodf( 10.0f, 3.0f );
            LD       f0,+CONSTANT_AREA(,r9,184)
            LD       f2,+CONSTANT_AREA(,r9,192)
            L        r7,#Save_ADA_Ptr_9(,r4,2052)
            L        r6,=A(__fmodf)(,r7,76)
            L        r5,=A(__fmodf)(,r7,72)
            BASR     r7,r6
            NOP      9
            LDR      f2,f0
            STE      f2,r(,r4,2144)
*
*      printf( "fmodf: %g\n", (double)r );

There are some curious details that would have to be explored to understand the code above (why f0, f2, and not f0,f1?), however, the short story is that all the input and output values in (floating point) registers.

The mystery that led me to looking at this was a malfunctioning call to strtof:

*      float x = strtof( "1.0q", &e );
            LA       r2,e(,r4,2144)
            L        r7,#Save_ADA_Ptr_12(,r4,2052)
            L        r6,=A(strtof)(,r7,4)
            L        r5,=A(strtof)(,r7,0)
            LA       r1,+CONSTANT_AREA(,r9,20)
            BASR     r7,r6
            NOP      17
            LR       r0,r3
            CEFR     f2,r0
            STE      f2,x(,r4,2148)
*
*      printf( "strtof: v: %g\n", x );

The CEFR instruction converts an integer to a (hfp32) floating point representation, so we appear to have strtof returning it’s value in R3, which is an integer register. That then gets copied into R0, and finally into F2 (and after that into a stack spill location before the printf call.) I scratched my head about this code for quite a while, trying to figure out if the compiler had some mysterious way to make this work that I wasn’t figuring out. Eventually, I clued in. I’m so used to using a C++ compiler that I forgot about the old style implicit int return for an unprototyped function. But I had included <stdlib.h> in this code, so strtof should have been prototyped? However, the Language Runtime reference specifies that on z/OS you need an additional define to have strtof visible:

#define _ISOC99_SOURCE
#include <stdlib.h>

Without the additional define, the call to strtof() is as if it was prototyped as:

int strtof( const char *, char ** );

My expectation is that with such a correction, the call to strtof() should return it’s value in f0, just like fmodf() does. The result should also not be garbage!

 

Footnotes:

  1.  There is also a “metal” compiler and probably a different calling convention to go with that.  I don’t know how metal differs from XPLINK.
  2. Newer in the lifetime of the mainframe means circa 2001, which is bleeding edge given the speed that mainframe development moves.

Playing with c++11 and posix regular expression libraries

July 24, 2016 C/C++ development and debugging. , , , , , , , , ,

I was curious how the c++11 std::regex interface compared to the C posix regular expression library. The c++11 interfaces are almost as easy to use as perl. Suppose we have some space separated fields that we wish to manipulate, showing an order switch and the original:

my @strings = ( "hi bye", "hello world", "why now", "one two" ) ;

foreach ( @strings )
{
   s/(\S+)\s+(\S+)/'$&' -> '$2 $1'/ ;

   print "$_\n" ;
}

The C++ equivalent is

   const char * strings[] { "hi bye", "hello world", "why now", "one two" } ;

   std::regex re( R"((\S+)\s+(\S+))" ) ;

   for ( auto s : strings )
   {
      std::cout << regex_replace( s, re, "'$&' -> '$2 $1'\n" )  ;
   }

We have one additional step with the C++ code, compiling the regular expression. Precompilation of perl regular expressions is also possible, but that is usually just as performance optimization.

The posix equivalent requires precompilation too

void posixre_error( regex_t * pRe, int rc )
{
   char buf[ 128 ] ;

   regerror( rc, pRe, buf, sizeof(buf) ) ;

   fprintf( stderr, "regerror: %s\n", buf ) ;
   exit( 1 ) ;
}

void posixre_compile( regex_t * pRe, const char * expression )
{
   int rc = regcomp( pRe, expression, REG_EXTENDED ) ;
   if ( rc )
   { 
      posixre_error( pRe, rc ) ;
   }
}

but the transform requires more work:

void posixre_transform( regex_t * pRe, const char * input )
{
   constexpr size_t N{3} ;
   regmatch_t m[N] {} ;

   int rc = regexec( pRe, input, N, m, 0 ) ;

   if ( rc && (rc != REG_NOMATCH) )
   {
      posixre_error( pRe, rc ) ;
   }

   if ( !rc )
   { 
      printf( "'%s' -> ", input ) ;
      int len ;
      len = m[2].rm_eo - m[2].rm_so ; printf( "'%.*s ", len, &input[ m[2].rm_so ] ) ;
      len = m[1].rm_eo - m[1].rm_so ; printf( "%.*s'\n", len, &input[ m[1].rm_so ] ) ;
   }
}

To get at the capture expressions we have to pass an array of regmatch_t’s. The first element of that array is the entire match expression, and then we get the captures after that. The awkward thing to deal with is that the regmatch_t is a structure containing the start end end offset within the string.

