expectation value

Angular momentum expectation values

December 14, 2015 phy1520 ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr 3.18

Compute the expectation values for the first and second powers of the angular momentum operators with respect to states \( \ket{lm} \).

A:

We can write the expectation values for the \( L_z \) powers immediately

\begin{equation}\label{eqn:angularMomentumExpectation:20}
\expectation{L_z}
= m \Hbar,
\end{equation}

and

\begin{equation}\label{eqn:angularMomentumExpectation:40}
\expectation{L_z^2} = (m \Hbar)^2.
\end{equation}

For the x and y components first express the operators in terms of the ladder operators.

\begin{equation}\label{eqn:angularMomentumExpectation:60}
\begin{aligned}
L_{+} &= L_x + i L_y \\
L_{-} &= L_x – i L_y.
\end{aligned}
\end{equation}

Rearranging gives

\begin{equation}\label{eqn:angularMomentumExpectation:80}
\begin{aligned}
L_x &= \inv{2} \lr{ L_{+} + L_{-} } \\
L_y &= \inv{2i} \lr{ L_{+} – L_{-} }.
\end{aligned}
\end{equation}

The first order expectations \( \expectation{L_x}, \expectation{L_y} \) are both zero since \( \expectation{L_{+}} = \expectation{L_{-}} \). For the second order expectation values we have

\begin{equation}\label{eqn:angularMomentumExpectation:100}
\begin{aligned}
L_x^2
&= \inv{4} \lr{ L_{+} + L_{-} } \lr{ L_{+} + L_{-} } \\
&= \inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} + L_{+} L_{-} + L_{-} L_{+} } \\
&= \inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} + 2 (L_x^2 + L_y^2) } \\
&= \inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} + 2 (\BL^2 – L_z^2) },
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:angularMomentumExpectation:120}
\begin{aligned}
L_y^2
&= -\inv{4} \lr{ L_{+} – L_{-} } \lr{ L_{+} – L_{-} } \\
&= -\inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} – L_{+} L_{-} – L_{-} L_{+} } \\
&= -\inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} – 2 (L_x^2 + L_y^2) } \\
&= -\inv{4} \lr{ L_{+} L_{+} + L_{-} L_{-} – 2 (\BL^2 – L_z^2) }.
\end{aligned}
\end{equation}

Any expectation value \( \bra{lm} L_{+} L_{+} \ket{lm} \) or \( \bra{lm} L_{-} L_{-} \ket{lm} \) will be zero, leaving

\begin{equation}\label{eqn:angularMomentumExpectation:140}
\begin{aligned}
\expectation{L_x^2}
&=
\expectation{L_y^2} \\
&=
\inv{4} \expectation{2 (\BL^2 – L_z^2) } \\
&=
\inv{2} \lr{ \Hbar^2 l(l+1) – (\Hbar m)^2 }.
\end{aligned}
\end{equation}

Observe that we have
\begin{equation}\label{eqn:angularMomentumExpectation:160}
\expectation{L_x^2}
+
\expectation{L_y^2}
+
\expectation{L_z^2}
=
\Hbar^2 l(l+1)
=
\expectation{\BL^2},
\end{equation}

which is the quantum mechanical analogue of the classical scalar equation \( \BL^2 = L_x^2 + L_y^2 + L_z^2 \).

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Translation operator problems

August 7, 2015 phy1520 , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: One dimensional translation operator. ([1] pr. 1.28)

(a)

Evaluate the classical Poisson bracket

\begin{equation}\label{eqn:translation:420}
\antisymmetric{x}{F(p)}_{\textrm{classical}}
\end{equation}

(b)

Evaluate the commutator

\begin{equation}\label{eqn:translation:440}
\antisymmetric{x}{e^{i p a/\Hbar}}
\end{equation}

(c)

Using the result in \ref{problem:translation:28:b}, prove that
\begin{equation}\label{eqn:translation:460}
e^{i p a/\Hbar} \ket{x’},
\end{equation}

is an eigenstate of the coordinate operator \( x \).

