multivector

Solving Maxwell’s equation in freespace: Multivector plane wave representation

March 14, 2018 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

The geometric algebra form of Maxwell’s equations in free space (or source free isotopic media with group velocity \( c \)) is the multivector equation
\begin{equation}\label{eqn:planewavesMultivector:20}
\lr{ \spacegrad + \inv{c}\PD{t}{} } F(\Bx, t) = 0.
\end{equation}
Here \( F = \BE + I c \BB \) is a multivector with grades 1 and 2 (vector and bivector components). The velocity \( c \) is called the group velocity since \( F \), or its components \( \BE, \BH \) satisfy the wave equation, which can be seen by pre-multiplying with \( \spacegrad – (1/c)\PDi{t}{} \) to find
\begin{equation}\label{eqn:planewavesMultivector:n}
\lr{ \spacegrad^2 – \inv{c^2}\PDSq{t}{} } F(\Bx, t) = 0.
\end{equation}

Let’s look at the frequency domain solution of this equation with a presumed phasor representation
\begin{equation}\label{eqn:planewavesMultivector:40}
F(\Bx, t) = \textrm{Re} \lr{ F(\Bk) e^{-j \Bk \cdot \Bx + j \omega t} },
\end{equation}
where \( j \) is a scalar imaginary, not necessarily with any geometric interpretation.

Maxwell’s equation reduces to just
\begin{equation}\label{eqn:planewavesMultivector:60}
0
=
-j \lr{ \Bk – \frac{\omega}{c} } F(\Bk).
\end{equation}

If \( F(\Bk) \) has a left multivector factor
\begin{equation}\label{eqn:planewavesMultivector:80}
F(\Bk) =
\lr{ \Bk + \frac{\omega}{c} } \tilde{F},
\end{equation}
where \( \tilde{F} \) is a multivector to be determined, then
\begin{equation}\label{eqn:planewavesMultivector:100}
\begin{aligned}
\lr{ \Bk – \frac{\omega}{c} }
F(\Bk)
&=
\lr{ \Bk – \frac{\omega}{c} }
\lr{ \Bk + \frac{\omega}{c} } \tilde{F} \\
&=
\lr{ \Bk^2 – \lr{\frac{\omega}{c}}^2 } \tilde{F},
\end{aligned}
\end{equation}
which is zero if \( \Norm{\Bk} = \ifrac{\omega}{c} \).

Let \( \kcap = \ifrac{\Bk}{\Norm{\Bk}} \), and \( \Norm{\Bk} \tilde{F} = F_0 + F_1 + F_2 + F_3 \), where \( F_0, F_1, F_2, \) and \( F_3 \) are respectively have grades 0,1,2,3. Then
\begin{equation}\label{eqn:planewavesMultivector:120}
\begin{aligned}
F(\Bk)
&= \lr{ 1 + \kcap } \lr{ F_0 + F_1 + F_2 + F_3 } \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap F_1 + \kcap F_2 + \kcap F_3 \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap \cdot F_1 + \kcap \cdot F_2 + \kcap \cdot F_3
+
\kcap \wedge F_1 + \kcap \wedge F_2 \\
&=
\lr{
F_0 + \kcap \cdot F_1
}
+
\lr{
F_1 + \kcap F_0 + \kcap \cdot F_2
}
+
\lr{
F_2 + \kcap \cdot F_3 + \kcap \wedge F_1
}
+
\lr{
F_3 + \kcap \wedge F_2
}.
\end{aligned}
\end{equation}
Since the field \( F \) has only vector and bivector grades, the grades zero and three components of the expansion above must be zero, or
\begin{equation}\label{eqn:planewavesMultivector:140}
\begin{aligned}
F_0 &= – \kcap \cdot F_1 \\
F_3 &= – \kcap \wedge F_2,
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:planewavesMultivector:160}
\begin{aligned}
F(\Bk)
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap \cdot F_1 +
F_2 – \kcap \wedge F_2
} \\
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap F_1 + \kcap \wedge F_1 +
F_2 – \kcap F_2 + \kcap \cdot F_2
}.
\end{aligned}
\end{equation}
The multivector \( 1 + \kcap \) has the projective property of gobbling any leading factors of \( \kcap \)
\begin{equation}\label{eqn:planewavesMultivector:180}
\begin{aligned}
(1 + \kcap)\kcap
&= \kcap + 1 \\
&= 1 + \kcap,
\end{aligned}
\end{equation}
so for \( F_i \in F_1, F_2 \)
\begin{equation}\label{eqn:planewavesMultivector:200}
(1 + \kcap) ( F_i – \kcap F_i )
=
(1 + \kcap) ( F_i – F_i )
= 0,
\end{equation}
leaving
\begin{equation}\label{eqn:planewavesMultivector:220}
F(\Bk)
=
\lr{ 1 + \kcap } \lr{
\kcap \cdot F_2 +
\kcap \wedge F_1
}.
\end{equation}

For \( \kcap \cdot F_2 \) to be non-zero \( F_2 \) must be a bivector that lies in a plane containing \( \kcap \), and \( \kcap \cdot F_2 \) is a vector in that plane that is perpendicular to \( \kcap \). On the other hand \( \kcap \wedge F_1 \) is non-zero only if \( F_1 \) has a non-zero component that does not lie in along the \( \kcap \) direction, but \( \kcap \wedge F_1 \), like \( F_2 \) describes a plane that containing \( \kcap \). This means that having both bivector and vector free variables \( F_2 \) and \( F_1 \) provide more degrees of freedom than required. For example, if \( \BE \) is any vector, and \( F_2 = \kcap \wedge \BE \), then
\begin{equation}\label{eqn:planewavesMultivector:240}
\begin{aligned}
\lr{ 1 + \kcap }
\kcap \cdot F_2
&=
\lr{ 1 + \kcap }
\kcap \cdot \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\lr{
\BE

\kcap \lr{ \kcap \cdot \BE }
} \\
&=
\lr{ 1 + \kcap }
\kcap \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\kcap \wedge \BE,
\end{aligned}
\end{equation}
which has the form \( \lr{ 1 + \kcap } \lr{ \kcap \wedge F_1 } \), so the solution of the free space Maxwell’s equation can be written
\begin{equation}\label{eqn:planewavesMultivector:260}
\boxed{
F(\Bx, t)
=
\textrm{Re} \lr{
\lr{ 1 + \kcap }
\BE\,
e^{-j \Bk \cdot \Bx + j \omega t}
}
,
}
\end{equation}
where \( \BE \) is any vector for which \( \BE \cdot \Bk = 0 \).

The many faces of Maxwell’s equations

March 5, 2018 math and physics play , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting (including equation numbering and references)]

The following is a possible introduction for a report for a UofT ECE2500 project associated with writing a small book: “Geometric Algebra for Electrical Engineers”. Given the space constraints for the report I may have to drop much of this, but some of the history of Maxwell’s equations may be of interest, so I thought I’d share before the knife hits the latex.

Goals of the project.

This project had a few goals

  1. Perform a literature review of applications of geometric algebra to the study of electromagnetism. Geometric algebra will be defined precisely later, along with bivector, trivector, multivector and other geometric algebra generalizations of the vector.
  2. Identify the subset of the literature that had direct relevance to electrical engineering.
  3. Create a complete, and as compact as possible, introduction of the prerequisites required
    for a graduate or advanced undergraduate electrical engineering student to be able to apply
    geometric algebra to problems in electromagnetism.

The many faces of electromagnetism.

There is a long history of attempts to find more elegant, compact and powerful ways of encoding and working with Maxwell’s equations.

Maxwell’s formulation.

Maxwell [12] employs some differential operators, including the gradient \( \spacegrad \) and Laplacian \( \spacegrad^2 \), but the divergence and gradient are always written out in full using coordinates, usually in integral form. Reading the original Treatise highlights how important notation can be, as most modern engineering or physics practitioners would find his original work incomprehensible. A nice translation from Maxwell’s notation to the modern Heaviside-Gibbs notation can be found in [16].

Quaterion representation.

