average power

Average power for circuit elements

February 9, 2016 ece1236 , , , , , , ,

[Click here for a PDF of this post with nicer formatting] or [Click here for my notes compilation for this class]

In [2] section 2.2 is a comparison of field energy expressions with their circuit equivalents. It’s clearly been too long since I’ve worked with circuits, because I’d forgotten all the circuit energy expressions:

\begin{equation}\label{eqn:averagePowerCircuitElements:20}
\begin{aligned}
W_{\textrm{R}} &= \frac{R}{2} \Abs{I}^2 \\
W_{\textrm{C}} &= \frac{C}{4} \Abs{V}^2 \\
W_{\textrm{L}} &= \frac{L}{4} \Abs{I}^2 \\
W_{\textrm{G}} &= \frac{G}{2} \Abs{V}^2 \\
\end{aligned}
\end{equation}

Here’s a recap of where these come from

Energy lost to resistance

Given
\begin{equation}\label{eqn:averagePowerCircuitElements:40}
v(t) = R i(t)
\end{equation}

the average power lost to a resistor is

\begin{equation}\label{eqn:averagePowerCircuitElements:60}
\begin{aligned}
p_{\textrm{R}}
&= \inv{T} \int_0^T v(t) i(t) dt \\
&= \inv{T} \int_0^T \textrm{Re}( V e^{j \omega t} ) \Real( I e^{j \omega t} ) dt \\
&= \inv{4 T} \int_0^T
\lr{V e^{j \omega t} + V^\conj e^{-j \omega t} }
\lr{I e^{j \omega t} + I^\conj e^{-j \omega t} }
dt \\
&= \inv{4 T} \int_0^T
\lr{
V I e^{2 j \omega t} + V^\conj I^\conj e^{-2 j \omega t}
+ V I^\conj + V^\conj I
}
dt \\
&= \inv{2} \textrm{Re}( V I^\conj ) \\
&= \inv{2} \textrm{Re}( I R I^\conj ) \\
&= \frac{R}{2} \Abs{I}^2.
\end{aligned}
\end{equation}

Here it is assumed that the averaging is done over some integer multiple of the period, which kills off all the exponentials.

Energy stored in a capacitor

I tried the same sort of analysis for a capacitor in phasor form, but everything cancelled out. Referring to [1], the approach used to figure this out is to operate first strictly in the time domain. Specifically, for the capacitor where \( i = C dv/dt \) the power supplied up to a time \( t \) is

\begin{equation}\label{eqn:averagePowerCircuitElements:80}
\begin{aligned}
p_{\textrm{C}}(t)
&= \int_{-\infty}^t C \frac{dv}{dt} v(t) dt \\
&= \inv{2} C v^2(t).
\end{aligned}
\end{equation}

The \( v^2(t) \) term can now be expanded in terms of phasors and averaged for

\begin{equation}\label{eqn:averagePowerCircuitElements:100}
\begin{aligned}
\overline{{p}}_{\textrm{C}}
&= \frac{C}{2T} \int_0^T \inv{4}
\lr{ V e^{j \omega t} + V^\conj e^{-j \omega t} }
\lr{ V e^{j \omega t} + V^\conj e^{-j \omega t} } dt \\
&= \frac{C}{2T} \int_0^T \inv{4}
2 \Abs{V}^2 dt \\
&= \frac{C}{4} \Abs{V}^2.
\end{aligned}
\end{equation}

Energy stored in an inductor

The inductor energy is found the same way, with

\begin{equation}\label{eqn:averagePowerCircuitElements:120}
\begin{aligned}
p_{\textrm{L}}(t)
&= \int_{-\infty}^t L \frac{di}{dt} i(t) dt \\
&= \inv{2} L i^2(t),
\end{aligned}
\end{equation}

which leads to

\begin{equation}\label{eqn:averagePowerCircuitElements:140}
\overline{{p}}_{\textrm{L}}
= \frac{L}{4} \Abs{I}^2.
\end{equation}

Energy lost due to conductance

Finally, we have conductance. In phasor space that is defined by

\begin{equation}\label{eqn:averagePowerCircuitElements:160}
G = \frac{I}{V} = \inv{R},
\end{equation}

so power lost due to conductance follows from power lost due to resistance. In the average we have

\begin{equation}\label{eqn:averagePowerCircuitElements:180}
\begin{aligned}
p_{\textrm{G}}
&= \inv{2 G} \Abs{I}^2 \\
&= \inv{2 G} \Abs{V G}^2 \\
&= \frac{G}{2} \Abs{V}^2
\end{aligned}
\end{equation}

References

[1] J.D. Irwin. Basic Engineering Circuit Analysis. MacMillian, 1993.

[2] David M Pozar. Microwave engineering. John Wiley & Sons, 2009.

