## Totally asymmetric potential

December 16, 2015 phy1520 , , ,

### Q: [1] pr 4.11

(a) Given a time reversal invariant Hamiltonian, show that for any energy eigenket

\label{eqn:totallyAsymmetricPotential:20}
\expectation{\BL} = 0.

(b) If the wave function of such a state is expanded as

\label{eqn:totallyAsymmetricPotential:40}
\sum_{l,m} F_{l m} Y_{l m}(\theta, \phi),

what are the phase restrictions on $$F_{lm}$$?

### A: part (a)

For a time reversal invariant Hamiltonian $$H$$ we have

\label{eqn:totallyAsymmetricPotential:60}
H \Theta = \Theta H.

If $$\ket{\psi}$$ is an energy eigenstate with eigenvalue $$E$$, we have

\label{eqn:totallyAsymmetricPotential:80}
\begin{aligned}
H \Theta \ket{\psi}
&= \Theta H \ket{\psi} \\
&= \lambda \Theta \ket{\psi},
\end{aligned}

so $$\Theta \ket{\psi}$$ is also an eigenvalue of $$H$$, so can only differ from $$\ket{\psi}$$ by a phase factor. That is

\label{eqn:totallyAsymmetricPotential:100}
\begin{aligned}
\ket{\psi’}
&=
\Theta \ket{\psi} \\
&= e^{i\delta} \ket{\psi}.
\end{aligned}

Now consider the expectation of $$\BL$$ with respect to a time reversed state

\label{eqn:totallyAsymmetricPotential:120}
\begin{aligned}
\bra{ \psi’} \BL \ket{\psi’}
&=
\bra{ \psi} \Theta^{-1} \BL \Theta \ket{\psi} \\
&=
\bra{ \psi} (-\BL) \ket{\psi},
\end{aligned}

however, we also have

\label{eqn:totallyAsymmetricPotential:140}
\begin{aligned}
\bra{ \psi’} \BL \ket{\psi’}
&=
\lr{ \bra{ \psi} e^{-i\delta} } \BL \lr{ e^{i\delta} \ket{\psi} } \\
&=
\bra{\psi} \BL \ket{\psi},
\end{aligned}

so we have $$\bra{\psi} \BL \ket{\psi} = -\bra{\psi} \BL \ket{\psi}$$ which is only possible if $$\expectation{\BL} = \bra{\psi} \BL \ket{\psi} = 0$$.

### A: part (b)

Consider the expansion of the wave function of a time reversed energy eigenstate

\label{eqn:totallyAsymmetricPotential:160}
\begin{aligned}
\bra{\Bx} \Theta \ket{\psi}
&=
\bra{\Bx} e^{i\delta} \ket{\psi} \\
&=
e^{i\delta} \braket{\Bx}{\psi},
\end{aligned}

and then consider the same state expanded in the position basis

\label{eqn:totallyAsymmetricPotential:180}
\begin{aligned}
\bra{\Bx} \Theta \ket{\psi}
&=
\bra{\Bx} \Theta \int d^3 \Bx’ \lr{ \ket{\Bx’}\bra{\Bx’} } \ket{\psi} \\
&=
\bra{\Bx} \Theta \int d^3 \Bx’ \lr{ \braket{\Bx’}{\psi} } \ket{\Bx’} \\
&=
\bra{\Bx} \int d^3 \Bx’ \lr{ \braket{\Bx’}{\psi} }^\conj \Theta \ket{\Bx’} \\
&=
\bra{\Bx} \int d^3 \Bx’ \lr{ \braket{\Bx’}{\psi} }^\conj \ket{\Bx’} \\
&=
\int d^3 \Bx’ \lr{ \braket{\Bx’}{\psi} }^\conj \braket{\Bx}{\Bx’} \\
&=
\int d^3 \Bx’ \braket{\psi}{\Bx’} \delta(\Bx- \Bx’) \\
&=
\braket{\psi}{\Bx}.
\end{aligned}

This demonstrates a relationship between the wave function and its complex conjugate

\label{eqn:totallyAsymmetricPotential:200}
\braket{\Bx}{\psi} = e^{-i\delta} \braket{\psi}{\Bx}.

