Month: November 2016

Frequency domain time averaged Poynting theorem

November 8, 2016 math and physics play , , ,

[Click here for a PDF of this post with nicer formatting]

The time domain Poynting relationship was found to be

\begin{equation}\label{eqn:poyntingTimeHarmonic:20}
0
=
\spacegrad \cdot \lr{ \BE \cross \BH }
+ \frac{\epsilon}{2} \BE \cdot \PD{t}{\BE}
+ \frac{\mu}{2} \BH \cdot \PD{t}{\BH}
+ \BH \cdot \BM_i
+ \BE \cdot \BJ_i
+ \sigma \BE \cdot \BE.
\end{equation}

Let’s derive the equivalent relationship for the time averaged portion of the time-harmonic Poynting vector. The time domain representation of the Poynting vector in terms of the time-harmonic (phasor) vectors is

\begin{equation}\label{eqn:poyntingTimeHarmonic:40}
\begin{aligned}
\boldsymbol{\mathcal{E}} \cross \boldsymbol{\mathcal{H}}
&= \inv{4}
\lr{
\BE e^{j\omega t}
+ \BE^\conj e^{-j\omega t}
}
\cross
\lr{
\BH e^{j\omega t}
+ \BH^\conj e^{-j\omega t}
} \\
&=
\inv{2} \textrm{Re} \lr{ \BE \cross \BH^\conj + \BE \cross \BH e^{2 j \omega t} },
\end{aligned}
\end{equation}

so if we are looking for the relationships that effect only the time averaged Poynting vector, over integral multiples of the period, we are interested in evaluating the divergence of

\begin{equation}\label{eqn:poyntingTimeHarmonic:60}
\inv{2} \BE \cross \BH^\conj.
\end{equation}

The time-harmonic Maxwell’s equations are
\begin{equation}\label{eqn:poyntingTimeHarmonic:80}
\begin{aligned}
\spacegrad \cross \BE &= – j \omega \mu \BH – \BM_i \\
\spacegrad \cross \BH &= j \omega \epsilon \BE + \BJ_i + \sigma \BE \\
\end{aligned}
\end{equation}

The latter after conjugation is

\begin{equation}\label{eqn:poyntingTimeHarmonic:100}
\spacegrad \cross \BH^\conj = -j \omega \epsilon^\conj \BE^\conj + \BJ_i^\conj + \sigma^\conj \BE^\conj.
\end{equation}

For the divergence we have

\begin{equation}\label{eqn:poyntingTimeHarmonic:120}
\begin{aligned}
\spacegrad \cdot \lr{ \BE \cross \BH^\conj }
&=
\BH^\conj \cdot \lr{ \spacegrad \cdot \BE }
-\BE \cdot \lr{ \spacegrad \cdot \BH^\conj } \\
&=
\BH^\conj \cdot \lr{ – j \omega \mu \BH – \BM_i }
– \BE \cdot \lr{ -j \omega \epsilon^\conj \BE^\conj + \BJ_i^\conj + \sigma^\conj \BE^\conj },
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:poyntingTimeHarmonic:140}
0
=
\spacegrad \cdot \lr{ \BE \cross \BH^\conj }
+
\BH^\conj \cdot \lr{ j \omega \mu \BH + \BM_i }
+ \BE \cdot \lr{ -j \omega \epsilon^\conj \BE^\conj + \BJ_i^\conj + \sigma^\conj \BE^\conj },
\end{equation}

so
\begin{equation}\label{eqn:poyntingTimeHarmonic:160}
\boxed{
0
=
\spacegrad \cdot \inv{2} \lr{ \BE \cross \BH^\conj }
+ \inv{2} \lr{ \BH^\conj \cdot \BM_i
+ \BE \cdot \BJ_i^\conj }
+ \inv{2} j \omega \lr{ \mu \Abs{\BH}^2 – \epsilon^\conj \Abs{\BE}^2 }
+ \inv{2} \sigma^\conj \Abs{\BE}^2.
}
\end{equation}

Poynting theorem

November 7, 2016 math and physics play , , , ,

Poynting relationship
[Click here for a PDF of this post with nicer formatting]

Problem:

Given
\begin{equation}\label{eqn:poynting:20}
\spacegrad \cross \BE
= -\BM_i – \PD{t}{\BB},
\end{equation}

and
\begin{equation}\label{eqn:poynting:40}
\spacegrad \cross \BH
= \BJ_i + \BJ_c + \PD{t}{\BD},
\end{equation}

expand the divergence of \( \BE \cross \BH \) to find the form of the Poynting theorem.

Solution:

First we need the chain rule for of this sort of divergence. Using primes to indicate the scope of the gradient operation

\begin{equation}\label{eqn:poynting:60}
\begin{aligned}
\spacegrad \cdot \lr{ \BE \cross \BH }
&=
\spacegrad’ \cdot \lr{ \BE’ \cross \BH }

\spacegrad’ \cdot \lr{ \BH’ \cross \BE } \\
&=
\BH \cdot \lr{ \spacegrad’ \cross \BE’ }

\BH \cdot \lr{ \spacegrad’ \cross \BH’ } \\
&=
\BH \cdot \lr{ \spacegrad \cross \BE }

\BE \cdot \lr{ \spacegrad \cross \BH }.
\end{aligned}
\end{equation}

In the second step, cyclic permutation of the triple product was used.
This checks against the inside front cover of Jackson [1]. Now we can plug in the Maxwell equation cross products.

\begin{equation}\label{eqn:poynting:80}
\begin{aligned}
\spacegrad \cdot \lr{ \BE \cross \BH }
&=
\BH \cdot \lr{ -\BM_i – \PD{t}{\BB} }

\BE \cdot \lr{ \BJ_i + \BJ_c + \PD{t}{\BD} } \\
&=
-\BH \cdot \BM_i
-\mu \BH \cdot \PD{t}{\BH}

\BE \cdot \BJ_i

\BE \cdot \BJ_c

\epsilon \BE \cdot \PD{t}{\BE},
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:poynting:120}
\boxed{
0
=
\spacegrad \cdot \lr{ \BE \cross \BH }
+ \frac{\epsilon}{2} \PD{t}{} \Abs{ \BE }^2
+ \frac{\mu}{2} \PD{t}{} \Abs{ \BH }^2
+ \BH \cdot \BM_i
+ \BE \cdot \BJ_i
+ \sigma \Abs{\BE}^2.
}
\end{equation}

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Gradient, divergence, curl and Laplacian in cylindrical coordinates

November 6, 2016 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In class it was suggested that the identity

\begin{equation}\label{eqn:laplacianCylindrical:20}
\spacegrad^2 \BA =
\spacegrad \lr{ \spacegrad \cdot \BA }
-\spacegrad \cross \lr{ \spacegrad \cross \BA },
\end{equation}

can be used to compute the Laplacian in non-rectangular coordinates. Is that the easiest way to do this?

How about just sequential applications of the gradient on the vector? Let’s start with the vector product of the gradient and the vector. First recall that the cylindrical representation of the gradient is

\begin{equation}\label{eqn:laplacianCylindrical:80}
\spacegrad = \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z,
\end{equation}

where
\begin{equation}\label{eqn:laplacianCylindrical:100}
\begin{aligned}
\rhocap &= \Be_1 e^{\Be_1 \Be_2 \phi} \\
\phicap &= \Be_2 e^{\Be_1 \Be_2 \phi} \\
\end{aligned}
\end{equation}

Taking \( \phi \) derivatives of \ref{eqn:laplacianCylindrical:100}, we have

\begin{equation}\label{eqn:laplacianCylindrical:120}
\begin{aligned}
\partial_\phi \rhocap &= \Be_1 \Be_1 \Be_2 e^{\Be_1 \Be_2 \phi} = \Be_2 e^{\Be_1 \Be_2 \phi} = \phicap \\
\partial_\phi \phicap &= \Be_2 \Be_1 \Be_2 e^{\Be_1 \Be_2 \phi} = -\Be_1 e^{\Be_1 \Be_2 \phi} = -\rhocap.
\end{aligned}
\end{equation}