Notes for ece1229 antenna theory

February 4, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

The notes linked above include:

  • Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
  • Geometric Algebra musings.  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
  • Some problems for chapter 2 content.

Fundamental parameters of antennas

January 22, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

This is my first set of notes for the UofT course ECE1229, Advanced Antenna Theory, taught by Prof. Eleftheriades, covering ch. 2 [1] content.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

Poynting vector

The Poynting vector was written in an unfamiliar form

\begin{equation}\label{eqn:chapter2Notes:560}
\boldsymbol{\mathcal{W}} = \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}}.
\end{equation}

I can roll with the use of a different symbol (i.e. not \(\BS\)) for the Poynting vector, but I’m used to seeing a \( \frac{c}{4\pi} \) factor ([6] and [5]). I remembered something like that in SI units too, so was slightly confused not to see it here.

Per [3] that something is a \( \mu_0 \), as in

\begin{equation}\label{eqn:chapter2Notes:580}
\boldsymbol{\mathcal{W}} = \inv{\mu_0} \boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{B}}.
\end{equation}

Note that the use of \( \boldsymbol{\mathcal{H}} \) instead of \( \boldsymbol{\mathcal{B}} \) is what wipes out the requirement for the \( \frac{1}{\mu_0} \) term since \( \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{B}}/\mu_0 \), assuming linear media, and no magnetization.

Typical far-field radiation intensity

It was mentioned that

\begin{equation}\label{eqn:advancedantennaL1:20}
U(\theta, \phi)
=
\frac{r^2}{2 \eta_0} \Abs{ \BE( r, \theta, \phi) }^2
=
\frac{1}{2 \eta_0} \lr{ \Abs{ E_\theta(\theta, \phi) }^2 + \Abs{ E_\phi(\theta, \phi) }^2},
\end{equation}

where the intrinsic impedance of free space is

\begin{equation}\label{eqn:advancedantennaL1:480}
\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377 \Omega.
\end{equation}

(this is also eq. 2-19 in the text.)

To get an understanding where this comes from, consider the far field radial solutions to the electric and magnetic dipole problems, which have the respective forms (from [3]) of

\begin{equation}\label{eqn:chapter2Notes:740}
\begin{aligned}
\boldsymbol{\mathcal{E}} &= -\frac{\mu_0 p_0 \omega^2 }{4 \pi } \frac{\sin\theta}{r} \cos\lr{w t – k r} \thetacap \\
\boldsymbol{\mathcal{B}} &= -\frac{\mu_0 p_0 \omega^2 }{4 \pi c} \frac{\sin\theta}{r} \cos\lr{w t – k r} \phicap \\
\end{aligned}
\end{equation}
\begin{equation}\label{eqn:chapter2Notes:760}
\begin{aligned}
\boldsymbol{\mathcal{E}} &= \frac{\mu_0 m_0 \omega^2 }{4 \pi c} \frac{\sin\theta}{r} \cos\lr{w t – k r} \phicap \\
\boldsymbol{\mathcal{B}} &= -\frac{\mu_0 m_0 \omega^2 }{4 \pi c^2} \frac{\sin\theta}{r} \cos\lr{w t – k r} \thetacap \\
\end{aligned}
\end{equation}

In neither case is there a component in the direction of propagation, and in both cases (using \( \mu_0 \epsilon_0 = 1/c^2\))

\begin{equation}\label{eqn:chapter2Notes:780}
\Abs{\boldsymbol{\mathcal{H}}}
= \frac{\Abs{\boldsymbol{\mathcal{E}}}}{\mu_0 c}
= \Abs{\boldsymbol{\mathcal{E}}} \sqrt{\frac{\epsilon_0}{\mu_0}}
= \inv{\eta_0}\Abs{\boldsymbol{\mathcal{E}}} .
\end{equation}

A superposition of the phasors for such dipole fields, in the far field, will have the form

\begin{equation}\label{eqn:chapter2Notes:800}
\begin{aligned}
\BE &= \inv{r} \lr{ E_\theta(\theta, \phi) \thetacap + E_\phi(\theta, \phi) \phicap } \\
\BB &= \inv{r c} \lr{ E_\theta(\theta, \phi) \thetacap – E_\phi(\theta, \phi) \phicap },
\end{aligned}
\end{equation}

with a corresponding time averaged Poynting vector

\begin{equation}\label{eqn:chapter2Notes:820}
\begin{aligned}
\BW_{\textrm{av}}
&= \inv{2 \mu_0} \BE \cross \BB^\conj \\
&=
\inv{2 \mu_0 c r^2}
\lr{ E_\theta \thetacap + E_\phi \phicap } \cross
\lr{ E_\theta^\conj \thetacap – E_\phi^\conj \phicap } \\
&=
\frac{\thetacap \cross \phicap}{2 \mu_0 c r^2}
\lr{ \Abs{E_\theta}^2 + \Abs{E_\phi}^2 } \\
&=
\frac{\rcap}{2 \eta_0 r^2}
\lr{ \Abs{E_\theta}^2 + \Abs{E_\phi}^2 },
\end{aligned}
\end{equation}

verifying \ref{eqn:advancedantennaL1:20} for a superposition of electric and magnetic dipole fields. This can likely be shown for more general fields too.