Now expand the wave function in the spherical harmonic basis

\label{eqn:totallyAsymmetricPotential:220}
\begin{aligned}
\braket{\Bx}{\psi}
&=
\int d\Omega \braket{\Bx}{\ncap}\braket{\ncap}{\psi} \\
&=
\sum_{lm} F_{lm}(r) Y_{lm}(\theta, \phi) \\
&=
e^{-i\delta}
\lr{
\sum_{lm} F_{lm}(r) Y_{lm}(\theta, \phi) }^\conj \\
&=
e^{-i\delta}
\sum_{lm} \lr{ F_{lm}(r)}^\conj Y_{lm}^\conj(\theta, \phi) \\
&=
e^{-i\delta}
\sum_{lm} \lr{ F_{lm}(r)}^\conj (-1)^m Y_{l,-m}(\theta, \phi) \\
&=
e^{-i\delta}
\sum_{lm} \lr{ F_{l,-m}(r)}^\conj (-1)^m Y_{l,m}(\theta, \phi),
\end{aligned}

so the $$F_{lm}$$ functions are constrained by

\label{eqn:totallyAsymmetricPotential:240}
F_{lm}(r) = e^{-i\delta} \lr{ F_{l,-m}(r)}^\conj (-1)^m.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Time reversal behavior of solutions to crystal spin Hamiltonian

December 15, 2015 phy1520 , , , ,

### Q: [1] pr 4.12

Solve the spin 1 Hamiltonian
\label{eqn:crystalSpinHamiltonianTimeReversal:20}
H = A S_z^2 + B(S_x^2 – S_y^2).

Is this Hamiltonian invariant under time reversal?

How do the eigenkets change under time reversal?

In spinMatrices.nb the matrix representation of the Hamiltonian is found to be
\label{eqn:crystalSpinHamiltonianTimeReversal:40}
H =
\Hbar^2
\begin{bmatrix}
A & 0 & B \\
0 & 0 & 0 \\
B & 0 & A
\end{bmatrix}.

The eigenvalues are
\label{eqn:crystalSpinHamiltonianTimeReversal:60}
\setlr{ 0, A – B, A + B},

and the respective eigenvalues (unnormalized) are

\label{eqn:crystalSpinHamiltonianTimeReversal:80}
\setlr{
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix},
\begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
0 \\
1 \\
\end{bmatrix}
}.

Under time reversal, the Hamiltonian is

\label{eqn:crystalSpinHamiltonianTimeReversal:100}
H \rightarrow A (-S_z)^2 + B ( (-S_x)^2 – (-S_y)^2 ) = H,

so we expect the eigenkets for this Hamiltonian to vary by at most a phase factor. To check this, first recall that the time reversal action on a spin one state is

\label{eqn:crystalSpinHamiltonianTimeReversal:120}
\Theta \ket{1, m} = (-1)^m \ket{1, -m},

or

\label{eqn:crystalSpinHamiltonianTimeReversal:140}
\begin{aligned}
\Theta \ket{1,1} &= -\ket{1,-1} \\
\Theta \ket{1,0} &= \ket{1,0} \\
\Theta \ket{1,-1} &= -\ket{1,1}.
\end{aligned}

Let’s write the eigenkets respectively as

\label{eqn:crystalSpinHamiltonianTimeReversal:160}
\begin{aligned}
\ket{0} &= \ket{1,0} \\
\ket{A-B} &= -\ket{1,-1} + \ket{1,1} \\
\ket{A+B} &= \ket{1,-1} + \ket{1,1}.
\end{aligned}

Under the reversal operation, we should have

\label{eqn:crystalSpinHamiltonianTimeReversal:180}
\begin{aligned}
\Theta \ket{0} &\rightarrow \ket{1,0} \\
\Theta \ket{A-B} &= +\ket{1,-1} – \ket{1,1} \\
\Theta \ket{A+B} &= -\ket{1,-1} – \ket{1,1}.
\end{aligned}

Up to a sign, the time reversed states match the unreversed states, which makes sense given the Hamiltonian invariance.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## Energy estimate for an absolute value potential

December 4, 2015 phy1520 , , ,

Here’s a simple problem, a lot like the problem set 6 variational calculation.

### Q: [1] 5.21

Estimate the lowest eigenvalue $$\lambda$$ of the differential equation

\label{eqn:absolutePotentialVariation:20}
\frac{d^2}{dx^2}\psi + \lr{ \lambda – \Abs{x} } \psi = 0.

Using $$\alpha$$ variation with the trial function

\label{eqn:absolutePotentialVariation:40}
\psi =
\left\{
\begin{array}{l l}
c(\alpha – \Abs{x}) & \quad \mbox{$$\Abs{x} < \alpha$$ } \\ 0 & \quad \mbox{$$\Abs{x} > \alpha$$ }
\end{array}
\right.

### A:

First rewrite the differential equation in a Hamiltonian like fashion

\label{eqn:absolutePotentialVariation:60}
H \psi = -\frac{d^2}{dx^2}\psi + \Abs{x} \psi = \lambda \psi.

We need the derivatives of the trial distribution. The first derivative is

\label{eqn:absolutePotentialVariation:80}
\begin{aligned}
\frac{d}{dx} \psi
&=
-c \frac{d}{dx} \Abs{x} \\
&=
-c \frac{d}{dx} \lr{ x \theta(x) – x \theta(-x) } \\
&=
-c \lr{
\theta(x) – \theta(-x)
+
x \delta(x) + x \delta(-x)
} \\
&=
-c \lr{
\theta(x) – \theta(-x)
+
2 x \delta(x)
}.
\end{aligned}

The second derivative is
\label{eqn:absolutePotentialVariation:100}
\begin{aligned}
\frac{d^2}{dx^2} \psi
&=
-c \frac{d}{dx} \lr{
\theta(x) – \theta(-x)
+
2 x \delta(x)
} \\
&=
-c \lr{
\delta(x) + \delta(-x)
+
2 \delta(x)
+
2 x \delta'(x)
} \\
&=
-c \lr{
4 \delta(x)
+
2 x \frac{-\delta(x) }{x}
} \\
&=
-2 c \delta(x).
\end{aligned}

This gives

\label{eqn:absolutePotentialVariation:120}
H \psi = -2 c \delta(x) + \Abs{x} c \lr{ \alpha – \Abs{x} }.

We are now set to compute some of the inner products. The normalization is the simplest

\label{eqn:absolutePotentialVariation:140}
\begin{aligned}
\braket{\psi}{\psi}
&= c^2 \int_{-\alpha}^\alpha ( \alpha – \Abs{x} )^2 dx \\
&= 2 c^2 \int_{0}^\alpha ( x – \alpha )^2 dx \\
&= 2 c^2 \int_{-\alpha}^0 u^2 du \\
&= 2 c^2 \lr{ -\frac{(-\alpha)^3}{3} } \\
&= \frac{2}{3} c^2 \alpha^3.
\end{aligned}

For the energy
\label{eqn:absolutePotentialVariation:160}
\begin{aligned}
\braket{\psi}{H \psi}
&=
c^2 \int dx \lr{ \alpha – \Abs{x} } \lr{ -2 \delta(x) + \Abs{x} \lr{ \alpha – \Abs{x} } } \\
&=
c^2 \lr{ – 2 \alpha + \int_{-\alpha}^\alpha dx \lr{ \alpha – \Abs{x} }^2 \Abs{x} } \\
&=
c^2 \lr{ – 2 \alpha + 2 \int_{-\alpha}^0 du u^2 \lr{ u + \alpha } } \\
&=
c^2 \lr{ – 2 \alpha + 2 \evalrange{\lr{ \frac{u^4}{4} + \alpha \frac{u^3}{3} }}{-\alpha}{0} } \\
&=
c^2 \lr{ – 2 \alpha – 2 \lr{ \frac{\alpha^4}{4} – \frac{\alpha^4}{3} } } \\
&=
c^2 \lr{ – 2 \alpha + \inv{6} \alpha^4 }.
\end{aligned}

The energy estimate is

\label{eqn:absolutePotentialVariation:180}
\begin{aligned}
\overline{{E}}
&=
\frac{\braket{\psi}{H \psi}}{\braket{\psi}{\psi}} \\
&=
\frac{ – 2 \alpha + \inv{6} \alpha^4 }{ \frac{2}{3} \alpha^3} \\
&=
– \frac{3}{\alpha^2} + \inv{4} \alpha.
\end{aligned}

This has its minimum at
\label{eqn:absolutePotentialVariation:200}
0 = -\frac{6}{\alpha^3} + \inv{4},

or
\label{eqn:absolutePotentialVariation:220}
\alpha = 2 \times 3^{1/3}.

Back subst into the energy gives

\label{eqn:absolutePotentialVariation:240}
\begin{aligned}
\overline{{E}}
&=
– \frac{3}{4 \times 3^{2/3}} + \inv{2} 3^{1/3} \\
&= \frac{3^{4/3}}{4} \\
&\approx 1.08.
\end{aligned}

The problem says the exact answer is 1.019, so the variation gets within 6 %.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## A symmetric real Hamiltonian

August 31, 2015 phy1520 , ,

## Question: A symmetric real Hamiltonian ([1] pr. 2.9)

Find the time evolution for the state $$\ket{a’}$$ for a Hamiltian of the form

\label{eqn:symmetricHamiltonianEvolution:20}
H = \delta \lr{ \ket{a’}\bra{a’} + \ket{a”}\bra{a”} }

This Hamiltonian has the matrix representation

\label{eqn:symmetricHamiltonianEvolution:40}
H =
\begin{bmatrix}
0 & \delta \\
\delta & 0
\end{bmatrix},

which has a characteristic equation of

\label{eqn:symmetricHamiltonianEvolution:60}
\lambda^2 -\delta^2 = 0,

so the energy eigenvalues are $$\pm \delta$$.

