Transverse gauge

Jackson [1] has an interesting presentation of the transverse gauge. I’d like to walk through the details of this, but first want to translate the preliminaries to SI units (if I had the 3rd edition I’d not have to do this translation step).

Gauge freedom

The starting point is noting that $$\spacegrad \cdot \BB = 0$$ the magnetic field can be expressed as a curl

\label{eqn:transverseGauge:20}

Faraday’s law now takes the form
\label{eqn:transverseGauge:40}
\begin{aligned}
0
&= \spacegrad \cross \BE + \PD{t}{\BB} \\
&= \spacegrad \cross \BE + \PD{t}{} \lr{ \spacegrad \cross \BA } \\
&= \spacegrad \cross \lr{ \BE + \PD{t}{\BA} }.
\end{aligned}

Because this curl is zero, the interior sum can be expressed as a gradient

\label{eqn:transverseGauge:60}
\BE + \PD{t}{\BA} \equiv -\spacegrad \Phi.

This can now be substituted into the remaining two Maxwell’s equations.

\label{eqn:transverseGauge:80}
\begin{aligned}
\spacegrad \cdot \BD &= \rho_v \\
\spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\
\end{aligned}

For Gauss’s law, in simple media, we have

\label{eqn:transverseGauge:140}
\begin{aligned}
\rho_v
&=
&=
\end{aligned}

For simple media again, the Ampere-Maxwell equation is

\label{eqn:transverseGauge:100}
\inv{\mu} \spacegrad \cross \lr{ \spacegrad \cross \BA } = \BJ + \epsilon \PD{t}{} \lr{ -\spacegrad \Phi – \PD{t}{\BA} }.

Expanding $$\spacegrad \cross \lr{ \spacegrad \cross \BA } = -\spacegrad^2 \BA + \spacegrad \lr{ \spacegrad \cdot \BA }$$ gives
\label{eqn:transverseGauge:120}

Maxwell’s equations are now reduced to
\label{eqn:transverseGauge:180}
\boxed{
\begin{aligned}
\spacegrad^2 \BA – \spacegrad \lr{ \spacegrad \cdot \BA + \epsilon \mu \PD{t}{\Phi}} – \epsilon \mu \PDSq{t}{\BA} &= -\mu \BJ \\
\end{aligned}
}

There are two obvious constraints that we can impose
\label{eqn:transverseGauge:200}
\spacegrad \cdot \BA – \epsilon \mu \PD{t}{\Phi} = 0,

or
\label{eqn:transverseGauge:220}

The first constraint is the Lorentz gauge, which I’ve played with previously. It happens to be really nice in a relativistic context since, in vacuum with a four-vector potential $$A = (\Phi/c, \BA)$$, that is a requirement that the four-divergence of the four-potential vanishes ($$\partial_\mu A^\mu = 0$$).

Transverse gauge

Jackson identifies the latter constraint as the transverse gauge, which I’m less familiar with. With this gauge selection, we have

\label{eqn:transverseGauge:260}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA} = -\mu \BJ + \epsilon\mu \spacegrad \PD{t}{\Phi}

\label{eqn:transverseGauge:280}

What’s not obvious is the fact that the irrotational (zero curl) contribution due to $$\Phi$$ in \ref{eqn:transverseGauge:260} cancels the corresponding irrotational term from the current. Jackson uses a transverse and longitudinal decomposition of the current, related to the Helmholtz theorem to allude to this.