Field plots

We can plot the fields, or intensity (or log plots in dB of these).
It is pointed out in [3] that when there is \( r \) dependence these plots are done by considering the values of at fixed \( r \).

The field plots are conceptually the simplest, since that vector parameterizes
a surface. Any such radial field with magnitude \( f(r, \theta, \phi) \) can
be plotted in Mathematica in the \( \phi = 0 \) plane at \( r = r_0 \), or in
3D (respectively, but also at \( r = r_0\)) with code like that of the
following listing

ParametricPlotListing

Intensity plots can use the same code, with the only difference being the interpretation. The surface doesn’t represent the value of a vector valued radial function, but is the magnitude of a scalar valued function evaluated at \( f( r_0, \theta, \phi) \).

The surfaces for \( U = \sin\theta, \sin^2\theta \) in the plane are parametrically plotted in fig. 2, and for cosines in fig. 1 to compare with textbook figures.

CoSineAndCoSineSqFig1pn

fig 1. Cosinusoidal radiation intensities

SineAndSinSqFig3pn

fig 2. Sinusoidal radiation intensities

 

Visualizations of \( U = \sin^2 \theta\) and \( U = \cos^2 \theta\) can be found in fig. 3 and fig. 4 respectively. Even for such simple functions these look pretty cool.

SineSq3DFig4pn

fig 3. Square sinusoidal radiation intensity

 

CoSineSq3DFig2pn

fig 4. Square cosinusoidal radiation intensity

 

dB vs dBi

Note that dBi is used to indicate that the gain is with respect to an “isotropic” radiator.
This is detailed more in [2].

Trig integrals

Tables 1.1 and 1.2 produced with tableOfTrigIntegrals.nb have some of the sine and cosine integrals that are pervasive in this chapter.

trigIntegralsUpToPiBy2

trigIntegralsUpToPi

Polarization vectors

The text introduces polarization vectors \( \rhocap \) , but doesn’t spell out their form. Consider a plane wave field of the form

\begin{equation}\label{eqn:chapter2Notes:840}
\BE
=
E_x e^{j \phi_x} e^{j \lr{ \omega t – k z }} \xcap
+
E_y e^{j \phi_y} e^{j \lr{ \omega t – k z }} \ycap.
\end{equation}

The \( x, y \) plane directionality of this phasor can be written

\begin{equation}\label{eqn:chapter2Notes:860}
\Brho =
E_x e^{j \phi_x} \xcap
+
E_y e^{j \phi_y} \ycap,
\end{equation}

so that

\begin{equation}\label{eqn:chapter2Notes:880}
\BE = \Brho e^{j \lr{ \omega t – k z }}.
\end{equation}

Separating this direction and magnitude into factors

\begin{equation}\label{eqn:chapter2Notes:900}
\Brho = \Abs{\BE} \rhocap,
\end{equation}

allows the phasor to be expressed as

\begin{equation}\label{eqn:chapter2Notes:920}
\BE = \rhocap \Abs{\BE} e^{j \lr{ \omega t – k z }}.
\end{equation}

As an example, suppose that \( E_x = E_y \), and set \( \phi_x = 0 \). Then

\begin{equation}\label{eqn:chapter2Notes:940}
\rhocap = \xcap + \ycap e^{j \phi_y}.
\end{equation}

Phasor power

In section 2.13 the phasor power is written as

\begin{equation}\label{eqn:chapter2Notes:620}
I^2 R/2,
\end{equation}

where \( I, R \) are the magnitudes of phasors in the circuit.

I vaguely recall this relation, but had to refer back to [4] for the details.
This relation expresses average power over a period associated with the frequency of the phasor

\begin{equation}\label{eqn:chapter2Notes:640}
\begin{aligned}
P
&= \inv{T} \int_{t_0}^{t_0 + T} p(t) dt \\
&= \inv{T} \int_{t_0}^{t_0 + T} \Abs{\BV} \cos\lr{ \omega t + \phi_V }
\Abs{\BI} \cos\lr{ \omega t + \phi_I} dt \\
&= \inv{T} \int_{t_0}^{t_0 + T} \Abs{\BV} \Abs{\BI}
\lr{
\cos\lr{ \phi_V – \phi_I } + \cos\lr{ 2 \omega t + \phi_V + \phi_I}
}
dt \\
&= \inv{2} \Abs{\BV} \Abs{\BI} \cos\lr{ \phi_V – \phi_I }.
\end{aligned}
\end{equation}