The diagonal basis states are respectively

\label{eqn:symmetricHamiltonianEvolution:80}
\ket{\pm\delta} =
\inv{\sqrt{2}}
\begin{bmatrix}
\pm 1 \\
1
\end{bmatrix}.

The time evolution operator is

\label{eqn:symmetricHamiltonianEvolution:100}
\begin{aligned}
U
&= e^{-i H t/\Hbar} \\
&=
e^{-i \delta t/\Hbar} \ket{+\delta}\bra{+\delta}
+ e^{i \delta t/\Hbar} \ket{-\delta}\bra{-\delta} \\
&=
\frac{e^{-i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
+ \frac{e^{i \delta t/\Hbar} }{2}
\begin{bmatrix}
-1 & 1
\end{bmatrix}
\begin{bmatrix}
-1 \\
1
\end{bmatrix} \\
&=
\frac{e^{-i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix}
+\frac{e^{i \delta t/\Hbar} }{2}
\begin{bmatrix}
1 & -1 \\
-1 & 1
\end{bmatrix} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) & -i\sin(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar) & \cos(\delta t/\Hbar) \\
\end{bmatrix}.
\end{aligned}

The desired time evolution in the original basis is

\label{eqn:symmetricHamiltonianEvolution:140}
\begin{aligned}
\ket{a’, t}
&=
e^{-i H t/\Hbar}
\ket{a’, 0} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) & -i\sin(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar) & \cos(\delta t/\Hbar) \\
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
&=
\begin{bmatrix}
\cos(\delta t/\Hbar) \\
-i \sin(\delta t/\Hbar)
\end{bmatrix} \\
&=
\cos(\delta t/\Hbar) \ket{a’,0} -i \sin(\delta t/\Hbar) \ket{a”,0}.
\end{aligned}

This evolution has the same structure as left circularly polarized light.

The probability of finding the system in state $$\ket{a”}$$ given an initial state of $$\ket{a’,0}$$ is

\label{eqn:symmetricHamiltonianEvolution:160}
P
=
\Abs{\braket{a”}{a’,t}}^2
=
\sin^2 \lr{ \delta t/\Hbar }.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

## (a)

Determine the matrix representation of $$\ket{\alpha}\bra{\beta}$$ given a complete set of eigenvectors $$\ket{a^r}$$.

## (b)

Verify with $$\ket{\alpha} = \ket{s_z = \Hbar/2}, \ket{s_x = \Hbar/2}$$.

## (a)

Forming the matrix element

\label{eqn:moreBraKetProblems:20}
\begin{aligned}
\bra{a^r} \lr{ \ket{\alpha}\bra{\beta} } \ket{a^s}
&=
\braket{a^r}{\alpha}\braket{\beta}{a^s} \\
&=
\braket{a^r}{\alpha}
\braket{a^s}{\beta}^\conj,
\end{aligned}

the matrix representation is seen to be

\label{eqn:moreBraKetProblems:40}
\ket{\alpha}\bra{\beta}
\sim
\begin{bmatrix}
\bra{a^1} \lr{ \ket{\alpha}\bra{\beta} } \ket{a^1} & \bra{a^1} \lr{ \ket{\alpha}\bra{\beta} } \ket{a^2} & \cdots \\
\bra{a^2} \lr{ \ket{\alpha}\bra{\beta} } \ket{a^1} & \bra{a^2} \lr{ \ket{\alpha}\bra{\beta} } \ket{a^2} & \cdots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}
=
\begin{bmatrix}
\braket{a^1}{\alpha} \braket{a^1}{\beta}^\conj & \braket{a^1}{\alpha} \braket{a^2}{\beta}^\conj & \cdots \\
\braket{a^2}{\alpha} \braket{a^1}{\beta}^\conj & \braket{a^2}{\alpha} \braket{a^2}{\beta}^\conj & \cdots \\
\vdots & \vdots & \ddots \\
\end{bmatrix}.

## (b)

First compute the spin-z representation of $$\ket{s_x = \Hbar/2 }$$.

\label{eqn:moreBraKetProblems:60}
\begin{aligned}
\lr{ S_x – \Hbar/2 I }
\begin{bmatrix}
a \\
b
\end{bmatrix}
&=
\lr{
\begin{bmatrix}
0 & \Hbar/2 \\
\Hbar/2 & 0 \\
\end{bmatrix}

\begin{bmatrix}
\Hbar/2 & 0 \\
0 & \Hbar/2 \\
\end{bmatrix}
} \\
&=
\begin{bmatrix}
a \\
b
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
-1 & 1 \\
1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix},
\end{aligned}

so $$\ket{s_x = \Hbar/2 } \propto (1,1)$$.

