[Click here for a PDF of this post with nicer formatting]
Jackson [1] has an interesting presentation of the transverse gauge. I’d like to walk through the details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d not have to do this translation step).
Gauge freedom
The starting point is noting that \spacegrad \cdot \BB = 0 the magnetic field can be expressed as a curl
\begin{equation}\label{eqn:transverseGauge:20} \BB = \spacegrad \cross \BA. \end{equation}
Faraday’s law now takes the form
\begin{equation}\label{eqn:transverseGauge:40}
\begin{aligned}
0
&= \spacegrad \cross \BE + \PD{t}{\BB} \\
&= \spacegrad \cross \BE + \PD{t}{} \lr{ \spacegrad \cross \BA } \\
&= \spacegrad \cross \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}
\end{equation}
Because this curl is zero, the interior sum can be expressed as a gradient
\begin{equation}\label{eqn:transverseGauge:60} \BE + \PD{t}{\BA} \equiv -\spacegrad \Phi. \end{equation}
This can now be substituted into the remaining two Maxwell’s equations.
\begin{equation}\label{eqn:transverseGauge:80} \begin{aligned} \spacegrad \cdot \BD &= \rho_v \\ \spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\ \end{aligned} \end{equation}
For Gauss’s law, in simple media, we have
\begin{equation}\label{eqn:transverseGauge:140} \begin{aligned} \rho_v &= \epsilon \spacegrad \cdot \BE \\ &= \epsilon \spacegrad \cdot \lr{ -\spacegrad \Phi – \PD{t}{\BA} } \end{aligned} \end{equation}
For simple media again, the Ampere-Maxwell equation is
\begin{equation}\label{eqn:transverseGauge:100} \inv{\mu} \spacegrad \cross \lr{ \spacegrad \cross \BA } = \BJ + \epsilon \PD{t}{} \lr{ -\spacegrad \Phi – \PD{t}{\BA} }. \end{equation}
Expanding \spacegrad \cross \lr{ \spacegrad \cross \BA } = -\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA } gives
\begin{equation}\label{eqn:transverseGauge:120}
-\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA } + \epsilon \mu \PDSq{t}{\BA} = \mu \BJ – \epsilon \mu \spacegrad \PD{t}{\Phi}.
\end{equation}
Maxwell’s equations are now reduced to
\begin{equation}\label{eqn:transverseGauge:180}
\boxed{
\begin{aligned}
\spacegrad^2 \BA – \spacegrad \lr{ \spacegrad \cdot \BA + \epsilon \mu \PD{t}{\Phi}} – \epsilon \mu \PDSq{t}{\BA} &= -\mu \BJ \\
\spacegrad^2 \Phi + \PD{t}{\spacegrad \cdot \BA} &= -\frac{\rho_v }{\epsilon}.
\end{aligned}
}
\end{equation}
There are two obvious constraints that we can impose
\begin{equation}\label{eqn:transverseGauge:200}
\spacegrad \cdot \BA – \epsilon \mu \PD{t}{\Phi} = 0,
\end{equation}
or
\begin{equation}\label{eqn:transverseGauge:220}
\spacegrad \cdot \BA = 0.
\end{equation}
The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be really nice in a relativistic context since, in vacuum with a four-vector potential A = (\Phi/c, \BA) , that is a requirement that the four-divergence of the four-potential vanishes ( \partial_\mu A^\mu = 0 ).
Transverse gauge
Jackson identifies the latter constraint as the transverse gauge, which I’m less familiar with. With this gauge selection, we have
\begin{equation}\label{eqn:transverseGauge:260}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA} = -\mu \BJ + \epsilon\mu \spacegrad \PD{t}{\Phi}
\end{equation}
\begin{equation}\label{eqn:transverseGauge:280}
\spacegrad^2 \Phi = -\frac{\rho_v }{\epsilon}.
\end{equation}
What’s not obvious is the fact that the irrotational (zero curl) contribution due to \Phi in \ref{eqn:transverseGauge:260} cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude to this.
That decomposition follows from expanding \spacegrad^2 J/R in two ways using the delta function -4 \pi \delta(\Bx – \Bx’) = \spacegrad^2 1/R representation, as well as directly
\begin{equation}\label{eqn:transverseGauge:300} \begin{aligned} – 4 \pi \BJ(\Bx) &= \int \spacegrad^2 \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\ &= \spacegrad \int \spacegrad \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ + \spacegrad \cdot \int \spacegrad \wedge \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\ &= -\spacegrad \int \BJ(\Bx’) \cdot \spacegrad’ \inv{\Abs{\Bx – \Bx’}} d^3 x’ + \spacegrad \cdot \lr{ \spacegrad \wedge \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ } \\ &= -\spacegrad \int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ +\spacegrad \int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ – \spacegrad \cross \lr{ \spacegrad \cross \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ } \end{aligned} \end{equation}
The first term can be converted to a surface integral
\begin{equation}\label{eqn:transverseGauge:320} -\spacegrad \int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ = -\spacegrad \int d\BA’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}}, \end{equation}
so provided the currents are either localized or \Abs{\BJ}/R \rightarrow 0 on an infinite sphere, we can make the identification
\begin{equation}\label{eqn:transverseGauge:340} \BJ(\Bx) = -\spacegrad \inv{4 \pi} \int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ + \spacegrad \cross \spacegrad \cross \inv{4 \pi} \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \equiv \BJ_l + \BJ_t, \end{equation}
where \spacegrad \cross \BJ_l = 0 (irrotational, or longitudinal), whereas \spacegrad \cdot \BJ_t = 0 (solenoidal or transverse). The irrotational property is clear from inspection, and the transverse property can be verified readily
\begin{equation}\label{eqn:transverseGauge:360} \begin{aligned} \spacegrad \cdot \lr{ \spacegrad \cross \lr{ \spacegrad \cross \BX } } &= -\spacegrad \cdot \lr{ \spacegrad \cdot \lr{ \spacegrad \wedge \BX } } \\ &= -\spacegrad \cdot \lr{ \spacegrad^2 \BX – \spacegrad \lr{ \spacegrad \cdot \BX } } \\ &= -\spacegrad \cdot \lr{\spacegrad^2 \BX} + \spacegrad^2 \lr{ \spacegrad \cdot \BX } \\ &= 0. \end{aligned} \end{equation}
Since
\begin{equation}\label{eqn:transverseGauge:380} \Phi(\Bx, t) = \inv{4 \pi \epsilon} \int \frac{\rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’, \end{equation}
we have
\begin{equation}\label{eqn:transverseGauge:400} \begin{aligned} \spacegrad \PD{t}{\Phi} &= \inv{4 \pi \epsilon} \spacegrad \int \frac{\partial_t \rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’ \\ &= \inv{4 \pi \epsilon} \spacegrad \int \frac{-\spacegrad’ \cdot \BJ}{\Abs{\Bx – \Bx’}} d^3 x’ \\ &= \frac{\BJ_l}{\epsilon}. \end{aligned} \end{equation}
This means that the Ampere-Maxwell equation takes the form
\begin{equation}\label{eqn:transverseGauge:420} \spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA} = -\mu \BJ + \mu \BJ_l = -\mu \BJ_t. \end{equation}
This justifies the transverse in the label transverse gauge.
References
[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.