If we want more granular info from the c++ matcher, it can also provide an array of capture info. We can also get info about whether or not the match worked, something we can do in perl easily

my @strings = ( "hi bye", "helloworld", "why now", "onetwo" ) ;

foreach ( @strings )
{
   if ( s/(\S+)\s+(\S+)/$2 $1/ )
   {
      print "$_\n" ;
   }
}  

This only prints the transformed line if there was a match success. To do this in C++ we can use regex_match

const char * pattern = R"((\S+)\s+(\S+))" ;

std::regex re( pattern ) ;

for ( auto s : strings )
{ 
   std::cmatch m ;

   if ( regex_match( s, m, re ) )
   { 
      std::cout << m[2] << ' ' << m[1] << '\n' ;
   }
}

Note that we don’t have to mess around with offsets as was required with the Posix C interface, and also don’t have to worry about the size of the capture match array, since that is handled under the covers. It’s not too hard to do wrap the posix C APIs in a C++ wrapper that makes it about as easy to use as the C++ regex code, but unless you are constrained to using pre-C++11 code and can also live with a Unix only restriction. There are also portability issues with the posix APIs. For example, the perl-style regular expressions like:

   R"((\S+)(\s+)(\S+))" ) ;

work fine with the Linux regex API, but that appears to be an exception. To make code using that regex work on Mac, I had to use strict posix syntax

   R"(([^[:space:]]+)([[:space:]]+)([^[:space:]]+))"

Actually using the Posix C interface, with a portability constraint that avoids the Linux regex extensions, would be horrendous.

More C++11 notes from reading Stroustrup: nothrow, try, inline & unnamed namespace, initialized new

June 16, 2016 C/C++ development and debugging. , , , , , , , , , , , , , , ,

Here’s more notes from reading Stroustrup’s “The C++ Programming Language, 4th edition”

throw() as noexcept equivalent

throw() without any exception types can be used as an equivalent to the new noexcept keyword. Stroustrup also mentions that explicit throw() clauses

void foo() throw( e1, e2 ) ;

haven’t worked out well in practise, and is deprecated.

try scopes as function body

It turns out that try clauses can be used as function bodies, as in

void foo( void )
try {
}
catch ( ... )
{
}

This can also be done for constructor and destructor bodies as in

X::X( T1 v, T2 w )
try{
 : f1( v )
 , f2( w )
}
catch ( ... )
{
}

so that a throw in the class field member construction can also be caught.

Inline (default) namespace

There is a mechanism for namespace versioning. Suppose that you want a new V2 namespace to be the default, you can do:

namespace myproject
{
   inline namespace V2
   {
      struct X { 
         int x ;
         int y ;
      } ;
      void foo( const X & ) ;
   } 

   namespace V1
   {
      struct X { 
         int x ;
      } ;

      void foo( const X & ) ;
   } 
} 

Existing callers of the library that are using V1 interfaces can continue to work unmodified, but new callers will use the V2::X and V2::foo interfaces, and the library can provide both interfaces, one for compatibility and another for new code:

void myproject::V2::foo( const myproject::V2::X & )
{
   // ...
}

void myproject::V1::foo( const myproject::V1::X & )
{
   // ...
}

Unnamed namespaces.