That decomposition follows from expanding $$\spacegrad^2 J/R$$ in two ways using the delta function $$-4 \pi \delta(\Bx – \Bx’) = \spacegrad^2 1/R$$ representation, as well as directly

\label{eqn:transverseGauge:300}
\begin{aligned}
– 4 \pi \BJ(\Bx)
&=
\int \spacegrad^2 \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\int \spacegrad \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
+
\int \spacegrad \wedge \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\int \BJ(\Bx’) \cdot \spacegrad’ \inv{\Abs{\Bx – \Bx’}} d^3 x’
+
\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
} \\
&=
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
\int \frac{\spacegrad’ \cdot \BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’

\int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
}
\end{aligned}

The first term can be converted to a surface integral

\label{eqn:transverseGauge:320}
\int \spacegrad’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
=
\int d\BA’ \cdot \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}},

so provided the currents are either localized or $$\Abs{\BJ}/R \rightarrow 0$$ on an infinite sphere, we can make the identification

\label{eqn:transverseGauge:340}
\BJ(\Bx)
=
+
\spacegrad \cross \spacegrad \cross \inv{4 \pi} \int \frac{\BJ(\Bx’)}{\Abs{\Bx – \Bx’}} d^3 x’
\equiv
\BJ_l +
\BJ_t,

where $$\spacegrad \cross \BJ_l = 0$$ (irrotational, or longitudinal), whereas $$\spacegrad \cdot \BJ_t = 0$$ (solenoidal or transverse). The irrotational property is clear from inspection, and the transverse property can be verified readily

\label{eqn:transverseGauge:360}
\begin{aligned}
&=
&=
&=
&= 0.
\end{aligned}

Since

\label{eqn:transverseGauge:380}
\Phi(\Bx, t)
=
\inv{4 \pi \epsilon} \int \frac{\rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’,

we have

\label{eqn:transverseGauge:400}
\begin{aligned}
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{\partial_t \rho_v(\Bx’, t)}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\inv{4 \pi \epsilon} \spacegrad \int \frac{-\spacegrad’ \cdot \BJ}{\Abs{\Bx – \Bx’}} d^3 x’ \\
&=
\frac{\BJ_l}{\epsilon}.
\end{aligned}

This means that the Ampere-Maxwell equation takes the form

\label{eqn:transverseGauge:420}
\spacegrad^2 \BA – \epsilon \mu \PDSq{t}{\BA}
= -\mu \BJ + \mu \BJ_l
= -\mu \BJ_t.

This justifies the transverse in the label transverse gauge.

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Corollaries to Stokes and Divergence theorems

In [1] a few problems are set to prove some variations of Stokes theorem. He gives some cool tricks to prove each one using just the classic 3D Stokes and divergence theorems. We can also do them directly from the more general Stokes theorem $$\int d^k \Bx \cdot (\spacegrad \wedge F) = \oint d^{k-1} \Bx \cdot F$$.

Question: Stokes theorem on scalar function. ([1] pr. 1.60a)

Prove
\label{eqn:stokesCorollariesGriffiths:20}
\int \spacegrad T dV = \oint T d\Ba.

The direct way to prove this is to apply Stokes theorem

\label{eqn:stokesCorollariesGriffiths:80}
\int d^3 \Bx \cdot (\spacegrad \wedge T) = \oint d^2 \Bx \cdot T

Here $$d^3 \Bx = d\Bx_1 \wedge d\Bx_2 \wedge d\Bx_3$$, a pseudoscalar (trivector) volume element, and the wedge and dot products take their most general meanings. For $$k$$-blade $$F$$, and $$k’$$-blade $$F’$$, that is

\label{eqn:stokesCorollariesGriffiths:100}
\begin{aligned}
F \wedge F’ &= \gpgrade{F F’}{k+k’} \\
F \cdot F’ &= \gpgrade{F F’}{\Abs{k-k’}}
\end{aligned}

With $$d^3\Bx = I dV$$, and $$d^2 \Bx = I \ncap dA = I d\Ba$$, we have

\label{eqn:stokesCorollariesGriffiths:120}
\int I dV \spacegrad T = \oint I d\Ba T.

Cancelling the factors of $$I$$ proves the result.

Griffith’s trick to do this was to let $$\Bv = \Bc T$$, where $$\Bc$$ is a constant. For this, the divergence theorem integral is

\label{eqn:stokesCorollariesGriffiths:160}
\begin{aligned}
\int dV \spacegrad \cdot (\Bc T)
&=
\int dV \Bc \cdot \spacegrad T \\
&=
\Bc \cdot \int dV \spacegrad T \\
&=
\oint d\Ba \cdot (\Bc T) \\
&=
\Bc \cdot \oint d\Ba T.
\end{aligned}

This is true for any constant $$\Bc$$, so is also true for the unit vectors. This allows for summing projections in each of the unit directions

\label{eqn:stokesCorollariesGriffiths:180}
\begin{aligned}
&=
\sum \Be_k \lr{ \Be_k \cdot \int dV \spacegrad T } \\
&=
\sum \Be_k \lr{ \Be_k \cdot \oint d\Ba T } \\
&=
\oint d\Ba T.
\end{aligned}

Question: ([1] pr. 1.60b)

Prove
\label{eqn:stokesCorollariesGriffiths:40}
\int \spacegrad \cross \Bv dV = -\oint \Bv \cross d\Ba.

This also follows directly from the general Stokes theorem

\label{eqn:stokesCorollariesGriffiths:200}
\int d^3 \Bx \cdot \lr{ \spacegrad \wedge \Bv } = \oint d^2 \Bx \cdot \Bv

The volume integrand is

\label{eqn:stokesCorollariesGriffiths:220}
\begin{aligned}
d^3 \Bx \cdot \lr{ \spacegrad \wedge \Bv }
&=
&=
\end{aligned}

and the surface integrand is
\label{eqn:stokesCorollariesGriffiths:240}
\begin{aligned}
d^2 \Bx \cdot \Bv
&=
\gpgradeone{ I d\Ba \Bv } \\
&=
\gpgradeone{ I (d\Ba \wedge \Bv) } \\
&=
I^2 (d\Ba \cross \Bv) \\
&=
-d\Ba \cross \Bv \\
&=
\Bv \cross d\Ba.
\end{aligned}

Plugging these into \ref{eqn:stokesCorollariesGriffiths:200} proves the result.

Griffiths trick for the same is to apply the divergence theorem to $$\Bv \cross \Bc$$. Such a volume integral is

\label{eqn:stokesCorollariesGriffiths:260}
\begin{aligned}
\int dV \spacegrad \cdot (\Bv \cross \Bc)
&=
\int dV \Bc \cdot (\spacegrad \cross \Bv) \\
&=
\Bc \cdot \int dV \spacegrad \cross \Bv.
\end{aligned}

This must equal
\label{eqn:stokesCorollariesGriffiths:280}
\begin{aligned}
\oint d\Ba \cdot (\Bv \cross \Bc)
&=
\Bc \cdot \oint d\Ba \cross \Bv \\
&=
-\Bc \cdot \oint \Bv \cross d\Ba
\end{aligned}

Again, assembling projections, we have
\label{eqn:stokesCorollariesGriffiths:300}
\begin{aligned}
&=
\sum \Be_k \lr{ \Be_k \cdot \int dV \spacegrad \cross \Bv } \\
&=
-\sum \Be_k \lr{ \Be_k \cdot \oint \Bv \cross d\Ba } \\
&=
-\oint \Bv \cross d\Ba.
\end{aligned}

Question: ([1] pr. 1.60e)

Prove
\label{eqn:stokesCorollariesGriffiths:60}
\int \spacegrad T \cross d\Ba = -\oint T d\Bl.

This one follows from
\label{eqn:stokesCorollariesGriffiths:320}
\int d^2 \Bx \cdot \lr{ \spacegrad \wedge T } = \oint d^1 \Bx \cdot T.

The surface integrand can be written
\label{eqn:stokesCorollariesGriffiths:340}
\begin{aligned}
d^2 \Bx \cdot \lr{ \spacegrad \wedge T }
&=
&=
I (d\Ba \wedge \spacegrad T ) \\
&=
I^2 ( d\Ba \cross \spacegrad T ) \\
&=
\end{aligned}

The line integrand is

\label{eqn:stokesCorollariesGriffiths:360}
d^1 \Bx \cdot T = d^1 \Bx T.