Normalized we have

\label{eqn:moreBraKetProblems:80}
\begin{aligned}
\ket{\alpha} &= \ket{s_z = \Hbar/2 } =
\begin{bmatrix}
1 \\
0
\end{bmatrix} \\
\ket{\beta} &= \ket{s_z = \Hbar/2 }
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
1
\end{bmatrix}.
\end{aligned}

Using \ref{eqn:moreBraKetProblems:40} the matrix representation is

\label{eqn:moreBraKetProblems:100}
\ket{\alpha}\bra{\beta}
\sim
\begin{bmatrix}
(1) (1/\sqrt{2})^\conj & (1) (1/\sqrt{2})^\conj \\
(0) (1/\sqrt{2})^\conj & (0) (1/\sqrt{2})^\conj \\
\end{bmatrix}
=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix}.

This can be confirmed with direct computation
\label{eqn:moreBraKetProblems:120}
\begin{aligned}
\ket{\alpha}\bra{\beta}
&=
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1
\end{bmatrix} \\
&=
\inv{\sqrt{2}}
\begin{bmatrix}
1 & 1 \\
0 & 0
\end{bmatrix}.
\end{aligned}

## Question: eigenvalue of sum of kets ([1] pr. 1.6)

Given eigenkets $$\ket{i}, \ket{j}$$ of an operator $$A$$, what are the conditions that $$\ket{i} + \ket{j}$$ is also an eigenvector?

Let $$A \ket{i} = i \ket{i}, A \ket{j} = j \ket{j}$$, and suppose that the sum is an eigenket. Then there must be a value $$a$$ such that

\label{eqn:moreBraKetProblems:140}
A \lr{ \ket{i} + \ket{j} } = a \lr{ \ket{i} + \ket{j} },

so

\label{eqn:moreBraKetProblems:160}
i \ket{i} + j \ket{j} = a \lr{ \ket{i} + \ket{j} }.

Operating with $$\bra{i}, \bra{j}$$ respectively, gives

\label{eqn:moreBraKetProblems:180}
\begin{aligned}
i &= a \\
j &= a,
\end{aligned}

so for the sum to be an eigenket, both of the corresponding energy eigenvalues must be identical (i.e. linear combinations of degenerate eigenkets are also eigenkets).

## Question: Null operator ([1] pr. 1.7)

Given eigenkets $$\ket{a’}$$ of operator $$A$$

## (a)

show that

\label{eqn:moreBraKetProblems:200}
\prod_{a’} \lr{ A – a’ }

is the null operator.

## (b)

\label{eqn:moreBraKetProblems:220}
\prod_{a” \ne a’} \frac{\lr{ A – a” }}{a’ – a”}

## (c)

Illustrate using $$S_z$$ for a spin 1/2 system.

## (a)

Application of $$\ket{a}$$, the eigenket of $$A$$ with eigenvalue $$a$$ to any term $$A – a’$$ scales $$\ket{a}$$ by $$a – a’$$, so the product operating on $$\ket{a}$$ is

\label{eqn:moreBraKetProblems:240}
\prod_{a’} \lr{ A – a’ } \ket{a} = \prod_{a’} \lr{ a – a’ } \ket{a}.

Since $$\ket{a}$$ is one of the $$\setlr{\ket{a’}}$$ eigenkets of $$A$$, one of these terms must be zero.

## (b)

Again, consider the action of the operator on $$\ket{a}$$,

\label{eqn:moreBraKetProblems:260}
\prod_{a” \ne a’} \frac{\lr{ A – a” }}{a’ – a”} \ket{a}
=
\prod_{a” \ne a’} \frac{\lr{ a – a” }}{a’ – a”} \ket{a}.

If $$\ket{a} = \ket{a’}$$, then $$\prod_{a” \ne a’} \frac{\lr{ A – a” }}{a’ – a”} \ket{a} = \ket{a}$$, whereas if it does not, then it equals one of the $$a”$$ energy eigenvalues. This is a representation of the Kronecker delta function

\label{eqn:moreBraKetProblems:300}
\prod_{a” \ne a’} \frac{\lr{ A – a” }}{a’ – a”} \ket{a} \equiv \delta_{a’, a} \ket{a}

## (c)

For operator $$S_z$$ the eigenvalues are $$\setlr{ \Hbar/2, -\Hbar/2 }$$, so the null operator must be