I’d once seen unnamed namespaces as a modern C++ (more general) replacement for static functions. To see if such namespace functions are optimized away in the same fashion as a static function, I tried

#include <stdio.h>

namespace
{
   void foo()
   {
      printf( "ns:foo\n" ) ;
   }
}

int main() 
{
   foo() ;

   return 0 ;
}

This example uses printf and not std::cout because I wanted to look at the assembly listing and cout’s listing, at least on a mac, was completely abysmal. foo() was optimized away, but that’s a lot easier to see in the C printf listing:

$ make
c++ -o n -std=c++11 -O2 n.cc

$ otool -tV n | less
n:
(__TEXT,__text) section
_main:
0000000100000f70        pushq   %rbp
0000000100000f71        movq    %rsp, %rbp
0000000100000f74        leaq    0x2b(%rip), %rdi        ## literal pool for: "ns:foo"
0000000100000f7b        callq   0x100000f84             ## symbol stub for: _puts
0000000100000f80        xorl    %eax, %eax
0000000100000f82        popq    %rbp
0000000100000f83        retq

at_quick_exit

There’s now also a mechanism to exit and avoid global destructors and atexit routines from being evaluated. Here’s an example

#include <cstdlib>
#include <iostream>

extern "C"
void normalexit()
{
   std::cout << "normalexit\n" ;
}

extern "C"
void quickCexit()
{
   std::cout << "quickCexit\n" ;
}

void quickCPPexit()
{
   std::cout << "quickCPPexit\n" ;
}

class X
{
public:
   ~X()
   {
      std::cout << "X::~X()\n" ;
   }
} x ;

int main( int argc, char ** argv )
{
   atexit( normalexit ) ;
   std::at_quick_exit( quickCexit ) ;
   std::at_quick_exit( quickCPPexit ) ;

   if ( argc == 1 )
   {
      std::quick_exit( 3 ) ;
   }

when run without arguments (argc == 1), we get

$ ./at
quickCPPexit
quickCexit

whereas if the normal exit processing is allowed to complete we see global destructors and regular atexit calls

$ ./at 1
normalexit
X::~X()

Observe, unlike atexit, which can only (portably) take extern “C” defined functions, at_quick_exit can take functions with both C and C++ linkage.

Enum default

It was not obvious to me what the default value for an enum class (or enum) should be (the first value, an invalid value, zero, …)? It turns out that the default is zero, as printed by the following fragment

#include <iostream>

enum class x { v = 1, w } ;
enum y { vv = 1, ww } ;

int main()
{
   x e1 = {} ;
   y e2 = {} ;
   std::cout << (int)e1 << '\n' ;
   std::cout << e2 << '\n' ;

   return 0 ;
}

Note that an explicit cast is required for enum class values, but not for enum, which are by default, int convertible.

default initialization with new

The uniform initializer syntax can also be used with new calls. Here’s an example with uninitialized and default initialized double allocations

#include <stdio.h>

int main()
{
   double * d1 = new double ;
   double * d2 = new double{} ;

   printf( "%g %g\n", *d1, *d2 ) ;

   return 0 ;
}

Observe that we get nice garbage values for *d1, but *d2 is always 0.0:

$ ./d
-1.49167e-154 0
$ ./d
0 0
$ ./d
1.72723e-77 0
$ ./d
-2.68156e+154 0

initializer_list

I remember really wanting a feature like this eons ago when I first wrote a matrix template class in 1st year. Here’s a sample of how it could be used

#include <iostream>
#include <vector>
#include <string>

template <unsigned r, unsigned c>
class m
{
    std::vector<double> mat ;

public:
    class bad_init {} ;
    
    m() : mat(r*c) {}

    m( std::initializer_list<double> i ) : mat( r * c ) 
    {
        if ( i.size() > ( r * c ) )
        {
            throw bad_init() ;
        }

        int p{} ;
        for ( auto v : i )
        {
            mat[ p++ ] = v ;
        }
    }

    void dump( const std::string & n ) const
    {
        const char * sep = ": " ;
        std::cout << n ;

        for ( auto v : mat )
        {
            std::cout << sep << v ;
            sep = ", " ;
        }

        std::cout << '\n' ;
    }
} ;

int main()
{
    m< 3, 2 > v1 ;
    m< 3, 2 > v2{ 0., 1., 2., 3., 4. } ;

    v1.dump( "v1" ) ;
    v2.dump( "v2" ) ;

    m< 3, 2 > v3{ 0., 1., 2., 3., 4., 5., 6., 7. } ;

    return 0 ;
}

This produces the two dumps and the expected std::terminate call for the wrong (too many) parameters on the third construction attempt

$ ./i
v1: 0, 0, 0, 0, 0, 0
v2: 0, 1, 2, 3, 4, 0
libc++abi.dylib: terminating with uncaught exception of type m<3u, 2u>::bad_init
Abort trap: 6
%d bloggers like this: