spin up

Cascading Stern-Gerlach

July 28, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Question: Cascading Stern-Gerlach ([1] pr. 1.13)

Three Stern-Gerlach type measurements are performed, the first that prepares the state in a \( \ket{S_z ; + } \) state, the next in a \( \ket{ \BS \cdot \ncap ; + } \) state where \( \ncap = \cos\beta \zcap + \sin\beta \xcap \), and the last performing a \( S_z \) \( \Hbar/2 \) state measurement, as illustrated in fig. 1.

sternGerlachFig1

fig. 1. Cascaded Stern-Gerlach type measurements.

What is the intensity of the final \( s_z = -\Hbar/2 \) beam? What is the orientation for the second measuring apparatus to maximize the intensity of this beam?

Answer

The spin operator for the second apparatus is

\begin{equation}\label{eqn:sg:20}
\BS \cdot \ncap
= \frac{\Hbar}{2} \lr{ \sin\beta \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix} + \cos\beta \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix} }
= \frac{\Hbar}{2}
\begin{bmatrix}
\cos\beta & \sin\beta \\
\sin\beta & -\cos\beta
\end{bmatrix}.
\end{equation}

The intensity of the final \( \ket{S_z ; -} \) beam is

\begin{equation}\label{eqn:sg:40}
P
= \Abs{ \braket{-}{\BS \cdot \ncap ; +} \braket{\BS \cdot \ncap ; +}{+} }^2,
\end{equation}

(i.e. the second apparatus applies a projection operator \( \ket{\BS \cdot \ncap ; +}\bra{\BS \cdot \ncap ; +} \) to the initial \( \ket{+} \) state, and then the \( \ket{-} \) states are selected out of that.

The \( \BS \cdot \ncap \) eigenket is found to be

\begin{equation}\label{eqn:sg:60}
\ket{\BS \cdot \ncap ; +} =
\begin{bmatrix}
\cos\frac{\beta}{2} \\
\sin\frac{\beta}{2} \\
\end{bmatrix},
\end{equation}

so

\begin{equation}\label{eqn:sg:80}
P
= \Abs{
\begin{bmatrix}
0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos\frac{\beta}{2} \\
\sin\frac{\beta}{2} \\
\end{bmatrix}
\begin{bmatrix}
\cos\frac{\beta}{2} &
\sin\frac{\beta}{2} \\
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
}^2
=
\Abs{
\cos\frac{\beta}{2}
\sin\frac{\beta}{2}
}^2
=
\Abs{\inv{2} \sin\beta}^2
=
\inv{4} \sin^2\beta.
\end{equation}

This is maximized when \( \beta = \pi/2 \), or \( \ncap = \xcap \). At this angle the state leaving the second apparatus is

\begin{equation}\label{eqn:sg:100}
\begin{bmatrix}
\cos\frac{\beta}{2} \\
\sin\frac{\beta}{2} \\
\end{bmatrix}
\begin{bmatrix}
\cos\frac{\beta}{2} &
\sin\frac{\beta}{2} \\
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\inv{2}
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
\begin{bmatrix}
1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\ 0
\end{bmatrix}
=
\inv{2}
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
=\inv{2} \ket{+} + \inv{2}\ket{-},
\end{equation}

so the state after filtering the \( \ket{-} \) states is \( \inv{2} \ket{-} \) with intensity (probability density) of \( 1/4 \) relative to a unit normalize input \( \ket{+} \) state to the \( \BS \cdot \ncap \) apparatus.

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Update to old phy356 (Quantum Mechanics I) notes.

February 12, 2015 math and physics play , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

It’s been a long time since I took QM I. My notes from that class were pretty rough, but I’ve cleaned them up a bit.

The main value to these notes is that I worked a number of introductory Quantum Mechanics problems.

These were my personal lecture notes for the Fall 2010, University of Toronto Quantum mechanics I course (PHY356H1F), taught by Prof. Vatche Deyirmenjian.

The official description of this course was:

The general structure of wave mechanics; eigenfunctions and eigenvalues; operators; orbital angular momentum; spherical harmonics; central potential; separation of variables, hydrogen atom; Dirac notation; operator methods; harmonic oscillator and spin.

This document contains a few things

• My lecture notes.
Typos, if any, are probably mine(Peeter), and no claim nor attempt of spelling or grammar correctness will be made. The first four lectures had chosen not to take notes for since they followed the text very closely.
• Notes from reading of the text. This includes observations, notes on what seem like errors, and some solved problems. None of these problems have been graded. Note that my informal errata sheet for the text has been separated out from this document.
• Some assigned problems. I have corrected some the errors after receiving grading feedback, and where I have not done so I at least recorded some of the grading comments as a reference.
• Some worked problems associated with exam preparation.