In his second volume [11] the equations of electromagnetism are stated using quaterions (an extension of complex numbers to three dimensions), but quaternions are not used in the work. The modern form of Maxwell’s equations in quaternion form is
\begin{equation}\label{eqn:ece2500report:220}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dr} }{ \BH } – \inv{2} \symmetric{ \frac{d}{dr} } { c \BD } &= c \rho + \BJ \\
\inv{2} \antisymmetric{ \frac{d}{dr} }{ \BE } + \inv{2} \symmetric{ \frac{d}{dr} }{ c \BB } &= 0,
\end{aligned}
\end{equation}
where \( \ifrac{d}{dr} = (1/c) \PDi{t}{} + \Bi \PDi{x}{} + \Bj \PDi{y}{} + \Bk \PDi{z}{} \) [7] acts bidirectionally, and vectors are expressed in terms of the quaternion basis \( \setlr{ \Bi, \Bj, \Bk } \), subject to the relations \(
\Bi^2 = \Bj^2 = \Bk^2 = -1, \quad
\Bi \Bj = \Bk = -\Bj \Bi, \quad
\Bj \Bk = \Bi = -\Bk \Bj, \quad
\Bk \Bi = \Bj = -\Bi \Bk \).
There is clearly more structure to these equations than the traditional Heaviside-Gibbs representation that we are used to, which says something for the quaternion model. However, this structure requires notation that is arguably non-intuitive. The fact that the quaterion representation was abandoned long ago by most electromagnetism researchers and engineers supports such an argument.

Minkowski tensor representation.

Minkowski introduced the concept of a complex time coordinate \( x_4 = i c t \) for special relativity [3]. Such a four-vector representation can be used for many of the relativistic four-vector pairs of electromagnetism, such as the current \((c\rho, \BJ)\), and the energy-momentum Lorentz force relations, and can also be applied to Maxwell’s equations
\begin{equation}\label{eqn:ece2500report:140}
\sum_{\mu= 1}^4 \PD{x_\mu}{F_{\mu\nu}} = – 4 \pi j_\nu.
\qquad
\sum_{\lambda\rho\mu=1}^4
\epsilon_{\mu\nu\lambda\rho}
\PD{x_\mu}{F_{\lambda\rho}} = 0,
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:160}
F
=
\begin{bmatrix}
0 & B_z & -B_y & -i E_x \\
-B_z & 0 & B_x & -i E_y \\
B_y & -B_x & 0 & -i E_z \\
i E_x & i E_y & i E_z & 0
\end{bmatrix}.
\end{equation}
A rank-2 complex (Hermitian) tensor contains all six of the field components. Transformation of coordinates for this representation of the field may be performed exactly like the transformation for any other four-vector. This formalism is described nicely in [13], where the structure used is motivated by transformational requirements. One of the costs of this tensor representation is that we loose the clear separation of the electric and magnetic fields that we are so comfortable with. Another cost is that we loose the distinction between space and time, as separate space and time coordinates have to be projected out of a larger four vector. Both of these costs have theoretical benefits in some applications, particularly for high energy problems where relativity is important, but for the low velocity problems near and dear to electrical engineers who can freely treat space and time independently, the advantages are not clear.

Modern tensor formalism.

The Minkowski representation fell out of favour in theoretical physics, which settled on a real tensor representation that utilizes an explicit metric tensor \( g_{\mu\nu} = \pm \textrm{diag}(1, -1, -1, -1) \) to represent the complex inner products of special relativity. In this tensor formalism, Maxwell’s equations are also reduced to a set of two tensor relationships ([10], [8], [5]).
\begin{equation}\label{eqn:ece2500report:40}
\begin{aligned}
\partial_\mu F^{\mu \nu} &= \mu_0 J^\nu \\
\epsilon^{\alpha \beta \mu \nu} \partial_\beta F_{\mu \nu} &= 0,
\end{aligned}
\end{equation}
where \( F^{\mu\nu} \) is a \textit{real} rank-2 antisymmetric tensor that contains all six electric and magnetic field components, and \( J^\nu \) is a four-vector current containing both charge density and current density components. \Cref{eqn:ece2500report:40} provides a unified and simpler theoretical framework for electromagnetism, and is used extensively in physics but not engineering.

Differential forms.

It has been argued that a differential forms treatment of electromagnetism provides some of the same theoretical advantages as the tensor formalism, without the disadvantages of introducing a hellish mess of index manipulation into the mix. With differential forms it is also possible to express Maxwell’s equations as two equations. The free-space differential forms equivalent [4] to the tensor equations is
\begin{equation}\label{eqn:ece2500report:60}
\begin{aligned}
d \alpha &= 0 \\
d *\alpha &= 0,
\end{aligned}
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:180}
\alpha = \lr{ E_1 dx^1 + E_2 dx^2 + E_3 dx^3 }(c dt) + H_1 dx^2 dx^3 + H_2 dx^3 dx^1 + H_3 dx^1 dx^2.
\end{equation}
One of the advantages of this representation is that it is valid even for curvilinear coordinate representations, which are handled naturally in differential forms. However, this formalism also comes with a number of costs. One cost (or benefit), like that of the tensor formalism, is that this is implicitly a relativistic approach subject to non-Euclidean orthonormality conditions \( (dx^i, dx^j) = \delta^{ij}, (dx^i, c dt) = 0, (c dt, c dt) = -1 \). Most grievous of the costs is the requirement to use differentials \( dx^1, dx^2, dx^3, c dt \), instead of a more familar set of basis vectors, even for non-curvilinear coordinates. This requirement is easily viewed as unnatural, and likely one of the reasons that electromagnetism with differential forms has never become popular.

Vector formalism.

Euclidean vector algebra, in particular the vector algebra and calculus of \( R^3 \), is the de-facto language of electrical engineering for electromagnetism. Maxwell’s equations in the Heaviside-Gibbs vector formalism are
\begin{equation}\label{eqn:ece2500report:20}
\begin{aligned}
\spacegrad \cross \BE &= – \PD{t}{\BB} \\
\spacegrad \cross \BH &= \BJ + \PD{t}{\BD} \\
\spacegrad \cdot \BD &= \rho \\
\spacegrad \cdot \BB &= 0.
\end{aligned}
\end{equation}
We are all intimately familiar with these equations, with the dot and the cross products, and with gradient, divergence and curl operations that are used to express them.
Given how comfortable we are with this mathematical formalism, there has to be a really good reason to switch to something else.

Space time algebra (geometric algebra).

An alternative to any of the electrodynamics formalisms described above is STA, the Space Time Algebra. STA is a relativistic geometric algebra that allows Maxwell’s equations to be combined into one equation ([2], [6])
\begin{equation}\label{eqn:ece2500report:80}
\grad F = J,
\end{equation}
where
\begin{equation}\label{eqn:ece2500report:200}
F = \BE + I c \BB \qquad (= \BE + I \eta \BH)
\end{equation}
is a bivector field containing both the electric and magnetic field “vectors”, \( \grad = \gamma^\mu \partial_\mu \) is the spacetime gradient, \( J \) is a four vector containing electric charge and current components, and \( I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 \) is the spacetime pseudoscalar, the ordered product of the basis vectors \( \setlr{ \gamma_\mu } \). The STA representation is explicitly relativistic with a non-Euclidean relationships between the basis vectors \( \gamma_0 \cdot \gamma_0 = 1 = -\gamma_k \cdot \gamma_k, \forall k > 0 \). In this formalism “spatial” vectors \( \Bx = \sum_{k>0} \gamma_k \gamma_0 x^k \) are represented as spacetime bivectors, requiring a small slight of hand when switching between STA notation and conventional vector representation. Uncoincidentally \( F \) has exactly the same structure as the 2-form \(\alpha\) above, provided the differential 1-forms \( dx^\mu \) are replaced by the basis vectors \( \gamma_\mu \). However, there is a simple complex structure inherent in the STA form that is not obvious in the 2-form equivalent. The bivector representation of the field \( F \) directly encodes the antisymmetric nature of \( F^{\mu\nu} \) from the tensor formalism, and the tensor equivalents of most STA results can be calcualted easily.