\label{eqn:moreBraKetProblems:280}
\begin{aligned}
\prod_{a’} \lr{ A – a’ }
&=
\lr{ \frac{\Hbar}{2} }^2 \lr{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} – \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} } \lr{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} } \\
&=
\begin{bmatrix}
0 & 0 \\
0 & -2
\end{bmatrix}
\begin{bmatrix}
2 & 0 \\
0 & 0 \\
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\end{aligned}

For the delta representation, consider the $$\ket{\pm}$$ states and their eigenvalue. The delta operators are

\label{eqn:moreBraKetProblems:320}
\begin{aligned}
\prod_{a” \ne \Hbar/2} \frac{\lr{ A – a” }}{\Hbar/2 – a”}
&=
\frac{S_z – (-\Hbar/2) I}{\Hbar/2 – (-\Hbar/2)} \\
&=
\inv{2} \lr{ \sigma_z + I } \\
&=
\inv{2} \lr{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} } \\
&=
\inv{2}
\begin{bmatrix}
2 & 0 \\
0 & 0
\end{bmatrix}
\\
&=
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}.
\end{aligned}

\label{eqn:moreBraKetProblems:340}
\begin{aligned}
\prod_{a” \ne -\Hbar/2} \frac{\lr{ A – a” }}{-\Hbar/2 – a”}
&=
\frac{S_z – (\Hbar/2) I}{-\Hbar/2 – \Hbar/2} \\
&=
\inv{2} \lr{ \sigma_z – I } \\
&=
\inv{2} \lr{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} – \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} } \\
&=
\inv{2}
\begin{bmatrix}
0 & 0 \\
0 & -2
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}.
\end{aligned}

These clearly have the expected delta function property acting on kets $$\ket{+} = (1,0), \ket{-} = (0, 1)$$.

## Question: Spin half general normal ([1] pr. 1.9)

Construct $$\ket{\BS \cdot \ncap ; + }$$, where $$\ncap = ( \cos\alpha \sin\beta, \sin\alpha \sin\beta, \cos\beta )$$ such that

\label{eqn:moreBraKetProblems:360}
\BS \cdot \ncap \ket{\BS \cdot \ncap ; + } =
\frac{\Hbar}{2} \ket{\BS \cdot \ncap ; + },

Solve this as an eigenvalue problem.

The spin operator for this direction is

\label{eqn:moreBraKetProblems:380}
\begin{aligned}
\BS \cdot \ncap
&= \frac{\Hbar}{2} \Bsigma \cdot \ncap \\
&= \frac{\Hbar}{2}
\lr{
\cos\alpha \sin\beta \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix} + \sin\alpha \sin\beta \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix} + \cos\beta \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}
} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
\cos\beta &
e^{-i\alpha}
\sin\beta
\\
e^{i\alpha}
\sin\beta
& -\cos\beta
\end{bmatrix}.
\end{aligned}

Observed that this is traceless and has a $$-\Hbar/2$$ determinant like any of the $$x,y,z$$ spin operators.

Assuming that this has an $$\Hbar/2$$ eigenvalue (to be verified later), the eigenvalue problem is

\label{eqn:moreBraKetProblems:400}
\begin{aligned}
0
&=
\BS \cdot \ncap – \Hbar/2 I \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
\cos\beta -1 &
e^{-i\alpha}
\sin\beta
\\
e^{i\alpha}
\sin\beta
& -\cos\beta -1
\end{bmatrix} \\
&=
\Hbar
\begin{bmatrix}
– \sin^2 \frac{\beta}{2} &
e^{-i\alpha}
\sin\frac{\beta}{2} \cos\frac{\beta}{2}
\\
e^{i\alpha}
\sin\frac{\beta}{2} \cos\frac{\beta}{2}
& -\cos^2 \frac{\beta}{2}
\end{bmatrix}
\end{aligned}

This has a zero determinant as expected, and the eigenvector $$(a,b)$$ will satisfy

\label{eqn:moreBraKetProblems:420}
\begin{aligned}
0
&= – \sin^2 \frac{\beta}{2} a +
e^{-i\alpha}
\sin\frac{\beta}{2} \cos\frac{\beta}{2}
b \\
&= \sin\frac{\beta}{2} \lr{ – \sin \frac{\beta}{2} a +
e^{-i\alpha} b
\cos\frac{\beta}{2}
}
\end{aligned}

\label{eqn:moreBraKetProblems:440}
\begin{bmatrix}
a \\
b
\end{bmatrix}
\propto
\begin{bmatrix}
\cos\frac{\beta}{2} \\
e^{i\alpha}
\sin\frac{\beta}{2}
\end{bmatrix}.