The gradient of a vector \( \BA = \rhocap A_\rho + \phicap A_\phi + \zcap A_z \) is

\begin{equation}\label{eqn:laplacianCylindrical:60}
\begin{aligned}
\spacegrad \BA
&=
\lr{ \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z }
\lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&=
\quad \rhocap \partial_\rho \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&\quad + \frac{\phicap}{\rho} \partial_\phi \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&\quad + \zcap \partial_z \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z } \\
&=
\quad \rhocap \lr{ \rhocap \partial_\rho A_\rho + \phicap \partial_\rho A_\phi + \zcap \partial_\rho A_z } \\
&\quad + \frac{\phicap}{\rho} \lr{ \partial_\phi(\rhocap A_\rho) + \partial_\phi(\phicap A_\phi) + \zcap \partial_\phi A_z } \\
&\quad + \zcap \lr{ \rhocap \partial_z A_\rho + \phicap \partial_z A_\phi + \zcap \partial_z A_z } \\
&=
\quad \partial_\rho A_\rho + \rhocap \phicap \partial_\rho A_\phi + \rhocap \zcap \partial_\rho A_z \\
&\quad +\frac{1}{\rho} \lr{ A_\rho + \phicap \rhocap \partial_\phi A_\rho – \phicap \rhocap A_\phi + \partial_\phi A_\phi + \phicap \zcap \partial_\phi A_z } \\
&\quad + \zcap \rhocap \partial_z A_\rho + \zcap \phicap \partial_z A_\phi + \partial_z A_z \\
&=
\quad \partial_\rho A_\rho + \frac{1}{\rho} \lr{ A_\rho + \partial_\phi A_\phi } + \partial_z A_z \\
&\quad +
\zcap \rhocap \lr{
\partial_z A_\rho
-\partial_\rho A_z
} \\
&\quad +
\phicap \zcap \lr{
\inv{\rho} \partial_\phi A_z
– \partial_z A_\phi
} \\
&\quad +
\rhocap \phicap \lr{
\partial_\rho A_\phi
– \inv{\rho} \lr{ \partial_\phi A_\rho – A_\phi }
},
\end{aligned}
\end{equation}

As expected, we see that the gradient splits nicely into a dot and curl

\begin{equation}\label{eqn:laplacianCylindrical:160}
\begin{aligned}
\spacegrad \BA
&= \spacegrad \cdot \BA + \spacegrad \wedge \BA \\
&= \spacegrad \cdot \BA + \rhocap \phicap \zcap (\spacegrad \cross \BA ),
\end{aligned}
\end{equation}

where the cylindrical representation of the divergence is seen to be

\begin{equation}\label{eqn:laplacianCylindrical:140}
\spacegrad \cdot \BA
=
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z,
\end{equation}

and the cylindrical representation of the curl is

\begin{equation}\label{eqn:laplacianCylindrical:180}
\spacegrad \cross \BA
=
\rhocap
\lr{
\inv{\rho} \partial_\phi A_z
– \partial_z A_\phi
}
+
\phicap
\lr{
\partial_z A_\rho
-\partial_\rho A_z
}
+
\inv{\rho} \zcap \lr{
\partial_\rho ( \rho A_\phi )
– \partial_\phi A_\rho
}.
\end{equation}

Should we want to, it is now possible to evaluate the Laplacian of \( \BA \) using
\ref{eqn:laplacianCylindrical:20}
, which will have the following components