Having a single PDE for all of Maxwell’s equations allows for direct Green’s function solution of the field, and has a number of other advantages. There is extensive literature exploring selected applications of STA to electrodynamics. Many theoretical results have been derived using this formalism that require significantly more complex approaches using conventional vector or tensor analysis. Unfortunately, much of the STA literature is inaccessible to the engineering student, practising engineers, or engineering instructors. To even start reading the literature, one must learn geometric algebra, aspects of special relativity and non-Euclidean geometry, generalized integration theory, and even some tensor analysis.

Paravector formalism (geometric algebra).

In the geometric algebra literature, there are a few authors who have endorsed the use of Euclidean geometric algebras for relativistic applications ([1], [14])
These authors use an Euclidean basis “vector” \( \Be_0 = 1 \) for the timelike direction, along with a standard Euclidean basis \( \setlr{ \Be_i } \) for the spatial directions. A hybrid scalar plus vector representation of four vectors, called paravectors is employed. Maxwell’s equation is written as a multivector equation
\begin{equation}\label{eqn:ece2500report:120}
\lr{ \spacegrad + \inv{c} \PD{t}{} } F = J,
\end{equation}
where \( J \) is a multivector source containing both the electric charge and currents, and \( c \) is the group velocity for the medium (assumed uniform and isometric). \( J \) may optionally include the (fictitious) magnetic charge and currents useful in antenna theory. The paravector formalism uses a the hybrid electromagnetic field representation of STA above, however, \( I = \Be_1 \Be_2 \Be_3 \) is interpreted as the \( R^3 \) pseudoscalar, the ordered product of the basis vectors \( \setlr{ \Be_i } \), and \( F \) represents a multivector with vector and bivector components. Unlike STA where \( \BE \) and \( \BB \) (or \( \BH \)) are interpretted as spacetime bivectors, here they are plain old Euclidian vectors in \( R^3 \), entirely consistent with conventional Heaviyside-Gibbs notation. Like the STA Maxwell’s equation, the paravector form is directly invertible using Green’s function techniques, without requiring the solution of equivalent second order potential problems, nor any requirement to take the derivatives of those potentials to determine the fields.

Lorentz transformation and manipulation of paravectors requires a variety of conjugation, real and imaginary operators, unlike STA where such operations have the same complex exponential structure as any 3D rotation expressed in geometric algebra. The advocates of the paravector representation argue that this provides an effective pedagogical bridge from Euclidean geometry to the Minkowski geometry of special relativity. This author agrees that this form of Maxwell’s equations is the natural choice for an introduction to electromagnetism using geometric algebra, but for relativistic operations, STA is a much more natural and less confusing choice.

Results.

The end product of this project was a fairly small self contained book, titled “Geometric Algebra for Electrical Engineers”. This book includes an introduction to Euclidean geometric algebra focused on \( R^2 \) and \( R^3 \) (64 pages), an introduction to geometric calculus and multivector Green’s functions (64 pages), and applications to electromagnetism (75 pages). This report summarizes results from this book, omitting most derivations, and attempts to provide an overview that may be used as a road map for the book for further exploration. Many of the fundamental results of electromagnetism are derived directly from the geometric algebra form of Maxwell’s equation in a streamlined and compact fashion. This includes some new results, and many of the existing non-relativistic results from the geometric algebra STA and paravector literature. It will be clear to the reader that it is often simpler to have the electric and magnetic on equal footing, and demonstrates this by deriving most results in terms of the total electromagnetic field \( F \). Many examples of how to extract the conventional electric and magnetic fields from the geometric algebra results expressed in terms of \( F \) are given as a bridge between the multivector and vector representations.

The aim of this work was to remove some of the prerequisite conceptual roadblocks that make electromagnetism using geometric algebra inaccessbile. In particular, this project explored non-relativistic applications of geometric algebra to electromagnetism. After derivation from the conventional Heaviside-Gibbs representation of Maxwell’s equations, the paravector representation of Maxwell’s equation is used as the starting point for of all subsequent analysis. However, the paravector literature includes a confusing set of conjugation and real and imaginary selection operations that are tailored for relativisitic applications. These are not neccessary for low velocity applications, and have been avoided completely with the aim of making the subject more accessibility to the engineer.

In the book an attempt has been made to avoid introducing as little new notation as possible. For example, some authors use special notation for the bivector valued magnetic field \( I \BB \), such as \( \boldsymbol{\mathcal{b}} \) or \( \Bcap \). Given the inconsistencies in the literature, \( I \BB \) (or \( I \BH \)) will be used explicitly for the bivector (magnetic) components of the total electromagnetic field \( F \). In the geometric algebra literature, there are conflicting conventions for the operator \( \spacegrad + (1/c) \PDi{t}{} \) which we will call the spacetime gradient after the STA equivalent. For examples of different notations for the spacetime gradient, see [9], [1], and [15]. In the book the spacetime gradient is always written out in full to avoid picking from or explaining some of the subtlties of the competing notations.

Some researchers will find it distasteful that STA and relativity have been avoided completely in this book. Maxwell’s equations are inherently relativistic, and STA expresses the relativistic aspects of electromagnetism in an exceptional and beautiful fashion. However, a student of this book will have learned the geometric algebra and calculus prerequisites of STA. This makes the STA literature much more accessible, especially since most of the results in the book can be trivially translated into STA notation.

References

[1] William Baylis. Electrodynamics: a modern geometric approach, volume 17. Springer Science \& Business Media, 2004.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] Albert Einstein. Relativity: The special and the general theory, chapter Minkowski’s Four-Dimensional Space. Princeton University Press, 2015. URL http://www.gutenberg.org/ebooks/5001.

[4] H. Flanders. Differential Forms With Applications to the Physical Sciences. Courier Dover Publications, 1989.

[5] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[6] David Hestenes. Space-time algebra, volume 1. Springer, 1966.

[7] Peter Michael Jack. Physical space as a quaternion structure, i: Maxwell equations. a brief note. arXiv preprint math-ph/0307038, 2003. URL https://arxiv.org/abs/math-ph/0307038.

[8] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[9] Bernard Jancewicz. Multivectors and Clifford algebra in electrodynamics. World Scientific, 1988.

[10] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980. ISBN 0750627689.

[11] James Clerk Maxwell. A treatise on electricity and magnetism, volume II. Merchant Books, 1881.

[12] James Clerk Maxwell. A treatise on electricity and magnetism, third edition, volume I. Dover publications, 1891.

[13] M. Schwartz. Principles of Electrodynamics. Dover Publications, 1987.

[14] Chappell et al. A simplified approach to electromagnetism using geometric algebra. arXiv preprint arXiv:1010.4947, 2010.

[15] Chappell et al. Geometric algebra for electrical and electronic engineers. 2014.

[16] Chappell et al. Geometric Algebra for Electrical and Electronic Engineers, 2014

A derivation of the quaternion Maxwell’s equations using geometric algebra.

March 5, 2018 math and physics play , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

The quaternion form of Maxwell’s equations as stated in [2] is nearly indecipherable. The modern quaternionic form of these equations can be found in [1]. Looking for this representation was driven by the question of whether or not the compact geometric algebra representations of Maxwell’s equations \( \grad F = J \), was possible using a quaternion representation of the fields.

As quaternions may be viewed as the even subalgebra of GA(3,0), it is possible to the quaternion representation of Maxwell’s equations using only geometric algebra, including source terms and independent of the heat considerations discussed in [1]. Such a derivation will be performed here. Examination of the results appears to answer the question about the compact representation in the negative.

Quaternions as multivectors.

Quaternions are vector plus scalar sums, where the vector basis \( \setlr{ \Bi, \Bj, \Bk } \) are subject to the complex like multiplication rules
\begin{equation}\label{eqn:complex:240}
\begin{aligned}
\Bi^2 &= \Bj^2 = \Bk^2 = -1 \\
\Bi \Bj &= \Bk = -\Bj \Bi \\
\Bj \Bk &= \Bi = -\Bk \Bj \\
\Bk \Bi &= \Bj = -\Bi \Bk.
\end{aligned}
\end{equation}

We can represent these basis vectors in terms of the \(\mathbb{R}^{3}\) unit bivectors
\begin{equation}\label{eqn:quaternion2maxwellWithGA:260}
\begin{aligned}
\Bi &= \Be_{3} \Be_{2} = -I \Be_1 \\
\Bj &= \Be_{1} \Be_{3} = -I \Be_2 \\
\Bk &= \Be_{2} \Be_{1} = -I \Be_3,
\end{aligned}
\end{equation}
where \( I = \Be_1 \Be_2 \Be_3 \) is the ordered product of the \(\mathbb{R}^{3}\) basis elements. Within geometric algebra, the quaternion basis “vectors” are more properly viewed as a bivector space basis that happens to have dimension three.