This is appropriately normalized, so the ket for $$\BS \cdot \ncap$$ is

\label{eqn:moreBraKetProblems:460}
\ket{ \BS \cdot \ncap ; + } =
\cos\frac{\beta}{2} \ket{+} +
e^{i\alpha}
\sin\frac{\beta}{2}
\ket{-}.

Note that the other eigenvalue is

\label{eqn:moreBraKetProblems:480}
\ket{ \BS \cdot \ncap ; – } =
-\sin\frac{\beta}{2} \ket{+} +
e^{i\alpha}
\cos\frac{\beta}{2}
\ket{-}.

It is straightforward to show that these are orthogonal and that this has the $$-\Hbar/2$$ eigenvalue.

## Question: Two state Hamiltonian ([1] pr. 1.10)

Solve the eigenproblem for

\label{eqn:moreBraKetProblems:500}
H = a \biglr{
\ket{1}\bra{1}
-\ket{2}\bra{2}
+\ket{1}\bra{2}
+\ket{2}\bra{1}
}

In matrix form the Hamiltonian is

\label{eqn:moreBraKetProblems:520}
H = a
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}.

The eigenvalue problem is

\label{eqn:moreBraKetProblems:540}
\begin{aligned}
0
&= \Abs{ H – \lambda I } \\
&= (a – \lambda)(-a – \lambda) – a^2 \\
&= (-a + \lambda)(a + \lambda) – a^2 \\
&= \lambda^2 – a^2 – a^2,
\end{aligned}

or

\label{eqn:moreBraKetProblems:560}
\lambda = \pm \sqrt{2} a.

An eigenket proportional to $$(\alpha,\beta)$$ must satisfy

\label{eqn:moreBraKetProblems:580}
0
= ( 1 \mp \sqrt{2} ) \alpha + \beta,

so

\label{eqn:moreBraKetProblems:600}
\ket{\pm} \propto
\begin{bmatrix}
-1 \\
1 \mp \sqrt{2}
\end{bmatrix},

or

\label{eqn:moreBraKetProblems:620}
\begin{aligned}
\ket{\pm}
&=
\inv{2(2 – \sqrt{2})}
\begin{bmatrix}
-1 \\
1 \mp \sqrt{2}
\end{bmatrix} \\
&=
\frac{2 + \sqrt{2}}{4}
\begin{bmatrix}
-1 \\
1 \mp \sqrt{2}
\end{bmatrix}.
\end{aligned}

That is
\label{eqn:moreBraKetProblems:640}
\ket{\pm} =
\frac{2 + \sqrt{2}}{4} \lr{
-\ket{1} + (1 \mp \sqrt{2}) \ket{2}
}.

## Question: Spin half probability and dispersion ([1] pr. 1.12)

A spin $$1/2$$ system $$\BS \cdot \ncap$$, with $$\ncap = \sin \gamma \xcap + \cos\gamma \zcap$$, is in state with eigenvalue $$\Hbar/2$$.

## (a)

If $$S_x$$ is measured. What is the probability of getting $$+ \Hbar/2$$?

## (b)

Evaluate the dispersion in $$S_x$$, that is,

\label{eqn:moreBraKetProblems:660}
\expectation{\lr{ S_x – \expectation{S_x}}^2}.

## (a)

In matrix form the spin operator for the system is

\label{eqn:moreBraKetProblems:680}
\begin{aligned}
\BS \cdot \ncap
&= \frac{\Hbar}{2} \lr{ \cos\gamma \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} + \sin\gamma \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}} \\
&= \frac{\Hbar}{2}
\begin{bmatrix}
\cos\gamma & \sin\gamma \\
\sin\gamma & -\cos\gamma \\
\end{bmatrix}
\end{aligned}

An eigenket $$\ket{\BS \cdot \ncap ; + } = (a,b)$$ must satisfy

\label{eqn:moreBraKetProblems:700}
\begin{aligned}
0
&= \lr{ \cos \gamma – 1 } a + \sin\gamma b \\
&= \lr{ -2 \sin^2 \frac{\gamma}{2} } a + 2 \sin\frac{\gamma}{2} \cos\frac{\gamma}{2} b \\
&= -\sin \frac{\gamma}{2} a + \cos\frac{\gamma}{2} b,
\end{aligned}

so the eigenstate is
\label{eqn:moreBraKetProblems:720}
\ket{\BS \cdot \ncap ; + }
=
\begin{bmatrix}
\cos\frac{\gamma}{2} \\
\sin\frac{\gamma}{2}
\end{bmatrix}.