Given a two parameter representation of the surface area element $$d^2 \Bx = d\Bx_1 \wedge d\Bx_2$$, the line element representation is
\label{eqn:stokesCorollariesGriffiths:380}
\begin{aligned}
d^1 \Bx
&= (\Bx_1 \wedge d\Bx_2) \cdot \Bx^1 + (d\Bx_1 \wedge \Bx_2) \cdot \Bx^2 \\
&= -d\Bx_2 + d\Bx_1,
\end{aligned}

giving

\label{eqn:stokesCorollariesGriffiths:400}
\begin{aligned}
&=
\int
-\evalbar{\lr{ \PD{u_2}{\Bx} T }}{\Delta u_1} du_2
+\evalbar{\lr{ \PD{u_1}{\Bx} T }}{\Delta u_2} du_1 \\
&=
-\oint d\Bl T,
\end{aligned}

or
\label{eqn:stokesCorollariesGriffiths:420}
=
-\oint d\Bl T.

Griffiths trick for the same is to use $$\Bv = \Bc T$$ for constant $$\Bc$$ in (the usual 3D) Stokes’ theorem. That is

\label{eqn:stokesCorollariesGriffiths:440}
\begin{aligned}
\int d\Ba \cdot (\spacegrad \cross (\Bc T))
&=
\Bc \cdot \int d\Ba \cross \spacegrad T \\
&=
-\Bc \cdot \int \spacegrad T \cross d\Ba \\
&=
\oint d\Bl \cdot (\Bc T) \\
&=
\Bc \cdot \oint d\Bl T.
\end{aligned}

Again assembling projections we have
\label{eqn:stokesCorollariesGriffiths:460}
\begin{aligned}
&=
\sum \Be_k \lr{ \Be_k \cdot \int \spacegrad T \cross d\Ba} \\
&=
-\sum \Be_k \lr{ \Be_k \cdot \oint d\Bl T } \\
&=
-\oint d\Bl T.
\end{aligned}

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

Tangential and normal field components

The integral forms of Maxwell’s equations can be used to derive relations for the tangential and normal field components to the sources. These relations were mentioned in class. It’s a little late, but lets go over the derivation. This isn’t all review from first year electromagnetism since we are now using a magnetic source modifications of Maxwell’s equations.

The derivation below follows that of [1] closely, but I am trying it myself to ensure that I understand the assumptions.

The two infinitesimally thin pillboxes of fig. 1, and fig. 2 are used in the argument.

fig. 2: Pillboxes for tangential and normal field relations

fig. 1: Pillboxes for tangential and normal field relations

Maxwell’s equations with both magnetic and electric sources are

\label{eqn:normalAndTangentialFields:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\boldsymbol{\mathcal{M}}

\label{eqn:normalAndTangentialFields:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:normalAndTangentialFields:60}

\label{eqn:normalAndTangentialFields:80}

After application of Stokes’ and the divergence theorems Maxwell’s equations have the integral form

\label{eqn:normalAndTangentialFields:100}
\oint \boldsymbol{\mathcal{E}} \cdot d\Bl = -\int d\BA \cdot \lr{ \PD{t}{\boldsymbol{\mathcal{B}}} + \boldsymbol{\mathcal{M}} }

\label{eqn:normalAndTangentialFields:120}
\oint \boldsymbol{\mathcal{H}} \cdot d\Bl = \int d\BA \cdot \lr{ \PD{t}{\boldsymbol{\mathcal{D}}} + \boldsymbol{\mathcal{J}} }

\label{eqn:normalAndTangentialFields:140}
\int_{\partial V} \boldsymbol{\mathcal{D}} \cdot d\BA
=
\int_V \rho_\textrm{e}\,dV

\label{eqn:normalAndTangentialFields:160}
\int_{\partial V} \boldsymbol{\mathcal{B}} \cdot d\BA
=
\int_V \rho_\textrm{m}\,dV.