Similar to [1] (which used \(d/dr\), whereas \(d/dX\) is used here to invoke the connection to a relativistic four vector \(X = (c t, \mathbf{x})\)), we may introduce a quaternionic spacetime gradient, and express that in terms of geometric algebra
\begin{equation}\label{eqn:quaternion2maxwellWithGA:280}
\frac{d}{dX} = \inv{c} \PD{t}{}
+ \Bi \PD{x}{}
+ \Bj \PD{y}{}
+ \Bk \PD{z}{}
=
\inv{c}\PD{t}{} -I \spacegrad.
\end{equation}

Of particular interest is how do we write the curl, divergence and time partials in terms of the quaternionic spacetime gradient or its components. Like [1], we will use modern commutator notation for an antisymmetric difference of products
\begin{equation}\label{eqn:quaternion2maxwellWithGA:600}
\antisymmetric{a}{b} = a b – b a,
\end{equation}
and anticommutator notation for a symmetric difference of products
\begin{equation}\label{eqn:quaternion2maxwellWithGA:620}
\symmetric{a}{b} = a b + b a.
\end{equation}
The curl of a vector \( \Bf \) in terms of vector products with the gradient is
\begin{equation}\label{eqn:quaternion2maxwellWithGA:300}
\begin{aligned}
\spacegrad \cross \Bf
&= -I(\spacegrad \wedge \Bf) \\
&= -\frac{I}{2} \lr{ \spacegrad \Bf – \Bf \spacegrad } \\
&= \frac{1}{2} \lr{ (-I \spacegrad) \Bf – \Bf (-I\spacegrad) } \\
&= \inv{2} \antisymmetric{ -I \spacegrad }{ \Bf } \\
&= \inv{2} \antisymmetric{ \frac{d}{dX} }{ \Bf },
\end{aligned}
\end{equation}
where the last step takes advantage of the fact that the timelike contribution of the spacetime gradient commutes with any vector \( \Bf \) due to its scalar nature, so cancels out of the commutator. In a similar fashion, the dot product may be written as an anticommutator
\begin{equation}\label{eqn:quaternion2maxwellWithGA:480}
\spacegrad \cdot \Bf
=
\inv{2} \lr{ \spacegrad \Bf + \Bf \spacegrad }
=
\inv{2} \symmetric{ \spacegrad}{ \Bf },
\end{equation}
as can the scalar time derivative
\begin{equation}\label{eqn:quaternion2maxwellWithGA:500}
\PD{t}{\Bf}
= \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \Bf }.
\end{equation}

Quaternionic form of Maxwell’s equations.

Using geometric algebra as an intermediate transformation, let’s see directly how to express Maxwell’s equations in terms of this quaternionic operator. Our starting point is Maxwell’s equations in their standard macroscopic form

\begin{equation}\label{eqn:ece2500report:20}
\spacegrad \cross \BH = \BJ + \PD{t}{\BD}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:340}
\spacegrad \cdot \BD = \rho
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:360}
\spacegrad \cross \BE = – \PD{t}{\BB}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:380}
\spacegrad \cdot \BB = 0.
\end{equation}

Inserting these into Maxwell-Faraday and into Gauss’s law for magnetism we have
\begin{equation}\label{eqn:quaternion2maxwellWithGA:400}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BE } &= – \symmetric{ \inv{c}\PD{t}{} }{ c \BB } \\
\inv{2} \symmetric{ \spacegrad }{ c \BB } &= 0,
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:quaternion2maxwellWithGA:420}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BE } + \symmetric{ \inv{c}\PD{t}{} }{ -I c \BB } &= 0 \\
\inv{2} \symmetric{ -I \spacegrad }{ -I c \BB } &= 0
\end{aligned}
\end{equation}
We can introduce quaternionic electric and magnetic field “vectors” (really bivectors)
\begin{equation}\label{eqn:quaternion2maxwellWithGA:440}
\begin{aligned}
\boldsymbol{\mathcal{E}} &= -I \BE = \Bi E_x + \Bj E_y + \Bk E_z \\
\boldsymbol{\mathcal{B}} &= -I \BB = \Bi B_x + \Bj B_y + \Bk B_z,
\end{aligned}
\end{equation}
and substitute these and sum to find the quaternionic representation of the two source free Maxwell’s equations
\begin{equation}\label{eqn:quaternion2maxwellWithGA:460}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{E}} } + \inv{2} \symmetric{ \frac{d}{dX} }{ c \boldsymbol{\mathcal{B}} } = 0.
}
\end{equation}

Inserting the quaternion curl, div and time derivative representations into Ampere-Maxwell’s law and Gauss’s law, gives
\begin{equation}\label{eqn:quaternion2maxwellWithGA:520}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \BH } &= \BJ + \inv{2} \symmetric{ \inv{c} \PD{t}{} } { c \BD } \\
\inv{2} \symmetric{ \spacegrad }{ c \BD } &= c \rho,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:quaternion2maxwellWithGA:540}
\begin{aligned}
\inv{2} \antisymmetric{ \frac{d}{dX} }{ -I \BH } – \inv{2} \symmetric{ \inv{c} \PD{t}{} } { -I c \BD } &= -I \BJ \\
-\inv{2} \symmetric{ -I \spacegrad }{ -I c \BD } &= c \rho.
\end{aligned}
\end{equation}
With quaternionic displacement vector and magnetization, and current densities
\begin{equation}\label{eqn:quaternion2maxwellWithGA:580}
\begin{aligned}
\boldsymbol{\mathcal{D}} &= -I \BD = \Bi D_x + \Bj D_y + \Bk D_z \\
\boldsymbol{\mathcal{H}} &= -I \BH = \Bi H_x + \Bj H_y + \Bk H_z \\
\boldsymbol{\mathcal{J}} &= -I \BJ = \Bi J_x + \Bj J_y + \Bk J_z,
\end{aligned}
\end{equation}
and summing yields the two remaining two Maxwell equations in their quaternionic form
\begin{equation}\label{eqn:quaternion2maxwellWithGA:560}
\boxed{
\inv{2} \antisymmetric{ \frac{d}{dX} }{ \boldsymbol{\mathcal{H}} } – \inv{2} \symmetric{ \frac{d}{dX} } { c \boldsymbol{\mathcal{D}} } = c \rho + \boldsymbol{\mathcal{J}}.
}
\end{equation}

Conclusions.

Maxwell’s equations in the quaternion representation have a structure that is not apparent in the Heaviside-Gibbs notation. There is some elegance to this result, but comes with the cost of having to use commutator and anticommutator operators, which are arguably non-intuitive. The compact geometric algebra representation of Maxwell’s equation does not appear possible with a quaternion representation, as an additional complex degree of freedom would be required (biquaternions?) Such a degree of freedom may also allow a quaternion representation of the (fictitious) magnetic sources that are useful in antenna theory with a quaternion model. Magnetic sources are easily incorporated into the current multivector in geometric algebra, but if done so in the derivation above, yield an odd grade multivector source which has no quaternion representation.

References

[1] Peter Michael Jack. Physical space as a quaternion structure, i: Maxwell equations. a brief note. arXiv preprint math-ph/0307038, 2003. URL https://arxiv.org/abs/math-ph/0307038.

[2] James Clerk Maxwell. A treatise on electricity and magnetism, volume II. Merchant Books, 1881.

Lorentz boosts in Geometric Algebra paravector notation.

January 14, 2018 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation.

The notation I prefer for relativistic geometric algebra uses Hestenes’ space time algebra (STA) [2], where the basis is a four dimensional space \( \setlr{ \gamma_\mu } \), subject to Dirac matrix like relations \( \gamma_\mu \cdot \gamma_\nu = \eta_{\mu \nu} \).