\begin{equation}\label{eqn:laplacianCylindrical:220}
\begin{aligned}
\rhocap \cdot \lr{ \spacegrad^2 \BA }
&=
\partial_\rho
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\lr{
\inv{\rho} \partial_\phi \lr{
\inv{\rho} \lr{
\partial_\rho ( \rho A_\phi ) – \partial_\phi A_\rho
}
}
– \partial_z \lr{
\partial_z A_\rho -\partial_\rho A_z
}
} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \partial_\rho \lr{ \frac{1}{\rho} \partial_\phi A_\phi}
+ \partial_{\rho z} A_z
– \inv{\rho^2}\partial_{\phi \rho} ( \rho A_\phi )
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \partial_{z\rho} A_z \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{1}{\rho^2} \partial_\phi A_\phi
+ \frac{1}{\rho} \partial_{\rho\phi} A_\phi
– \inv{\rho^2}\partial_{\phi} A_\phi
– \inv{\rho}\partial_{\phi\rho} A_\phi \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho (\rho A_\rho)}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{2}{\rho^2} \partial_\phi A_\phi \\
&=
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho}
+ \inv{\rho^2}\partial_{\phi\phi} A_\rho
+ \partial_{zz} A_\rho
– \frac{A_\rho}{\rho^2}
– \frac{2}{\rho^2} \partial_\phi A_\phi,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:240}
\begin{aligned}
\phicap \cdot \lr{ \spacegrad^2 \BA }
&=
\inv{\rho} \partial_\phi
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\lr{
\lr{
\partial_z \lr{
\inv{\rho} \partial_\phi A_z – \partial_z A_\phi
}
-\partial_\rho \lr{
\inv{\rho} \lr{ \partial_\rho ( \rho A_\phi ) – \partial_\phi A_\rho}
}
}
} \\
&=
\inv{\rho^2} \partial_{\phi\rho} (\rho A_\rho)
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \inv{\rho}\partial_{\phi z} A_z
– \inv{\rho} \partial_{z\phi} A_z
+ \partial_{z z} A_\phi
+\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
– \partial_\rho \lr{ \inv{\rho} \partial_\phi A_\rho} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \inv{\rho^2} \partial_{\phi\rho} (\rho A_\rho)
+ \inv{\rho}\partial_{\phi z} A_z
– \inv{\rho} \partial_{z\phi} A_z
– \partial_\rho \lr{ \inv{\rho} \partial_\phi A_\rho} \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \inv{\rho^2} \partial_{\phi} A_\rho
+ \inv{\rho} \partial_{\phi\rho} A_\rho
+ \inv{\rho^2} \partial_\phi A_\rho
– \inv{\rho} \partial_{\rho\phi} A_\rho \\
&=
\partial_\rho \lr{ \inv{\rho} \partial_\rho ( \rho A_\phi ) }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \frac{2}{\rho^2} \partial_{\phi} A_\rho \\
&=
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \frac{1}{\rho^2} \partial_{\phi\phi} A_\phi
+ \partial_{z z} A_\phi
+ \frac{2}{\rho^2} \partial_{\phi} A_\rho
– \frac{A_\phi}{\rho^2},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:260}
\begin{aligned}
\zcap \cdot \lr{ \spacegrad^2 \BA }
&=
\partial_z
\lr{
\inv{\rho} \partial_\rho (\rho A_\rho) + \frac{1}{\rho} \partial_\phi A_\phi + \partial_z A_z
}

\inv{\rho} \lr{
\partial_\rho \lr{ \rho \lr{
\partial_z A_\rho -\partial_\rho A_z
}
}
– \partial_\phi \lr{
\inv{\rho} \partial_\phi A_z – \partial_z A_\phi
}
} \\
&=
\inv{\rho} \partial_{z\rho} (\rho A_\rho)
+ \frac{1}{\rho} \partial_{z\phi} A_\phi
+ \partial_{zz} A_z
– \inv{\rho}\partial_\rho \lr{ \rho \partial_z A_\rho }
+ \inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
– \inv{\rho} \partial_{\phi z} A_\phi \\
&=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
+ \partial_{zz} A_z
+ \inv{\rho} \partial_{z} A_\rho
+\partial_{z\rho} A_\rho
+ \frac{1}{\rho} \partial_{z\phi} A_\phi
– \inv{\rho}\partial_z A_\rho
– \partial_{\rho z} A_\rho
– \inv{\rho} \partial_{\phi z} A_\phi \\
&=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho A_z }
+ \inv{\rho^2} \partial_{\phi\phi} A_z
+ \partial_{zz} A_z
\end{aligned}
\end{equation}

Evaluating these was a fairly tedious and mechanical job, and would have been better suited to a computer algebra system than by hand as done here.