Answer

(a)

\begin{equation}\label{eqn:translation:480}
\begin{aligned}
\antisymmetric{x}{F(p)}_{\textrm{classical}}
&=
\PD{x}{x} \PD{p}{F(p)} – \PD{p}{x} \PD{x}{F(p)} \\
&=
\PD{p}{F(p)}.
\end{aligned}
\end{equation}

(b)

Having worked backwards through these problems, the answer for this one dimensional problem can be obtained from \ref{eqn:translation:140} and is

\begin{equation}\label{eqn:translation:500}
\antisymmetric{x}{e^{i p a/\Hbar}} = a e^{i p a/\Hbar}.
\end{equation}

(c)

\begin{equation}\label{eqn:translation:520}
\begin{aligned}
x e^{i p a/\Hbar} \ket{x’}
&=
\lr{
\antisymmetric{x}{e^{i p a/\Hbar}}
e^{i p a/\Hbar} x
+
}
\ket{x’} \\
&=
\lr{ a e^{i p a/\Hbar} + e^{i p a/\Hbar} x ‘ } \ket{x’} \\
&= \lr{ a + x’ } \ket{x’}.
\end{aligned}
\end{equation}

This demonstrates that \( e^{i p a/\Hbar} \ket{x’} \) is an eigenstate of \( x \) with eigenvalue \( a + x’ \).

Question: Polynomial commutators. ([1] pr. 1.29)

(a)

For power series \( F, G \), verify

\begin{equation}\label{eqn:translation:180}
\antisymmetric{x_k}{G(\Bp)} = i \Hbar \PD{p_k}{G}, \qquad
\antisymmetric{p_k}{F(\Bx)} = -i \Hbar \PD{x_k}{F}.
\end{equation}

(b)

Evaluate \( \antisymmetric{x^2}{p^2} \), and compare to the classical Poisson bracket \( \antisymmetric{x^2}{p^2}_{\textrm{classical}} \).

Answer

(a)

Let

\begin{equation}\label{eqn:translation:200}
\begin{aligned}
G(\Bp) &= \sum_{k l m} a_{k l m} p_1^k p_2^l p_3^m \\
F(\Bx) &= \sum_{k l m} b_{k l m} x_1^k x_2^l x_3^m.
\end{aligned}
\end{equation}

It is simpler to work with a specific \( x_k \), say \( x_k = y \). The validity of the general result will still be clear doing so. Expanding the commutator gives

\begin{equation}\label{eqn:translation:220}
\begin{aligned}
\antisymmetric{y}{G(\Bp)}
&=
\sum_{k l m} a_{k l m} \antisymmetric{y}{p_1^k p_2^l p_3^m } \\
&=
\sum_{k l m} a_{k l m} \lr{
y p_1^k p_2^l p_3^m – p_1^k p_2^l p_3^m y
} \\
&=
\sum_{k l m} a_{k l m} \lr{
p_1^k y p_2^l p_3^m – p_1^k y p_2^l p_3^m
} \\
&=
\sum_{k l m} a_{k l m}
p_1^k
\antisymmetric{y}{p_2^l}
p_3^m.
\end{aligned}
\end{equation}

From \ref{eqn:translation:100}, we have \( \antisymmetric{y}{p_2^l} = l i \Hbar p_2^{l-1} \), so

\begin{equation}\label{eqn:translation:240}
\begin{aligned}
\antisymmetric{y}{G(\Bp)}
&=
\sum_{k l m} a_{k l m}
p_1^k
\antisymmetric{y}{p_2^l}
\lr{ l
i \Hbar p_2^{l-1}
}
p_3^m \\
&=
i \Hbar \PD{y}{G(\Bp)}.
\end{aligned}
\end{equation}

It is straightforward to show that
\( \antisymmetric{p}{x^l} = -l i \Hbar x^{l-1} \), allowing for a similar computation of the momentum commutator

\begin{equation}\label{eqn:translation:260}
\begin{aligned}
\antisymmetric{p_y}{F(\Bx)}
&=
\sum_{k l m} b_{k l m} \antisymmetric{p_y}{x_1^k x_2^l x_3^m } \\
&=
\sum_{k l m} b_{k l m} \lr{
p_y x_1^k x_2^l x_3^m – x_1^k x_2^l x_3^m p_y
} \\
&=
\sum_{k l m} b_{k l m} \lr{
x_1^k p_y x_2^l x_3^m – x_1^k p_y x_2^l x_3^m
} \\
&=
\sum_{k l m} b_{k l m}
x_1^k
\antisymmetric{p_y}{x_2^l}
x_3^m \\
&=
\sum_{k l m} b_{k l m}
x_1^k
\lr{ -l i \Hbar x_2^{l-1}}
x_3^m \\
&=
-i \Hbar \PD{p_y}{F(\Bx)}.
\end{aligned}
\end{equation}

(b)

It isn’t clear to me how the results above can be used directly to compute \( \antisymmetric{x^2}{p^2} \). However, when the first term of such a commutator is a monomomial, it can be expanded in terms of an \( x \) commutator

\begin{equation}\label{eqn:translation:280}
\begin{aligned}
\antisymmetric{x^2}{G(\Bp)}
&= x^2 G – G x^2 \\
&= x \lr{ x G } – G x^2 \\
&= x \lr{ \antisymmetric{ x }{ G } + G x } – G x^2 \\
&= x \antisymmetric{ x }{ G } + \lr{ x G } x – G x^2 \\
&= x \antisymmetric{ x }{ G } + \lr{ \antisymmetric{ x }{ G } + G x } x – G x^2 \\
&= x \antisymmetric{ x }{ G } + \antisymmetric{ x }{ G } x.
\end{aligned}
\end{equation}

Similarily,

\begin{equation}\label{eqn:translation:300}
\antisymmetric{x^3}{G(\Bp)} = x^2 \antisymmetric{ x }{ G } + x \antisymmetric{ x }{ G } x + \antisymmetric{ x }{ G } x^2.
\end{equation}

An induction hypothesis can be formed

\begin{equation}\label{eqn:translation:320}
\antisymmetric{x^k}{G(\Bp)} = \sum_{j = 0}^{k-1} x^{k-1-j} \antisymmetric{ x }{ G } x^j,
\end{equation}

and demonstrated

\begin{equation}\label{eqn:translation:340}
\begin{aligned}
\antisymmetric{x^{k+1}}{G(\Bp)}
&=
x^{k+1} G – G x^{k+1} \\
&=
x \lr{ x^{k} G } – G x^{k+1} \\
&=
x \lr{ \antisymmetric{x^{k}}{G} + G x^k } – G x^{k+1} \\
&=
x \antisymmetric{x^{k}}{G} + \lr{ x G } x^k – G x^{k+1} \\
&=
x \antisymmetric{x^{k}}{G} + \lr{ \antisymmetric{x}{G} + G x } x^k – G x^{k+1} \\
&=
x \antisymmetric{x^{k}}{G} + \antisymmetric{x}{G} x^k \\
&=
x \sum_{j = 0}^{k-1} x^{k-1-j} \antisymmetric{ x }{ G } x^j + \antisymmetric{x}{G} x^k \\
&=
\sum_{j = 0}^{k-1} x^{(k+1)-1-j} \antisymmetric{ x }{ G } x^j + \antisymmetric{x}{G} x^k \\
&=
\sum_{j = 0}^{k} x^{(k+1)-1-j} \antisymmetric{ x }{ G } x^j.
\end{aligned}
\end{equation}

That was a bit overkill for this problem, but may be useful later. Application of this to the problem gives

\begin{equation}\label{eqn:translation:360}
\begin{aligned}
\antisymmetric{x^2}{p^2}
&=
x \antisymmetric{x}{p^2}
+ \antisymmetric{x}{p^2} x \\
&=
x i \Hbar \PD{x}{p^2}
+ i \Hbar \PD{x}{p^2} x \\
&=
x 2 i \Hbar p
+ 2 i \Hbar p x \\
&= i \Hbar \lr{ 2 x p + 2 p x }.
\end{aligned}
\end{equation}

The classical commutator is
\begin{equation}\label{eqn:translation:380}
\begin{aligned}
\antisymmetric{x^2}{p^2}_{\textrm{classical}}
&=
\PD{x}{x^2} \PD{p}{p^2} – \PD{p}{x^2} \PD{x}{p^2} \\
&=
2 x 2 p \\
&= 2 x p + 2 p x.
\end{aligned}
\end{equation}

This demonstrates the expected relation between the classical and quantum commutators

\begin{equation}\label{eqn:translation:400}
\antisymmetric{x^2}{p^2} = i \Hbar \antisymmetric{x^2}{p^2}_{\textrm{classical}}.
\end{equation}

Question: Translation operator and position expectation. ([1] pr. 1.30)

The translation operator for a finite spatial displacement is given by

\begin{equation}\label{eqn:translation:20}
J(\Bl) = \exp\lr{ -i \Bp \cdot \Bl/\Hbar },
\end{equation}

where \( \Bp \) is the momentum operator.

(a)

Evaluate

\begin{equation}\label{eqn:translation:40}
\antisymmetric{x_i}{J(\Bl)}.
\end{equation}

(b)

Demonstrate how the expectation value \( \expectation{\Bx} \) changes under translation.

Answer

(a)

For clarity, let’s set \( x_i = y \). The general result will be clear despite doing so.

\begin{equation}\label{eqn:translation:60}
\antisymmetric{y}{J(\Bl)}
=
\sum_{k= 0} \inv{k!} \lr{\frac{-i}{\Hbar}}
\antisymmetric{y}{
\lr{ \Bp \cdot \Bl }^k
}.
\end{equation}

The commutator expands as

\begin{equation}\label{eqn:translation:80}
\begin{aligned}
\antisymmetric{y}{
\lr{ \Bp \cdot \Bl }^k
}
+ \lr{ \Bp \cdot \Bl }^k y
&=
y \lr{ \Bp \cdot \Bl }^k \\
&=
y \lr{ p_x l_x + p_y l_y + p_z l_z } \lr{ \Bp \cdot \Bl }^{k-1} \\
&=
\lr{ p_x l_x y + y p_y l_y + p_z l_z y } \lr{ \Bp \cdot \Bl }^{k-1} \\
&=
\lr{ p_x l_x y + l_y \lr{ p_y y + i \Hbar } + p_z l_z y } \lr{ \Bp \cdot \Bl }^{k-1} \\
&=
\lr{ \Bp \cdot \Bl } y \lr{ \Bp \cdot \Bl }^{k-1}
+ i \Hbar l_y \lr{ \Bp \cdot \Bl }^{k-1} \\
&= \cdots \\
&=
\lr{ \Bp \cdot \Bl }^{k-1} y \lr{ \Bp \cdot \Bl }^{k-(k-1)}
+ (k-1) i \Hbar l_y \lr{ \Bp \cdot \Bl }^{k-1} \\
&=
\lr{ \Bp \cdot \Bl }^{k} y
+ k i \Hbar l_y \lr{ \Bp \cdot \Bl }^{k-1}.
\end{aligned}
\end{equation}

In the above expansion, the commutation of \( y \) with \( p_x, p_z \) has been used. This gives, for \( k \ne 0 \),

\begin{equation}\label{eqn:translation:100}
\antisymmetric{y}{
\lr{ \Bp \cdot \Bl }^k
}
=
k i \Hbar l_y \lr{ \Bp \cdot \Bl }^{k-1}.
\end{equation}

Note that this also holds for the \( k = 0 \) case, since \( y \) commutes with the identity operator. Plugging back into the \( J \) commutator, we have

\begin{equation}\label{eqn:translation:120}
\begin{aligned}
\antisymmetric{y}{J(\Bl)}
&=
\sum_{k = 1} \inv{k!} \lr{\frac{-i}{\Hbar}}
k i \Hbar l_y \lr{ \Bp \cdot \Bl }^{k-1} \\
&=
l_y \sum_{k = 1} \inv{(k-1)!} \lr{\frac{-i}{\Hbar}}
\lr{ \Bp \cdot \Bl }^{k-1} \\
&=
l_y J(\Bl).
\end{aligned}
\end{equation}

The same pattern clearly applies with the other \( x_i \) values, providing the desired relation.

\begin{equation}\label{eqn:translation:140}
\antisymmetric{\Bx}{J(\Bl)} = \sum_{m = 1}^3 \Be_m l_m J(\Bl) = \Bl J(\Bl).
\end{equation}

(b)

Suppose that the translated state is defined as \( \ket{\alpha_{\Bl}} = J(\Bl) \ket{\alpha} \). The expectation value with respect to this state is

\begin{equation}\label{eqn:translation:160}
\begin{aligned}
\expectation{\Bx’}
&=
\bra{\alpha_{\Bl}} \Bx \ket{\alpha_{\Bl}} \\
&=
\bra{\alpha} J^\dagger(\Bl) \Bx J(\Bl) \ket{\alpha} \\
&=
\bra{\alpha} J^\dagger(\Bl) \lr{ \Bx J(\Bl) } \ket{\alpha} \\
&=
\bra{\alpha} J^\dagger(\Bl) \lr{ J(\Bl) \Bx + \Bl J(\Bl) } \ket{\alpha} \\
&=
\bra{\alpha} J^\dagger J \Bx + \Bl J^\dagger J \ket{\alpha} \\
&=
\bra{\alpha} \Bx \ket{\alpha} + \Bl \braket{\alpha}{\alpha} \\
&=
\expectation{\Bx} + \Bl.
\end{aligned}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.