In this formalism a four vector is just the sum of the products of coordinates and basis vectors, for example, using summation convention

\begin{equation}\label{eqn:boostToParavector:160}
x = x^\mu \gamma_\mu.
\end{equation}

The invariant for a four-vector in STA is just the square of that vector

\begin{equation}\label{eqn:boostToParavector:180}
\begin{aligned}
x^2
&= (x^\mu \gamma_\mu) \cdot (x^\nu \gamma_\nu) \\
&= \sum_\mu (x^\mu)^2 (\gamma_\mu)^2 \\
&= (x^0)^2 – \sum_{k = 1}^3 (x^k)^2 \\
&= (ct)^2 – \Bx^2.
\end{aligned}
\end{equation}

Recall that a four-vector is time-like if this squared-length is positive, spacelike if negative, and light-like when zero.

Time-like projections are possible by dotting with the “lab-frame” time like basis vector \( \gamma_0 \)

\begin{equation}\label{eqn:boostToParavector:200}
ct = x \cdot \gamma_0 = x^0,
\end{equation}

and space-like projections are wedges with the same

\begin{equation}\label{eqn:boostToParavector:220}
\Bx = x \cdot \gamma_0 = x^k \sigma_k,
\end{equation}

where sums over Latin indexes \( k \in \setlr{1,2,3} \) are implied, and where the elements \( \sigma_k \)

\begin{equation}\label{eqn:boostToParavector:80}
\sigma_k = \gamma_k \gamma_0.
\end{equation}

which are bivectors in STA, can be viewed as an Euclidean vector basis \( \setlr{ \sigma_k } \).

Rotations in STA involve exponentials of space like bivectors \( \theta = a_{ij} \gamma_i \wedge \gamma_j \)

\begin{equation}\label{eqn:boostToParavector:240}
x’ = e^{ \theta/2 } x e^{ -\theta/2 }.
\end{equation}

Boosts, on the other hand, have exactly the same form, but the exponentials are with respect to space-time bivectors arguments, such as \( \theta = a \wedge \gamma_0 \), where \( a \) is any four-vector.

Observe that both boosts and rotations necessarily conserve the space-time length of a four vector (or any multivector with a scalar square).

\begin{equation}\label{eqn:boostToParavector:260}
\begin{aligned}
\lr{x’}^2
&=
\lr{ e^{ \theta/2 } x e^{ -\theta/2 } } \lr{ e^{ \theta/2 } x e^{ -\theta/2 } } \\
&=
e^{ \theta/2 } x \lr{ e^{ -\theta/2 } e^{ \theta/2 } } x e^{ -\theta/2 } \\
&=
e^{ \theta/2 } x^2 e^{ -\theta/2 } \\
&=
x^2 e^{ \theta/2 } e^{ -\theta/2 } \\
&=
x^2.
\end{aligned}
\end{equation}

Paravectors.

Paravectors, as used by Baylis [1], represent four-vectors using a Euclidean multivector basis \( \setlr{ \Be_\mu } \), where \( \Be_0 = 1 \). The conversion between STA and paravector notation requires only multiplication with the timelike basis vector for the lab frame \( \gamma_0 \)

\begin{equation}\label{eqn:boostToParavector:40}
\begin{aligned}
X
&= x \gamma_0 \\
&= \lr{ x^0 \gamma_0 + x^k \gamma_k } \gamma_0 \\
&= x^0 + x^k \gamma_k \gamma_0 \\
&= x^0 + \Bx \\
&= c t + \Bx,
\end{aligned}
\end{equation}

We need a different structure for the invariant length in paravector form. That invariant length is
\begin{equation}\label{eqn:boostToParavector:280}
\begin{aligned}
x^2
&=
\lr{ \lr{ ct + \Bx } \gamma_0 }
\lr{ \lr{ ct + \Bx } \gamma_0 } \\
&=
\lr{ \lr{ ct + \Bx } \gamma_0 }
\lr{ \gamma_0 \lr{ ct – \Bx } } \\
&=
\lr{ ct + \Bx }
\lr{ ct – \Bx }.
\end{aligned}
\end{equation}

Baylis introduces an involution operator \( \overline{{M}} \) which toggles the sign of any vector or bivector grades of a multivector. For example, if \( M = a + \Ba + I \Bb + I c \), where \( a,c \in \mathbb{R} \) and \( \Ba, \Bb \in \mathbb{R}^3 \) is a multivector with all grades \( 0,1,2,3 \), then the involution of \( M \) is

\begin{equation}\label{eqn:boostToParavector:300}
\overline{{M}} = a – \Ba – I \Bb + I c.
\end{equation}

Utilizing this operator, the invariant length for a paravector \( X \) is \( X \overline{{X}} \).

Let’s consider how boosts and rotations can be expressed in the paravector form. The half angle operator for a boost along the spacelike \( \Bv = v \vcap \) direction has the form

\begin{equation}\label{eqn:boostToParavector:120}
L = e^{ -\vcap \phi/2 },
\end{equation}

\begin{equation}\label{eqn:boostToParavector:140}
\begin{aligned}
X’
&=
c t’ + \Bx’ \\
&=
x’ \gamma_0 \\
&=
L x L^\dagger \\
&=
e^{ -\vcap \phi/2 } x^\mu \gamma_\mu
e^{ \vcap \phi/2 } \gamma_0 \\
&=
e^{ -\vcap \phi/2 } x^\mu \gamma_\mu \gamma_0
e^{ -\vcap \phi/2 } \\
&=
e^{ -\vcap \phi/2 } \lr{ x^0 + \Bx } e^{ -\vcap \phi/2 } \\
&=
L X L.
\end{aligned}
\end{equation}

Because the involution operator toggles the sign of vector grades, it is easy to see that the required invariance is maintained

\begin{equation}\label{eqn:boostToParavector:320}
\begin{aligned}
X’ \overline{{X’}}
&=
L X L
\overline{{ L X L }} \\
&=
L X L
\overline{{ L }} \overline{{ X }} \overline{{ L }} \\
&=
L X \overline{{ X }} \overline{{ L }} \\
&=
X \overline{{ X }} L \overline{{ L }} \\
&=
X \overline{{ X }}.
\end{aligned}
\end{equation}

Let’s explicitly expand the transformation of \ref{eqn:boostToParavector:140}, so we can relate the rapidity angle \( \phi \) to the magnitude of the velocity. This is most easily done by splitting the spacelike component \( \Bx \) of the four vector into its projective and rejective components

\begin{equation}\label{eqn:boostToParavector:340}
\begin{aligned}
\Bx
&= \vcap \vcap \Bx \\
&= \vcap \lr{ \vcap \cdot \Bx + \vcap \wedge \Bx } \\
&= \vcap \lr{ \vcap \cdot \Bx } + \vcap \lr{ \vcap \wedge \Bx } \\
&= \Bx_\parallel + \Bx_\perp.
\end{aligned}
\end{equation}

The exponential

\begin{equation}\label{eqn:boostToParavector:360}
e^{-\vcap \phi/2}
=
\cosh\lr{ \phi/2 }
– \vcap \sinh\lr{ \phi/2 },
\end{equation}

commutes with any scalar grades and with \( \Bx_\parallel \), but anticommutes with \( \Bx_\perp \), so

\begin{equation}\label{eqn:boostToParavector:380}
\begin{aligned}
X’
&=
\lr{ c t + \Bx_\parallel } e^{ -\vcap \phi/2 } e^{ -\vcap \phi/2 }
+
\Bx_\perp e^{ \vcap \phi/2 } e^{ -\vcap \phi/2 } \\
&=
\lr{ c t + \Bx_\parallel } e^{ -\vcap \phi }
+
\Bx_\perp \\
&=
\lr{ c t + \vcap \lr{ \vcap \cdot \Bx } } \lr{ \cosh \phi – \vcap \sinh \phi }
+
\Bx_\perp \\
&=
\Bx_\perp
+
\lr{ c t \cosh\phi – \lr{ \vcap \cdot \Bx} \sinh \phi }
+
\vcap \lr{ \lr{ \vcap \cdot \Bx } \cosh\phi – c t \sinh \phi } \\
&=
\Bx_\perp
+
\cosh\phi \lr{ c t – \lr{ \vcap \cdot \Bx} \tanh \phi }
+
\vcap \cosh\phi \lr{ \vcap \cdot \Bx – c t \tanh \phi }.
\end{aligned}
\end{equation}