Explicit cylindrical Laplacian

Let’s try this a different way. The most obvious potential strategy is to just apply the Laplacian to the vector itself, but we need to include the unit vectors in such an operation

\begin{equation}\label{eqn:laplacianCylindrical:280}
\spacegrad^2 \BA =
\spacegrad^2 \lr{ \rhocap A_\rho + \phicap A_\phi + \zcap A_z }.
\end{equation}

First we need to know the explicit form of the cylindrical Laplacian. From the painful expansion, we can guess that it is

\begin{equation}\label{eqn:laplacianCylindrical:300}
\spacegrad^2 \psi
=
\inv{\rho}\partial_\rho \lr{ \rho \partial_\rho \psi }
+ \inv{\rho^2} \partial_{\phi\phi} \psi
+ \partial_{zz} \psi.
\end{equation}

Let’s check that explicitly. Here I use the vector product where \( \rhocap^2 = \phicap^2 = \zcap^2 = 1 \), and these vectors anticommute when different

\begin{equation}\label{eqn:laplacianCylindrical:320}
\begin{aligned}
\spacegrad^2 \psi
&=
\lr{ \rhocap \partial_\rho + \frac{\phicap}{\rho} \partial_\phi + \zcap \partial_z }
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi } \\
&=
\rhocap \partial_\rho
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi }
+ \frac{\phicap}{\rho} \partial_\phi
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi }
+ \zcap \partial_z
\lr{ \rhocap \partial_\rho \psi + \frac{\phicap}{\rho} \partial_\phi \psi + \zcap \partial_z \psi } \\
&=
\partial_{\rho\rho} \psi
+ \rhocap \phicap \partial_\rho \lr{ \frac{1}{\rho} \partial_\phi \psi}
+ \rhocap \zcap \partial_{\rho z} \psi
+ \frac{\phicap}{\rho} \partial_\phi \lr{ \rhocap \partial_\rho \psi }
+ \frac{\phicap}{\rho} \partial_\phi \lr{ \frac{\phicap}{\rho} \partial_\phi \psi }
+ \frac{\phicap \zcap }{\rho} \partial_{\phi z} \psi
+ \zcap \rhocap \partial_{z\rho} \psi
+ \frac{\zcap \phicap}{\rho} \partial_{z\phi} \psi
+ \partial_{zz} \psi \\
&=
\partial_{\rho\rho} \psi
+ \inv{\rho} \partial_\rho \psi
+ \frac{1}{\rho^2} \partial_{\phi \phi} \psi
+ \partial_{zz} \psi
+ \rhocap \phicap
\lr{
-\frac{1}{\rho^2} \partial_\phi \psi
+\frac{1}{\rho} \partial_{\rho \phi} \psi
-\inv{\rho} \partial_{\phi \rho} \psi
+ \frac{1}{\rho^2} \partial_\phi \psi
}
+ \zcap \rhocap \lr{
-\partial_{\rho z} \psi
+ \partial_{z\rho} \psi
}
+ \phicap \zcap \lr{
\inv{\rho} \partial_{\phi z} \psi
– \inv{\rho} \partial_{z\phi} \psi
} \\
&=
\partial_{\rho\rho} \psi
+ \inv{\rho} \partial_\rho \psi
+ \frac{1}{\rho^2} \partial_{\phi \phi} \psi
+ \partial_{zz} \psi,
\end{aligned}
\end{equation}

so the Laplacian operator is

\begin{equation}\label{eqn:laplacianCylindrical:340}
\boxed{
\spacegrad^2
=
\inv{\rho} \PD{\rho}{} \lr{ \rho \PD{\rho}{} }
+ \frac{1}{\rho^2} \PDSq{\phi}{}
+ \PDSq{z}{}.
}
\end{equation}

All the bivector grades of the Laplacian operator are seen to explicitly cancel, regardless of the grade of \( \psi \), just as if we had expanded the scalar Laplacian as a dot product
\( \spacegrad^2 \psi = \spacegrad \cdot \lr{ \spacegrad \psi} \).
Unlike such a scalar expansion, this derivation is seen to be valid for any grade \( \psi \). We know now that we can trust this result when \( \psi \) is a scalar, a vector, a bivector, a trivector, or even a multivector.

