short circuit

The danger of a loose electrical outlet (and sloppy wiring)

September 8, 2018 Home renos ,

Check out this scorched electrical outlet and the inside of the cover plate:

It’s a bit hard to see from this picture, but the screw is actually partially melted.  This happened when Sofia pulled her computer’s A/C adapter out of the wall, which resulted in a large spark, and that circuit blowing, leaving her in the dark.

I think this one is not actually the fault of the last owner of the house (who I won’t name, and who did lots of dangerous wiring), but was due to the effects of time, and a slightly lazy electrician.  The electrical box is slightly deformed pushing it on the right towards the hot screws of the outlet, and the outlet was wired up with the “quick wire” method, with the wires plugged directly into the back of the outlet, not using the screws on the sides.  Unfortunately, the hot screws were left sticking out fully (although the neutrals were screwed in nice and tight).  In the thirty years since the house was built, I think the outlet loosened enough that the furthest out hot screw touched the outlet box when the outlet was moved slightly pulling out the cord.  This shorted it nicely (scaring the hell out of Sofia), and toasting the outlet nicely.  Needless to say, I did not try to recycle this one, and it’s going in the trash.

There’s another loose outlet on the first floor that I’ve been meaning to fix.  I’m definitely going to get that opened up soon, and tighten it up — seeing the giant scorch marks on this one really highlights how dangerous that could be.

ECE1236H Microwave and Millimeter-Wave Techniques. Lecture 3: Smith charts and impedance transformations. Taught by Prof. G.V. Eleftheriades

February 4, 2016 ece1236 , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting and figures] or [Click here for my notes compilation for this class]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course ECE1236H, Microwave and Millimeter-Wave Techniques, taught by Prof. G.V. Eleftheriades, covering [2] chap. 2 content.

Short circuited line

A short circuited line, also called a shorted stub, is sketched in fig. 1.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig1: fig. 1. Short circuited line.

With
\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:20}
Z_{\textrm{L}} = 0,
\end{equation}

the input impedance is

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:40}
\begin{aligned}
Z_{\textrm{in}}
&= Z_0 \frac{ Z_{\textrm{L}} + j Z_0 \tan(\beta l) }{ Z_0 + j Z_{\textrm{L}} \tan(\beta l)} \\
&= j Z_0 \tan(\beta l)
\end{aligned}
\end{equation}

For short line sections \( \beta l \ll \pi/2 \), or \( l \ll \lambda/4 \), the input impedance is approximately

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:80}
\begin{aligned}
Z_{\textrm{in}}
&= j Z_0 \tan(\beta l) \\
&\approx j Z_0 \sin(\beta l) \\
&\approx j Z_0 \beta l
\end{aligned}
\end{equation}

Introducing an equivalent inductance defined by \( Z_{\textrm{in}} = j \omega L_{\mathrm{eq}} \), we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:100}
\begin{aligned}
L_{\mathrm{eq}}
&=
\frac{Z_0}{\omega} \beta l \\
&=
\frac{Z_0}{\omega} \frac{\omega}{v_\phi} l \\
&=
\frac{Z_0 l}{v_\phi}.
\end{aligned}
\end{equation}

The inductance per unit length of the line is \( C = Z_0/v_\phi \). An application for this result is that instead of using inductors, shorted stubs can be used in high frequency applications.

This is also the case for short sections of high impedance line.

Open circuited line

An open circuited line is sketched in fig. 2.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig2: fig. 2. Open circuited line.

This time with \( Z_{\textrm{L}} \rightarrow \infty \) we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:120}
\begin{aligned}
Z_{\textrm{in}}
&= Z_0 \frac{ Z_{\textrm{L}} + j Z_0 \tan(\beta l) }{ Z_0 + j Z_{\textrm{L}} \tan(\beta l)} \\
&= -j Z_0 \cot(\beta l).
\end{aligned}
\end{equation}

This time we have an equivalent capacitance. For short sections with \( \beta l \ll \pi/2 \)

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:140}
Z_{\textrm{in}}
\approx
-j \frac{Z_0}{\beta l}
\end{equation}

Introducing an equivalent capacitance defined by \( Z_{\textrm{in}} = 1/(j \omega C_{\mathrm{eq}}) \), we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:160}
\begin{aligned}
C_{\mathrm{eq}}
&=
\frac{ \beta l}{\omega Z_0} \\
&=
\frac{ \omega/v_\phi l}{\omega Z_0} \\
&=
\frac{ l}{v_\phi Z_0}
\end{aligned}
\end{equation}

The capacitance per unit length of the line is \( C = 1/(Z_0 v_\phi) \).

This is also the case for short sections of low impedance line.

Half wavelength transformer.

A half wavelength transmission line equivalent circuit is sketched in fig. 3.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig3: fig. 3. Half wavelength transmission line.