Employing the argument from [3],
we want \( \phi \) defined so that this has structure of a Galilean transformation in the limit where \( \phi \rightarrow 0 \). This means we equate

\begin{equation}\label{eqn:boostToParavector:400}
\tanh \phi = \frac{v}{c},
\end{equation}

so that for small \(\phi\)

\begin{equation}\label{eqn:boostToParavector:420}
\Bx’ = \Bx – \Bv t.
\end{equation}

We can solving for \( \sinh^2 \phi \) and \( \cosh^2 \phi \) in terms of \( v/c \) using

\begin{equation}\label{eqn:boostToParavector:440}
\tanh^2 \phi
= \frac{v^2}{c^2}
=
\frac{ \sinh^2 \phi }{1 + \sinh^2 \phi}
=
\frac{ \cosh^2 \phi – 1 }{\cosh^2 \phi}.
\end{equation}

which after picking the positive root required for Galilean equivalence gives
\begin{equation}\label{eqn:boostToParavector:460}
\begin{aligned}
\cosh \phi &= \frac{1}{\sqrt{1 – (\Bv/c)^2}} \equiv \gamma \\
\sinh \phi &= \frac{v/c}{\sqrt{1 – (\Bv/c)^2}} = \gamma v/c.
\end{aligned}
\end{equation}

The Lorentz boost, written out in full is

\begin{equation}\label{eqn:boostToParavector:480}
ct’ + \Bx’
=
\Bx_\perp
+
\gamma \lr{ c t – \frac{\Bv}{c} \cdot \Bx }
+
\gamma \lr{ \vcap \lr{ \vcap \cdot \Bx } – \Bv t }
.
\end{equation}

Authors like Chappelle, et al., that also use paravectors [4], specify the form of the Lorentz transformation for the electromagnetic field, but for that transformation reversion is used instead of involution.
I plan to explore that in a later post, starting from the STA formalism that I already understand, and see if I can make sense
of the underlying rationale.

References

[1] William Baylis. Electrodynamics: a modern geometric approach, volume 17. Springer Science \& Business Media, 2004.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] L. Landau and E. Lifshitz. The Classical theory of fields. Addison-Wesley, 1951.

[4] James M Chappell, Samuel P Drake, Cameron L Seidel, Lachlan J Gunn, and Derek Abbott. Geometric algebra for electrical and electronic engineers. Proceedings of the IEEE, 102 0(9), 2014.

Spherical gradient, divergence, curl and Laplacian

November 9, 2016 math and physics play , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Unit vectors

Two of the spherical unit vectors we can immediately write by inspection.

\begin{equation}\label{eqn:sphericalLaplacian:20}
\begin{aligned}
\rcap &= \Be_1 \sin\theta \cos\phi + \Be_2 \sin\theta \sin\phi + \Be_3 \cos\theta \\
\phicap &= -\Be_1 \sin\theta + \Be_2 \cos\phi
\end{aligned}
\end{equation}

We can compute \( \thetacap \) by utilizing the right hand triplet property

\begin{equation}\label{eqn:sphericalLaplacian:40}
\begin{aligned}
\thetacap
&=
\phicap \cross \rcap \\
&=
\begin{vmatrix}
\Be_1 & \Be_2 & \Be_3 \\
-S_\phi & C_\phi & 0 \\
S_\theta C_\phi & S_\theta S_\phi & C_\theta \\
\end{vmatrix} \\
&=
\Be_1 \lr{ C_\theta C_\phi }
+\Be_2 \lr{ C_\theta S_\phi }
+\Be_3 \lr{ -S_\theta \lr{ S_\phi^2 + C_\phi^2 } } \\
&=
\Be_1 \cos\theta \cos\phi
+\Be_2 \cos\theta \sin\phi
-\Be_3 \sin\theta.
\end{aligned}
\end{equation}

Here I’ve used \( C_\theta = \cos\theta, S_\phi = \sin\phi, \cdots \) as a convenient shorthand. Observe that with \( i = \Be_1 \Be_2 \), these unit vectors admit a small factorization that makes further manipulation easier

\begin{equation}\label{eqn:sphericalLaplacian:80}
\boxed{
\begin{aligned}
\rcap &= \Be_1 e^{i\phi} \sin\theta + \Be_3 \cos\theta \\
\thetacap &= \cos\theta \Be_1 e^{i\phi} – \sin\theta \Be_3 \\
\phicap &= \Be_2 e^{i\phi}
\end{aligned}
}
\end{equation}

It should also be the case that \( \rcap \thetacap \phicap = I \), where \( I = \Be_1 \Be_2 \Be_3 = \Be_{123}\) is the \R{3} pseudoscalar, which is straightforward to check

\begin{equation}\label{eqn:sphericalLaplacian:60}
\begin{aligned}
\rcap \thetacap \phicap
&=
\lr{ \Be_1 e^{i\phi} \sin\theta + \Be_3 \cos\theta }
\lr{ \cos\theta \Be_1 e^{i\phi} – \sin\theta \Be_3 }
\Be_2 e^{i\phi} \\
&=
\lr{ \sin\theta \cos\theta – \cos\theta \sin\theta + \Be_{31} e^{i\phi} \lr{ \cos^2\theta + \sin^2\theta } }
\Be_2 e^{i\phi} \\
&=
\Be_{31} \Be_2 e^{-i\phi} e^{i\phi} \\
&=
\Be_{123}.
\end{aligned}
\end{equation}

This property could also have been used to compute \(\thetacap\).

Gradient

To compute the gradient, note that the coordinate vectors for the spherical parameterization are
\begin{equation}\label{eqn:sphericalLaplacian:120}
\begin{aligned}
\Bx_r
&= \PD{r}{\Br} \\
&= \PD{r}{\lr{r \rcap}} \\
&= \rcap + r \PD{r}{\rcap} \\
&= \rcap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:140}
\begin{aligned}
\Bx_\theta
&= \PD{\theta}{\lr{r \rcap} } \\
&= r \PD{\theta}{} \lr{ S_\theta \Be_1 e^{i\phi} + C_\theta \Be_3 } \\
&= r \PD{\theta}{} \lr{ C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3 } \\
&= r \thetacap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:160}
\begin{aligned}
\Bx_\phi
&= \PD{\phi}{\lr{r \rcap} } \\
&= r \PD{\phi}{} \lr{ S_\theta \Be_1 e^{i\phi} + C_\theta \Be_3 } \\
&= r S_\theta \Be_2 e^{i\phi} \\
&= r \sin\theta \phicap.
\end{aligned}
\end{equation}

Since these are all normal, the dual vectors defined by \( \Bx^j \cdot \Bx_k = \delta^j_k \), can be obtained by inspection
\begin{equation}\label{eqn:sphericalLaplacian:180}
\begin{aligned}
\Bx^r &= \rcap \\
\Bx^\theta &= \inv{r} \thetacap \\
\Bx^\phi &= \inv{r \sin\theta} \phicap.
\end{aligned}
\end{equation}

The gradient follows immediately
\begin{equation}\label{eqn:sphericalLaplacian:200}
\spacegrad =
\Bx^r \PD{r}{} +
\Bx^\theta \PD{\theta}{} +
\Bx^\phi \PD{\phicap}{},
\end{equation}

or
\begin{equation}\label{eqn:sphericalLaplacian:240}
\boxed{
\spacegrad
=
\rcap \PD{r}{} +
\frac{\thetacap}{r} \PD{\theta}{} +
\frac{\phicap}{r\sin\theta} \PD{\phicap}{}.
}
\end{equation}

More information on this general dual-vector technique of computing the gradient in curvilinear coordinate systems can be found in
[2].

Partials

To compute the divergence, curl and Laplacian, we’ll need the partials of each of the unit vectors \( \PDi{\theta}{\rcap}, \PDi{\phi}{\rcap}, \PDi{\theta}{\thetacap}, \PDi{\phi}{\thetacap}, \PDi{\phi}{\phicap} \).