First consider one of the loop integrals, like \ref{eqn:normalAndTangentialFields:100}. For an infinestismal loop, that integral is

\label{eqn:normalAndTangentialFields:180}
\begin{aligned}
\oint \boldsymbol{\mathcal{E}} \cdot d\Bl
&\approx
\mathcal{E}^{(1)}_x \Delta x
+ \mathcal{E}^{(1)} \frac{\Delta y}{2}
+ \mathcal{E}^{(2)} \frac{\Delta y}{2}
-\mathcal{E}^{(2)}_x \Delta x
– \mathcal{E}^{(2)} \frac{\Delta y}{2}
– \mathcal{E}^{(1)} \frac{\Delta y}{2} \\
&\approx
\lr{ \mathcal{E}^{(1)}_x
-\mathcal{E}^{(2)}_x } \Delta x
+ \inv{2} \PD{x}{\mathcal{E}^{(2)}} \Delta x \Delta y
+ \inv{2} \PD{x}{\mathcal{E}^{(1)}} \Delta x \Delta y.
\end{aligned}

We let $$\Delta y \rightarrow 0$$ which kills off all but the first difference term.

The RHS of \ref{eqn:normalAndTangentialFields:180} is approximately

\label{eqn:normalAndTangentialFields:200}
-\int d\BA \cdot \lr{ \PD{t}{\boldsymbol{\mathcal{B}}} + \boldsymbol{\mathcal{M}} }
\approx
– \Delta x \Delta y \lr{ \PD{t}{\mathcal{B}_z} + \mathcal{M}_z }.

If the magnetic field contribution is assumed to be small in comparison to the magnetic current (i.e. infinite magnetic conductance), and if a linear magnetic current source of the form is also assumed

\label{eqn:normalAndTangentialFields:220}
\boldsymbol{\mathcal{M}}_s = \lim_{\Delta y \rightarrow 0} \lr{\boldsymbol{\mathcal{M}} \cdot \zcap} \zcap \Delta y,

then the Maxwell-Faraday equation takes the form

\label{eqn:normalAndTangentialFields:240}
\lr{ \mathcal{E}^{(1)}_x
-\mathcal{E}^{(2)}_x } \Delta x
\approx
– \Delta x \boldsymbol{\mathcal{M}}_s \cdot \zcap.

While $$\boldsymbol{\mathcal{M}}$$ may have components that are not normal to the interface, the surface current need only have a normal component, since only that component contributes to the surface integral.

The coordinate expression of \ref{eqn:normalAndTangentialFields:240} can be written as

\label{eqn:normalAndTangentialFields:260}
– \boldsymbol{\mathcal{M}}_s \cdot \zcap
=
\lr{ \boldsymbol{\mathcal{E}}^{(1)} -\boldsymbol{\mathcal{E}}^{(2)} } \cdot \lr{ \ycap \cross \zcap }
=
\lr{ \lr{ \boldsymbol{\mathcal{E}}^{(1)} -\boldsymbol{\mathcal{E}}^{(2)} } \cross \ycap } \cdot \zcap.

This is satisfied when

\label{eqn:normalAndTangentialFields:280}
\boxed{
\lr{ \boldsymbol{\mathcal{E}}^{(1)} -\boldsymbol{\mathcal{E}}^{(2)} } \cross \ncap = – \boldsymbol{\mathcal{M}}_s,
}

where $$\ncap$$ is the normal between the interfaces. I’d failed to understand when reading this derivation initially, how the $$\boldsymbol{\mathcal{B}}$$ contribution was killed off. i.e. If the vanishing area in the surface integral kills off the $$\boldsymbol{\mathcal{B}}$$ contribution, why do we have a $$\boldsymbol{\mathcal{M}}$$ contribution left. The key to this is understanding that this magnetic current is considered to be confined very closely to the surface getting larger as $$\Delta y$$ gets smaller.

Also note that the units of $$\boldsymbol{\mathcal{M}}_s$$ are volts/meter like the electric field (not volts/squared-meter like $$\boldsymbol{\mathcal{M}}$$.)