Introducing the impedance for this circuit element

\begin{equation}\label{eqn:chapter2Notes:660}
\BZ = \frac{ \Abs{\BV} e^{j\phi_V} }{ \Abs{\BI} e^{j\phi_I} } = \frac{\Abs{\BV}}{\Abs{\BI}} e^{j\lr{\phi_V – \phi_I}},
\end{equation}

this average power can be written in phasor form

\begin{equation}\label{eqn:chapter2Notes:680}
\BP = \inv{2} \Abs{\BI}^2 \BZ,
\end{equation}

with
\begin{equation}\label{eqn:chapter2Notes:700}
P = \textrm{Re} \BP.
\end{equation}

Observe that we have to be careful to use the absolute value of the current phasor \( \BI \), since \( \BI^2 \) differs in phase from \( \Abs{\BI}^2 \). This explains the conjugation in the [4] definition of complex power, which had the form

\begin{equation}\label{eqn:chapter2Notes:720}
\BS = \BV_{\textrm{rms}} \BI^\conj_{\textrm{rms}}.
\end{equation}

Radar cross section examples

Flat plate.

\begin{equation}\label{eqn:chapter2Notes:960}
\sigma_{\textrm{max}} = \frac{4 \pi \lr{L W}^2}{\lambda^2}
\end{equation}

RCSsquareGeometryFig1

fig. 6. Square geometry for RCS example.

 

Sphere.

In the optical limit the radar cross section for a sphere

RCSsphereGeometryFig3

fig. 7. Sphere geometry for RCS example.

 

\begin{equation}\label{eqn:chapter2Notes:980}
\sigma_{\textrm{max}} = \pi r^2
\end{equation}

Note that this is smaller than the physical area \( 4 \pi r^2 \).

Cylinder.

RCScylinderGeometryFig1

fig. 8. Cylinder geometry for RCS example.

 

\begin{equation}\label{eqn:chapter2Notes:1000}
\sigma_{\textrm{max}} = \frac{ 2 \pi r h^2}{\lambda}
\end{equation}

Tridedral corner reflector

trihedralCornerReflectorFig6

fig. 9. Trihedral corner reflector geometry for RCS example.

 

\begin{equation}\label{eqn:chapter2Notes:1020}
\sigma_{\textrm{max}} = \frac{ 4 \pi L^4}{3 \lambda^2}
\end{equation}

Scattering from a sphere vs frequency

Frequency dependence of spherical scattering is sketched in fig. 10.

  • Low frequency (or small particles): Rayleigh\begin{equation}\label{eqn:chapter2Notes:1040}
    \sigma = \lr{\pi r^2} 7.11 \lr{\kappa r}^4, \qquad \kappa = 2 \pi/\lambda.
    \end{equation}
  • Mie scattering (resonance),\begin{equation}\label{eqn:chapter2Notes:1060}
    \sigma_{\textrm{max}}(A) = 4 \pi r^2
    \end{equation}
    \begin{equation}\label{eqn:chapter2Notes:1080}
    \sigma_{\textrm{max}}(B) = 0.26 \pi r^2.
    \end{equation}
  • optical limit ( \(r \gg \lambda\) )\begin{equation}\label{eqn:chapter2Notes:1100}
    \sigma = \pi r^2.
    \end{equation}
sphericalScatteringFig5

fig 10. Scattering from a sphere vs frequency (from Prof. Eleftheriades’ class notes).

FIXME: Do I have a derivation of this in my optics notes?

Notation

  • Time average.
    Both Prof. Eleftheriades
    and the text [1] use square brackets \( [\cdots] \) for time averages, not \( <\cdots> \). Was that an engineering convention?
  • Prof. Eleftheriades
    writes \(\Omega\) as a circle floating above a face up square bracket, as in fig. 1, and \( \sigma \) like a number 6, as in fig. 1.
  • Bold vectors are usually phasors, with (bold) calligraphic script used for the time domain fields. Example: \( \BE(x,y,z,t) = \ecap E(x,y) e^{j \lr{\omega t – k z}}, \boldsymbol{\mathcal{E}}(x, y, z, t) = \textrm{Re} \BE \).
greekStyleOmegaFig1

fig. 11. Prof. handwriting decoder ring: Omega

sigmaFig1

fig 12. Prof. handwriting decoder ring: sigma

 

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[3] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

[4] J.D. Irwin. Basic Engineering Circuit Analysis. MacMillian, 1993.

[5] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

[6] L.D. Landau and E.M. Lifshitz. The classical theory of fields. Butterworth-Heinemann, 1980. ISBN 0750627689.