The \( \thetacap \) partials are

\begin{equation}\label{eqn:sphericalLaplacian:260}
\begin{aligned}
\PD{\theta}{\thetacap}
&=
\PD{\theta}{} \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \\
&=
-S_\theta \Be_1 e^{i\phi} – C_\theta \Be_3 \\
&=
-\rcap,
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:280}
\begin{aligned}
\PD{\phi}{\thetacap}
&=
\PD{\phi}{} \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \\
&=
C_\theta \Be_2 e^{i\phi} \\
&=
C_\theta \phicap.
\end{aligned}
\end{equation}

The \( \phicap \) partials are

\begin{equation}\label{eqn:sphericalLaplacian:300}
\begin{aligned}
\PD{\theta}{\phicap}
&=
\PD{\theta}{} \Be_2 e^{i\phi} \\
&=
0.
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:320}
\begin{aligned}
\PD{\phi}{\phicap}
&=
\PD{\phi}{} \Be_2 e^{i \phi} \\
&=
-\Be_1 e^{i \phi} \\
&=
-\rcap \gpgradezero{ \rcap \Be_1 e^{i \phi} }
– \thetacap \gpgradezero{ \thetacap \Be_1 e^{i \phi} }
– \phicap \gpgradezero{ \phicap \Be_1 e^{i \phi} } \\
&=
-\rcap \gpgradezero{ \lr{
\Be_1 e^{i\phi} S_\theta + \Be_3 C_\theta
} \Be_1 e^{i \phi} }
– \thetacap \gpgradezero{ \lr{
C_\theta \Be_1 e^{i\phi} – S_\theta \Be_3
} \Be_1 e^{i \phi} } \\
&=
-\rcap \gpgradezero{ e^{-i\phi} S_\theta e^{i \phi} }
– \thetacap \gpgradezero{ C_\theta e^{-i\phi} e^{i \phi} } \\
&=
-\rcap S_\theta
– \thetacap C_\theta.
\end{aligned}
\end{equation}

The \( \rcap \) partials are were computed as a side effect of evaluating \( \Bx_\theta \), and \( \Bx_\phi \), and are

\begin{equation}\label{eqn:sphericalLaplacian:340}
\PD{\theta}{\rcap}
=
\thetacap,
\end{equation}
\begin{equation}\label{eqn:sphericalLaplacian:360}
\PD{\phi}{\rcap}
=
S_\theta \phicap.
\end{equation}

In summary
\begin{equation}\label{eqn:sphericalLaplacian:380}
\boxed{
\begin{aligned}
\partial_{\theta}{\rcap} &= \thetacap \\
\partial_{\phi}{\rcap} &= S_\theta \phicap \\
\partial_{\theta}{\thetacap} &= -\rcap \\
\partial_{\phi}{\thetacap} &= C_\theta \phicap \\
\partial_{\theta}{\phicap} &= 0 \\
\partial_{\phi}{\phicap} &= -\rcap S_\theta – \thetacap C_\theta.
\end{aligned}
}
\end{equation}

Divergence and curl.

The divergence and curl can be computed from the vector product of the spherical coordinate gradient and the spherical representation of a vector. That is

\begin{equation}\label{eqn:sphericalLaplacian:400}
\spacegrad \BA
= \spacegrad \cdot \BA + \spacegrad \wedge \BA
= \spacegrad \cdot \BA + I \spacegrad \cross \BA.
\end{equation}

That gradient vector product is

\begin{equation}\label{eqn:sphericalLaplacian:420}
\begin{aligned}
\spacegrad \BA
&=
\lr{
\rcap \partial_{r}
+ \frac{\thetacap}{r} \partial_{\theta}
+ \frac{\phicap}{rS_\theta} \partial_{\phi}
}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&=
\rcap \partial_{r}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&+ \frac{\thetacap}{r} \partial_{\theta}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&+ \frac{\phicap}{rS_\theta} \partial_{\phicap}
\lr{ \rcap A_r + \thetacap A_\theta + \phicap A_\phi} \\
&=
\lr{ \partial_r A_r + \rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi} \\
&+ \frac{1}{r}
\lr{
\thetacap (\partial_\theta \rcap) A_r + \thetacap (\partial_\theta \thetacap) A_\theta + \thetacap (\partial_\theta \phicap) A_\phi
+\thetacap \rcap \partial_\theta A_r + \partial_\theta A_\theta + \thetacap \phicap \partial_\theta A_\phi
} \\
&+ \frac{1}{rS_\theta}
\lr{
\phicap (\partial_\phi \rcap) A_r + \phicap (\partial_\phi \thetacap) A_\theta + \phicap (\partial_\phi \phicap) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta + \partial_\phi A_\phi
} \\
&=
\lr{ \partial_r A_r + \rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi} \\
&+ \frac{1}{r}
\lr{
\thetacap (\thetacap) A_r + \thetacap (-\rcap) A_\theta + \thetacap (0) A_\phi
+\thetacap \rcap \partial_\theta A_r + \partial_\theta A_\theta + \thetacap \phicap \partial_\theta A_\phi
} \\
&+ \frac{1}{r S_\theta}
\lr{
\phicap (S_\theta \phicap) A_r + \phicap (C_\theta \phicap) A_\theta – \phicap (\rcap S_\theta + \thetacap C_\theta) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta + \partial_\phi A_\phi
}.
\end{aligned}
\end{equation}

The scalar component of this is the divergence
\begin{equation}\label{eqn:sphericalLaplacian:440}
\begin{aligned}
\spacegrad \cdot \BA
&=
\partial_r A_r
+ \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
\lr{ S_\theta A_r + C_\theta A_\theta + \partial_\phi A_\phi
} \\
&=
\partial_r A_r
+ 2 \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
C_\theta A_\theta
+ \frac{1}{r S_\theta} \partial_\phi A_\phi \\
&=
\partial_r A_r
+ 2 \frac{A_r}{r}
+ \inv{r} \partial_\theta A_\theta
+ \frac{1}{r S_\theta}
C_\theta A_\theta
+ \frac{1}{r S_\theta} \partial_\phi A_\phi,
\end{aligned}
\end{equation}

which can be factored as
\begin{equation}\label{eqn:sphericalLaplacian:460}
\boxed{
\spacegrad \cdot \BA
=
\inv{r^2} \partial_r (r^2 A_r)
+ \inv{r S_\theta} \partial_\theta (S_\theta A_\theta)
+ \frac{1}{r S_\theta} \partial_\phi A_\phi.
}
\end{equation}

The bivector grade of \( \spacegrad \BA \) is the bivector curl
\begin{equation}\label{eqn:sphericalLaplacian:480}
\begin{aligned}
\spacegrad \wedge \BA
&=
\lr{
\rcap \thetacap \partial_r A_\theta + \rcap \phicap \partial_r A_\phi
} \\
&\quad + \frac{1}{r}
\lr{
\thetacap (-\rcap) A_\theta
+\thetacap \rcap \partial_\theta A_r + \thetacap \phicap \partial_\theta A_\phi
} \\
&\quad +
\frac{1}{r S_\theta}
\lr{
-\phicap (\rcap S_\theta + \thetacap C_\theta) A_\phi
+\phicap \rcap \partial_\phi A_r + \phicap \thetacap \partial_\phi A_\theta
} \\
&=
\lr{
\rcap \thetacap \partial_r A_\theta – \phicap \rcap \partial_r A_\phi
} \\
&\quad + \frac{1}{r}
\lr{
\rcap \thetacap A_\theta
-\rcap \thetacap \partial_\theta A_r + \thetacap \phicap \partial_\theta A_\phi
} \\
&\quad +
\frac{1}{r S_\theta}
\lr{
-\phicap \rcap S_\theta A_\phi + \thetacap \phicap C_\theta A_\phi
+\phicap \rcap \partial_\phi A_r – \thetacap \phicap \partial_\phi A_\theta
} \\
&=
\thetacap \phicap \lr{
\inv{r S_\theta} C_\theta A_\phi
+\frac{1}{r} \partial_\theta A_\phi
-\frac{1}{r S_\theta} \partial_\phi A_\theta
} \\
&\quad +\phicap \rcap \lr{
-\partial_r A_\phi
+
\frac{1}{r S_\theta}
\lr{
-S_\theta A_\phi
+ \partial_\phi A_r
}
} \\
&\quad +\rcap \thetacap \lr{
\partial_r A_\theta
+ \frac{1}{r} A_\theta
– \inv{r} \partial_\theta A_r
} \\
&=
I
\rcap \lr{
\inv{r S_\theta} \partial_\theta (S_\theta A_\phi)
-\frac{1}{r S_\theta} \partial_\phi A_\theta
}
+ I \thetacap \lr{
\frac{1}{r S_\theta} \partial_\phi A_r
-\inv{r} \partial_r (r A_\phi)
}
+ I \phicap \lr{
\inv{r} \partial_r (r A_\theta)
– \inv{r} \partial_\theta A_r
}
\end{aligned}
\end{equation}