With \( l = \lambda/2 \)

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:180}
\begin{aligned}
\beta l
&= \frac{2 \pi}{\lambda} \frac{\lambda}{2} \\
&= \pi.
\end{aligned}
\end{equation}

Since \( \tan \pi = 0 \), the input impedance is

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:200}
\begin{aligned}
Z_{\textrm{in}}
&= Z_0 \frac{ Z_{\textrm{L}} + j Z_0 \tan(\beta l) }{ Z_0 + j Z_{\textrm{L}} \tan(\beta l)} \\
&= Z_{\textrm{L}}.
\end{aligned}
\end{equation}

Quarter wavelength transformer.

A quarter wavelength transmission line equivalent circuit is sketched in fig. 4.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig4: fig. 4. Quarter wavelength transmission line.

With \( l = \lambda/4 \)

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:220}
\begin{aligned}
\beta l
&= \frac{2 \pi}{\lambda} \frac{\lambda}{4} \\
&= \frac{\pi}{2}.
\end{aligned}
\end{equation}

We have \( \tan \beta l \rightarrow \infty \), so the input impedance is

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:240}
\begin{aligned}
Z_{\textrm{in}}
&= Z_0 \frac{ Z_{\textrm{L}} + j Z_0 \tan(\beta l) }{ Z_0 + j Z_{\textrm{L}} \tan(\beta l)} \\
&= \frac{Z_0^2}{Z_{\textrm{L}}}.
\end{aligned}
\end{equation}

This relation

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:280}
\boxed{
Z_{\textrm{in}}
= \frac{Z_0^2}{Z_{\textrm{L}}},
}
\end{equation}

is called the impedance inverter.

  • A large impedance is transformed into a small one and vice-versa.
  • A short becomes an open and vice-versa.
  • A capacitive load becomes inductive and vice-versa.
  • If \( Z_{\textrm{L}} \) is a series resonant circuit then \( Z_{\textrm{in}} \) becomes parallel resonant.

See [1] for an explanation of the term series resonant.

Matching with a \( \lambda/4 \) transformer.

Matching for a quarter wavelength transmission line equivalent circuit is sketched in fig. 5.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig5: fig. 5. Quarter wavelength transmission line matching.

For maximum power transfer

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:300}
Z_{\textrm{in}} = \frac{Z_0^2}{R_{\textrm{L}}} = R_{\textrm{G}},
\end{equation}

so

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:320}
Z_0 = \sqrt{ R_{\textrm{G}} R_{\textrm{L}} }.
\end{equation}

We have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:340}
\Abs{\Gamma_{\textrm{L}}} = \frac{ R_{\textrm{L}} – Z_0 }{R_{\textrm{L}} + Z_0} \ne 0,
\end{equation}

and still maximum power is transferred.

Smith chart

A Smith chart is a graphical tool for making the transformation \( \Gamma \leftrightarrow Z_{\textrm{in}} \). Given

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:360}
Z_{\textrm{in}} = Z_0 \frac{ 1 + \Gamma }{ 1 – \Gamma },
\end{equation}

where \( \Gamma = \Gamma_{\textrm{L}} e^{- 2 j \beta l } \), we begin by normalizing the input impedance, using an overbar to denote that normalization

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:380}
Z_{\textrm{in}} \rightarrow \overline{{Z}}_{\textrm{in}} = \frac{Z_{\textrm{in}}}{Z_0},
\end{equation}

so

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:400}
\begin{aligned}
\overline{{Z}}_{\textrm{in}}
&= \frac{ 1 + \Gamma }{ 1 – \Gamma } \\
&= \frac{ (1 + \Gamma_r) + j \Gamma_i }{ (1 – \Gamma_r) – j \Gamma_i } \\
&= \frac{ \lr{ (1 + \Gamma_r) + j \Gamma_i}\lr{(1 – \Gamma_r) + j \Gamma_i} }{ (1 – \Gamma_r)^2 + \Gamma_i^2 } \\
&= \frac{ (1 – \Gamma_r^2 – \Gamma_i^2) + j \Gamma_i (1 – \Gamma_r + 1 + \Gamma_r ) }{ (1 – \Gamma_r)^2 + \Gamma_i^2 } \\
&= \frac{ (1 – \Abs{\Gamma}^2) + 2 j \Gamma_i }{ (1 – \Gamma_r)^2 + \Gamma_i^2 }.
\end{aligned}
\end{equation}

If we let \( \overline{{Z}}_{\textrm{in}} = \overline{{\Gamma}}_{\textrm{L}} + j \overline{{X}}_{\textrm{L}} \), and equate real and imaginary parts we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:420}
\begin{aligned}
\overline{{\Gamma}}_{\textrm{L}} &= \frac{ 1 – \Abs{\Gamma}^2 }{ (1 – \Gamma_r)^2 + \Gamma_i^2 } \\
\overline{{X}}_{\textrm{L}} &= \frac{2 \Gamma_i }{ (1 – \Gamma_r)^2 + \Gamma_i^2 }
\end{aligned}
\end{equation}

It is left as an exercise to demonstrate that these can be rearranged into

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:440}
\begin{aligned}
\lr{ \Gamma_r – \frac{\overline{{\Gamma}}_{\textrm{L}}}{1 + \overline{{\Gamma}}_{\textrm{L}} } }^2 + \Gamma_i^2 &= \lr{ \inv{1 + \overline{{\Gamma}}_{\textrm{L}} }}^2 \\
\lr{ \Gamma_r – 1 }^2 + \lr{ \Gamma_i – \inv{\overline{{X}}_{\textrm{L}} } }^2 &= \inv{\overline{{X}}_{\textrm{L}}^2},
\end{aligned}
\end{equation}

which trace out circles in the \( \Gamma_r, \Gamma_i \) plane, one for the real part of \( \Gamma \) and one for the imaginary part. This provides a graphical way for implementing the impedance transformation.

Real impedance circle

The circle for the real part is centered at

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:580}
\lr{ \frac{\overline{{\Gamma}}_{\textrm{L}}}{1 + \overline{{\Gamma}}_{\textrm{L}} }, 0 },
\end{equation}

with radius
\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:600}
\inv{1 + \overline{{\Gamma}}_{\textrm{L}} }.
\end{equation}

All these circles pass through the point \( (1,0) \), since
\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:620}
\begin{aligned}
\frac{\overline{{\Gamma}}_{\textrm{L}}}{1 + \overline{{\Gamma}}_{\textrm{L}} } + \inv{1 + \overline{{\Gamma}}_{\textrm{L}} }
&=
\frac{1 + \overline{{\Gamma}}_{\textrm{L}}}{1 + \overline{{\Gamma}}_{\textrm{L}} } \\
&= 1.
\end{aligned}
\end{equation}

For reactive loads where \( \overline{{\Gamma}}_{\textrm{L}} = 0 \), we have \( \Gamma_r^2 + \Gamma_i^2 = 1 \), a circle through the origin with unit radius.

For matched loads where \( \overline{{\Gamma}}_{\textrm{L}} = 1 \) the circle is centered at \( (1/2, 0) \), with radius \( 1/2 \).

Imaginary impedance circle

The circle obtained by equating imaginary parts are constant reactance circles with center

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:640}
\lr{ 1, \inv{\overline{{X}}_{\textrm{L}} } },
\end{equation}

with radius

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:660}
\inv{\overline{{X}}_{\textrm{L}}}.
\end{equation}

These circles also pass through the point \( (1,0) \). These circles are orthogonal to the constant resistance circles. Some of the features of a Smith chart are sketched in fig. 7.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig7: fig. 7. Hand sketched Smith chart.

A matlab produced blank Smith chart can be found in fig. 1.

../../figures/ece1236/smithchartFig1: fig. 1. Blank Smith chart.

Example: Perform a transformation along a lossless line.

../../figures/ece1236/deck5smithChartsAndImpedenceTxFig8: fig. 8. Impedance transformation along lossless line.

Given

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:700}
\overline{{Z}} = \frac{1 + \Gamma}{1 – \Gamma},
\end{equation}

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:720}
\Gamma = \Gamma_{\textrm{L}} e^{-2 j \beta l},
\end{equation}

and

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:740}
\Gamma_{\textrm{L}} = \Abs{\Gamma_{\textrm{L}}} e^{j \Theta_{\textrm{L}} }
\end{equation}

The total reflection coefficient is

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:760}
\Gamma = \Abs{\Gamma_{\textrm{L}}} e^{j (\Theta_{\textrm{L}} – 2 \beta l) }
\end{equation}

If \( \Gamma_{\textrm{L}} = \Abs{\Gamma_{\textrm{L}}} e^{j \Theta_{\textrm{L}} } \) is plotted on the Smith chart, then in order to move towards the generator, a subtraction from \( \Theta_{\textrm{L}} \) of \( 2 \beta l \) is required.

Some worked examples that demonstrate this can be found in fig. 1, fig. 2, and fig. 3.

../../figures/ece1236/smithChartSlidesFig1: fig. 1. Mapping an impedance value onto a Smith chart.
../../figures/ece1236/smithChartSlidesFig2: fig. 2. Moving on the Smith chart towards the generator.
../../figures/ece1236/smithChartSlidesFig3: fig. 3. Moving on the Smith chart.

Single stub tuning.