Pick $$\ket{S_x ; \pm } = \inv{\sqrt{2}} \begin{bmatrix} 1 \\ \pm 1 \end{bmatrix}$$ as the basis for the $$S_x$$ operator. Then, for the probability that the system will end up in the $$+ \Hbar/2$$ state of $$S_x$$, we have

\label{eqn:moreBraKetProblems:740}
\begin{aligned}
P
&= \Abs{\braket{ S_x ; + }{ \BS \cdot \ncap ; + } }^2 \\
&= \Abs{ \inv{\sqrt{2} }
{
\begin{bmatrix}
1 \\
1
\end{bmatrix}}^\dagger
\begin{bmatrix}
\cos\frac{\gamma}{2} \\
\sin\frac{\gamma}{2}
\end{bmatrix}
}^2 \\
&=\inv{2}
\Abs{
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
\cos\frac{\gamma}{2} \\
\sin\frac{\gamma}{2}
\end{bmatrix}
}^2 \\
&=
\inv{2}
\lr{
\cos\frac{\gamma}{2} +
\sin\frac{\gamma}{2}
}^2 \\
&=
\inv{2}
\lr{ 1 + 2 \cos\frac{\gamma}{2} \sin\frac{\gamma}{2} } \\
&=
\inv{2}
\lr{ 1 + \sin\gamma }.
\end{aligned}

This is a reasonable seeming result, with $$P \in [0, 1]$$. Some special values also further validate this

\label{eqn:moreBraKetProblems:760}
\begin{aligned}
\gamma &= 0, \ket{\BS \cdot \ncap ; + } =
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\ket{S_z ; +}
=
\inv{\sqrt{2}} \ket{S_x;+}
+\inv{\sqrt{2}} \ket{S_x;-}
\\
\gamma &= \pi/2, \ket{\BS \cdot \ncap ; + } =
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
=
\ket{S_x ; +}
\\
\gamma &= \pi, \ket{\BS \cdot \ncap ; + } =
\begin{bmatrix}
0 \\
1
\end{bmatrix}
=
\ket{S_z ; -}
=
\inv{\sqrt{2}} \ket{S_x;+}
-\inv{\sqrt{2}} \ket{S_x;-},
\end{aligned}

where we see that the probabilites are in proportion to the projection of the initial state onto the measured state $$\ket{S_x ; +}$$.

## (b)

The $$S_x$$ expectation is

\label{eqn:moreBraKetProblems:780}
\begin{aligned}
\expectation{S_x}
&=
\frac{\Hbar}{2}
\begin{bmatrix}
\cos\frac{\gamma}{2} & \sin\frac{\gamma}{2}
\end{bmatrix}
\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}
\begin{bmatrix}
\cos\frac{\gamma}{2} \\
\sin\frac{\gamma}{2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2}
\begin{bmatrix}
\cos\frac{\gamma}{2} & \sin\frac{\gamma}{2}
\end{bmatrix}
\begin{bmatrix}
\sin\frac{\gamma}{2} \\
\cos\frac{\gamma}{2}
\end{bmatrix} \\
&=
\frac{\Hbar}{2} 2 \sin\frac{\gamma}{2} \cos\frac{\gamma}{2} \\
&=
\frac{\Hbar}{2} \sin\gamma.
\end{aligned}

Note that $$S_x^2 = (\Hbar/2)^2I$$, so

\label{eqn:moreBraKetProblems:800}
\begin{aligned}
\expectation{S_x^2}
&=
\lr{\frac{\Hbar}{2}}^2
\begin{bmatrix}
\cos\frac{\gamma}{2} & \sin\frac{\gamma}{2}
\end{bmatrix}
\begin{bmatrix}
\cos\frac{\gamma}{2} \\
\sin\frac{\gamma}{2}
\end{bmatrix} \\
&=
\lr{ \frac{\Hbar}{2} }^2
\cos^2\frac{\gamma}{2} + \sin^2 \frac{\gamma}{2} \\
&=
\lr{ \frac{\Hbar}{2} }^2.
\end{aligned}

The dispersion is

\label{eqn:moreBraKetProblems:820}
\begin{aligned}
\expectation{\lr{ S_x – \expectation{S_x}}^2}
&=
\expectation{S_x^2} – \expectation{S_x}^2 \\
&=
\lr{ \frac{\Hbar}{2} }^2
\lr{1 – \sin^2 \gamma} \\
&=
\lr{ \frac{\Hbar}{2} }^2
\cos^2 \gamma.
\end{aligned}

At $$\gamma = \pi/2$$ the dispersion is 0, which is expected since $$\ket{\BS \cdot \ncap ; + } = \ket{ S_x ; + }$$ at that point. Similarily, the dispersion is maximized at $$\gamma = 0,\pi$$ where the $$\ket{\BS \cdot \ncap ; + }$$ component in the $$\ket{S_x ; + }$$ direction is minimized.

# References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.