This gives
\begin{equation}\label{eqn:sphericalLaplacian:500}
\boxed{
\spacegrad \cross \BA
=
\rcap \lr{
\inv{r S_\theta} \partial_\theta (S_\theta A_\phi)
-\frac{1}{r S_\theta} \partial_\phi A_\theta
}
+ \thetacap \lr{
\frac{1}{r S_\theta} \partial_\phi A_r
-\inv{r} \partial_r (r A_\phi)
}
+ \phicap \lr{
\inv{r} \partial_r (r A_\theta)
– \inv{r} \partial_\theta A_r
}.
}
\end{equation}

This and the divergence result above both check against the back cover of [1].

Laplacian

Using the divergence and curl it’s possible to compute the Laplacian from those, but we saw in cylindrical coordinates that it was much harder to do it that way than to do it directly.

\begin{equation}\label{eqn:sphericalLaplacian:540}
\begin{aligned}
\spacegrad^2 \psi
&=
\lr{
\rcap \partial_{r} +
\frac{\thetacap}{r} \partial_{\theta} +
\frac{\phicap}{r S_\theta} \partial_{\phi}
}
\lr{
\rcap \partial_{r} \psi
+ \frac{\thetacap}{r} \partial_{\theta} \psi
+ \frac{\phicap}{r S_\theta} \partial_{\phi} \psi
} \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap}{r} \partial_{\theta} \lr{ \rcap \partial_{r} \psi }
+ \frac{\thetacap}{r^2} \partial_{\theta} \lr{ \thetacap \partial_{\theta} \psi }
+ \frac{\thetacap}{r^2} \partial_{\theta} \lr{ \frac{\phicap}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap}{r S_\theta} \partial_{\phi} \lr{ \rcap \partial_{r} \psi }
+ \frac{\phicap}{r^2 S_\theta} \partial_{\phi} \lr{ \thetacap \partial_{\theta} \psi }
+ \frac{\phicap}{r^2 S_\theta^2} \partial_{\phi} \lr{ \phicap \partial_{\phi} \psi } \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap\rcap}{r} \partial_{\theta} \lr{ \partial_{r} \psi }
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{\thetacap \phicap}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap \rcap}{r S_\theta} \partial_{\phi r} \psi
+ \frac{\phicap\thetacap}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi \\
&
\quad + \frac{\thetacap}{r} (\partial_\theta \rcap) \partial_{r} \psi
+ \frac{\thetacap}{r^2} (\partial_\theta \thetacap) \partial_{\theta} \psi
+ \frac{\thetacap}{r^2} (\partial_\theta \phicap) \frac{\phicap}{S_\theta} \partial_{\phi} \psi \\
&
\quad + \frac{\phicap}{r S_\theta} (\partial_\phi \rcap) \partial_{r} \psi
+ \frac{\phicap}{r^2 S_\theta} (\partial_\phi \thetacap) \partial_{\theta} \psi
+ \frac{\phicap}{r^2 S_\theta^2} (\partial_\phi \phicap) \partial_{\phi} \psi \\
&=
\partial_{rr} \psi
+ \rcap \thetacap \partial_r \lr{ \inv{r} \partial_\theta \psi}
+ \rcap \phicap \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi } \\
&
\quad + \frac{\thetacap\rcap}{r} \partial_{\theta} \lr{ \partial_{r} \psi }
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{\thetacap \phicap}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi } \\
&
\quad + \frac{\phicap \rcap}{r S_\theta} \partial_{\phi r} \psi
+ \frac{\phicap\thetacap}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi \\
&
\quad + \frac{\thetacap}{r} (\thetacap) \partial_{r} \psi
+ \frac{\thetacap}{r^2} (-\rcap) \partial_{\theta} \psi
+ \frac{\thetacap}{r^2} (0) \frac{\phicap}{S_\theta} \partial_{\phi} \psi \\
&
\quad + \frac{\phicap}{r S_\theta} (S_\theta \phicap) \partial_{r} \psi
+ \frac{\phicap}{r^2 S_\theta} (C_\theta \phicap) \partial_{\theta} \psi
+ \frac{\phicap}{r^2 S_\theta^2} (-\rcap S_\theta – \thetacap C_\theta) \partial_{\phi} \psi
\end{aligned}
\end{equation}

All the bivector factors are expected to cancel out, but this should be checked. Those with an \( \rcap \thetacap \) factor are

\begin{equation}\label{eqn:sphericalLaplacian:560}
\partial_r \lr{ \inv{r} \partial_\theta \psi}
– \frac{1}{r} \partial_{\theta r} \psi
+ \frac{1}{r^2} \partial_{\theta} \psi
=
-\inv{r^2} \partial_\theta \psi
+\inv{r} \partial_{r \theta} \psi
– \frac{1}{r} \partial_{\theta r} \psi
+ \frac{1}{r^2} \partial_{\theta} \psi
= 0,
\end{equation}

and those with a \( \thetacap \phicap \) factor are
\begin{equation}\label{eqn:sphericalLaplacian:580}
\frac{1}{r^2} \partial_{\theta} \lr{ \frac{1}{S_\theta} \partial_{\phi} \psi }
– \frac{1}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} C_\theta \partial_{\phi} \psi
=
– \frac{1}{r^2} \frac{C_\theta}{S_\theta^2} \partial_{\phi} \psi
+ \frac{1}{r^2 S_\theta} \partial_{\theta \phi} \psi
– \frac{1}{r^2 S_\theta} \partial_{\phi\theta} \psi
+ \frac{1}{r^2 S_\theta^2} C_\theta \partial_{\phi} \psi
= 0,
\end{equation}

and those with a \( \phicap \rcap \) factor are
\begin{equation}\label{eqn:sphericalLaplacian:600}
– \inv{S_\theta} \partial_r \lr{ \inv{r} \partial_\phi \psi }
+ \frac{1}{r S_\theta} \partial_{\phi r} \psi
– \frac{1}{r^2 S_\theta^2} S_\theta \partial_{\phi} \psi
=
\inv{S_\theta} \frac{1}{r^2} \partial_\phi \psi
– \inv{r S_\theta} \partial_{r \phi} \psi
+ \frac{1}{r S_\theta} \partial_{\phi r} \psi
– \frac{1}{r^2 S_\theta} \partial_{\phi} \psi
= 0.
\end{equation}

This leaves
\begin{equation}\label{eqn:sphericalLaplacian:620}
\spacegrad^2 \psi
=
\partial_{rr} \psi
+ \frac{2}{r} \partial_{r} \psi
+ \frac{1}{r^2} \partial_{\theta \theta} \psi
+ \frac{1}{r^2 S_\theta} C_\theta \partial_{\theta} \psi
+ \frac{1}{r^2 S_\theta^2} \partial_{\phi \phi} \psi.
\end{equation}

This factors nicely as

\begin{equation}\label{eqn:sphericalLaplacian:640}
\boxed{
\spacegrad^2 \psi
=
\inv{r^2} \PD{r}{} \lr{ r^2 \PD{r}{ \psi} }
+ \frac{1}{r^2 \sin\theta} \PD{\theta}{} \lr{ \sin\theta \PD{\theta}{ \psi } }
+ \frac{1}{r^2 \sin\theta^2} \PDSq{\phi}{ \psi}
,
}
\end{equation}

which checks against the back cover of Jackson. Here it has been demonstrated explicitly that this operator expression is valid for multivector fields \( \psi \) as well as scalar fields \( \psi \).

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[2] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.