Referring to fig. 4, the procedure for single stub tuning is

../../figures/ece1236/smithChartSlidesFig4: fig. 4. Single stub tuning example

  1. Plot the load on the Smith Chart.
  2. Trace the constant VSWR circle. (blue).
  3. Move toward the generator until the constant resistance=1 circle is reached (red). This determines the distance \(d\).
  4. Now the input impedance is of the form \(Z_{\textrm{A}} = 1 + j X\).
  5. We now have to use the stub to cancel out the \( j X \) and make \( Z_{\textrm{in}} = 1 \) (matched).
  6. This can be done on the Smith Chart. If \( X>0 \) then we need a capacitive stub (open). If \( X<0 \) then we need an inductive stub (shorted).
  7. Say we need a capacitive stub (open): Start from the position of the open. Now the constant VSWR circle is the exterior unit
    circle. Move toward the generator until you hit negative \( X \). This determines the length of the stub \( l \).

Notes:

  1. In step (3) there are two points where the R=1 circle is intersected . Usually we chose the shortest one
  2. By adding multiples of half-wavelength lengths to either \(d\) or \(l\) an infinite number of solutions can be constructed.

Question: Find the Smith chart circle equations

Prove \ref{eqn:uwavesDeck5SmithChartCore:440}.

Answer

We can write

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:460}
(1 – \Gamma_r)^2 + \Gamma_i^2 = \frac{2 \Gamma_i }{\overline{{X}}_{\textrm{L}}},
\end{equation}

or

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:480}
(1 – \Gamma_r)^2 + \lr{ \Gamma_i – \inv{\overline{{X}}_{\textrm{L}}} }^2 = \inv{\lr{\overline{{X}}_{\textrm{L}}}^2},
\end{equation}

which is one of the circular equations. For the other, putting the \( \Gamma_r, \Gamma_i \) terms in the numerator, we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:500}
\begin{aligned}
\frac{1 – \Gamma_r^2 – \Gamma_i^2 }{\overline{{\Gamma}}_{\textrm{L}}}
&=
(1 – \Gamma_r)^2 + \Gamma_i^2 \\
&=
1 – 2 \Gamma_r + \Gamma_r^2 + \Gamma_i^2,
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:520}
\Gamma_r^2 \lr{ 1 + \inv{\overline{{\Gamma}}_{\textrm{L}}} } – 2 \Gamma_r + \Gamma_i^2 \lr{ 1 + \inv{\overline{{\Gamma}}_{\textrm{L}}} }
=
\inv{\overline{{\Gamma}}_{\textrm{L}}} – 1.
\end{equation}

Dividing through by \( 1 + \ifrac{1}{\overline{{\Gamma}}_{\textrm{L}}} = (\overline{{\Gamma}}_{\textrm{L}} + 1)/\overline{{\Gamma}}_{\textrm{L}} \), we have

\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:540}
\begin{aligned}
\Gamma_r^2 – 2 \Gamma_r \frac{ \overline{{\Gamma}}_{\textrm{L}} }{\overline{{\Gamma}}_{\textrm{L}} + 1} + \Gamma_i^2
&=
\frac{1 – \overline{{\Gamma}}_{\textrm{L}}}{\overline{{\Gamma}}_{\textrm{L}}} \frac{ \overline{{\Gamma}}_{\textrm{L}} }{\overline{{\Gamma}}_{\textrm{L}} + 1} \\
&=
\frac{1 – \overline{{\Gamma}}_{\textrm{L}}}{ \overline{{\Gamma}}_{\textrm{L}} + 1},
\end{aligned}
\end{equation}

or
\begin{equation}\label{eqn:uwavesDeck5SmithChartCore:560}
\begin{aligned}
\lr{ \Gamma_r – \frac{ \overline{{\Gamma}}_{\textrm{L}} }{\overline{{\Gamma}}_{\textrm{L}} + 1} }^2 + \Gamma_i^2
&=
\frac{1 – \overline{{\Gamma}}_{\textrm{L}}}{ \overline{{\Gamma}}_{\textrm{L}} + 1} + \lr{ \frac{ \overline{{\Gamma}}_{\textrm{L}} }{\overline{{\Gamma}}_{\textrm{L}} + 1} }^2 \\
&=
\frac{ 1 – \overline{{\Gamma}}_{\textrm{L}}^2 + \overline{{\Gamma}}_{\textrm{L}}^2 }{\lr{\overline{{\Gamma}}_{\textrm{L}} + 1}^2} \\
&=
\frac{ 1 }{\lr{\overline{{\Gamma}}_{\textrm{L}} + 1}^2}.
\end{aligned}
\end{equation}

References

[1] EETech Media. Simple Series Resonance, 2016. URL http://www.allaboutcircuits.com/textbook/alternating-current/chpt-6/simple-series-resonance/. [Online; accessed 04-Feb-2016].

[2] David M Pozar. Microwave engineering. John Wiley \& Sons, 2009.