Ampere’s law

As above, assume a linear electric surface current density of the form

\label{eqn:normalAndTangentialFields:300}
\boldsymbol{\mathcal{J}}_s = \lim_{\Delta y \rightarrow 0} \lr{\boldsymbol{\mathcal{J}} \cdot \ncap} \ncap \Delta y,

in units of amperes/meter (not amperes/meter-squared like $$\boldsymbol{\mathcal{J}}$$.)

To apply the arguments above to Ampere’s law, only the sign needs to be adjusted

\label{eqn:normalAndTangentialFields:290}
\boxed{
\lr{ \boldsymbol{\mathcal{H}}^{(1)} -\boldsymbol{\mathcal{H}}^{(2)} } \cross \ncap = \boldsymbol{\mathcal{J}}_s.
}

Gauss’s law

Using the cylindrical pillbox surface with radius $$\Delta r$$, height $$\Delta y$$, and top and bottom surface areas $$\Delta A = \pi \lr{\Delta r}^2$$, the LHS of Gauss’s law \ref{eqn:normalAndTangentialFields:140} expands to

\label{eqn:normalAndTangentialFields:320}
\begin{aligned}
\int_{\partial V} \boldsymbol{\mathcal{D}} \cdot d\BA
&\approx
\mathcal{D}^{(2)}_y \Delta A
+ \mathcal{D}^{(2)}_\rho 2 \pi \Delta r \frac{\Delta y}{2}
+ \mathcal{D}^{(1)}_\rho 2 \pi \Delta r \frac{\Delta y}{2}
-\mathcal{D}^{(1)}_y \Delta A \\
&\approx
\lr{ \mathcal{D}^{(2)}_y
-\mathcal{D}^{(1)}_y } \Delta A.
\end{aligned}

As with the Stokes integrals above it is assumed that the height is infinestimal with respect to the radial dimension. Letting that height $$\Delta y \rightarrow 0$$ kills off the radially directed contributions of the flux through the sidewalls.

The RHS expands to approximately

\label{eqn:normalAndTangentialFields:340}
\int_V \rho_\textrm{e}\,dV
\approx
\Delta A \Delta y \rho_\textrm{e}.

Define a highly localized surface current density (coulombs/meter-squared) as

\label{eqn:normalAndTangentialFields:360}
\sigma_\textrm{e} = \lim_{\Delta y \rightarrow 0} \Delta y \rho_\textrm{e}.

Equating \ref{eqn:normalAndTangentialFields:340} with \ref{eqn:normalAndTangentialFields:320} gives

\label{eqn:normalAndTangentialFields:380}
\lr{ \mathcal{D}^{(2)}_y
-\mathcal{D}^{(1)}_y } \Delta A
=
\Delta A \sigma_\textrm{e},

or

\label{eqn:normalAndTangentialFields:400}
\boxed{
\lr{ \boldsymbol{\mathcal{D}}^{(2)} – \boldsymbol{\mathcal{D}}^{(1)} } \cdot \ncap = \sigma_\textrm{e}.
}

Gauss’s law for magnetism

The same argument can be applied to the magnetic flux. Define a highly localized magnetic surface current density (webers/meter-squared) as

\label{eqn:normalAndTangentialFields:440}
\sigma_\textrm{m} = \lim_{\Delta y \rightarrow 0} \Delta y \rho_\textrm{m},

yielding the boundary relation

\label{eqn:normalAndTangentialFields:420}
\boxed{
\lr{ \boldsymbol{\mathcal{B}}^{(2)} – \boldsymbol{\mathcal{B}}^{(1)} } \cdot \ncap = \sigma_\textrm{m}.
}

References

[1] Constantine A Balanis. Advanced engineering electromagnetics, volume 20, chapter Time-varying and time-harmonic electromagnetic fields. Wiley New York, 1989.

Updated notes for ece1229 antenna theory

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog:

Notes for ece1229 antenna theory

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)