Vector Laplacian

Now that we trust that the typical scalar form of the Laplacian applies equally well to multivectors as it does to scalars, that cylindrical coordinate operator can now be applied to a
vector. Consider the projections onto each of the directions in turn

\begin{equation}\label{eqn:laplacianCylindrical:360}
\spacegrad^2 \lr{ \rhocap A_\rho }
=
\rhocap \inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho }
+ \frac{1}{\rho^2} \partial_{\phi\phi} \lr{\rhocap A_\rho}
+ \rhocap \partial_{zz} A_\rho
\end{equation}

\begin{equation}\label{eqn:laplacianCylindrical:380}
\begin{aligned}
\partial_{\phi\phi} \lr{\rhocap A_\rho}
&=
\partial_\phi \lr{ \phicap A_\rho + \rhocap \partial_\phi A_\rho } \\
&=
-\rhocap A_\rho
+\phicap \partial_\phi A_\rho
+ \phicap \partial_\phi A_\rho
+ \rhocap \partial_{\phi\phi} A_\rho \\
&=
\rhocap \lr{ \partial_{\phi\phi} A_\rho -A_\rho }
+ 2 \phicap \partial_\phi A_\rho
\end{aligned}
\end{equation}

so this component of the vector Laplacian is

\begin{equation}\label{eqn:laplacianCylindrical:400}
\begin{aligned}
\spacegrad^2 \lr{ \rhocap A_\rho }
&=
\rhocap
\lr{
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\rho }
+ \inv{\rho^2} \partial_{\phi\phi} A_\rho
– \inv{\rho^2} A_\rho
+ \partial_{zz} A_\rho
}
+
\phicap
\lr{
2 \inv{\rho^2} \partial_\phi A_\rho
} \\
&=
\rhocap \lr{
\spacegrad^2 A_\rho
– \inv{\rho^2} A_\rho
}
+
\phicap
\frac{2}{\rho^2} \partial_\phi A_\rho
.
\end{aligned}
\end{equation}

The Laplacian for the projection of the vector onto the \( \phicap \) direction is

\begin{equation}\label{eqn:laplacianCylindrical:420}
\spacegrad^2 \lr{ \phicap A_\phi }
=
\phicap \inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \frac{1}{\rho^2} \partial_{\phi\phi} \lr{\phicap A_\phi}
+ \phicap \partial_{zz} A_\phi,
\end{equation}

Again, since the unit vectors are \( \phi \) dependent, the \( \phi \) derivatives have to be treated carefully

\begin{equation}\label{eqn:laplacianCylindrical:440}
\begin{aligned}
\partial_{\phi\phi} \lr{\phicap A_\phi}
&=
\partial_{\phi} \lr{-\rhocap A_\phi + \phicap \partial_\phi A_\phi} \\
&=
-\phicap A_\phi
-\rhocap \partial_\phi A_\phi
– \rhocap \partial_\phi A_\phi
+ \phicap \partial_{\phi \phi} A_\phi \\
&=
– 2 \rhocap \partial_\phi A_\phi
+
\phicap
\lr{
\partial_{\phi \phi} A_\phi
– A_\phi
},
\end{aligned}
\end{equation}

so the Laplacian of this projection is
\begin{equation}\label{eqn:laplacianCylindrical:460}
\begin{aligned}
\spacegrad^2 \lr{ \phicap A_\phi }
&=
\phicap
\lr{
\inv{\rho} \partial_\rho \lr{ \rho \partial_\rho A_\phi }
+ \phicap \partial_{zz} A_\phi,
\inv{\rho^2} \partial_{\phi \phi} A_\phi
– \frac{A_\phi }{\rho^2}
}
– \rhocap \frac{2}{\rho^2} \partial_\phi A_\phi \\
&=
\phicap \lr{
\spacegrad^2 A_\phi
– \frac{A_\phi}{\rho^2}
}
– \rhocap \frac{2}{\rho^2} \partial_\phi A_\phi.
\end{aligned}
\end{equation}

Since \( \zcap \) is fixed we have

\begin{equation}\label{eqn:laplacianCylindrical:480}
\spacegrad^2 \zcap A_z
=
\zcap \spacegrad^2 A_z.
\end{equation}

Putting all the pieces together we have
\begin{equation}\label{eqn:laplacianCylindrical:500}
\boxed{
\spacegrad^2 \BA
=
\rhocap \lr{
\spacegrad^2 A_\rho
– \inv{\rho^2} A_\rho
– \frac{2}{\rho^2} \partial_\phi A_\phi
}
+\phicap \lr{
\spacegrad^2 A_\phi
– \frac{A_\phi}{\rho^2}
+ \frac{2}{\rho^2} \partial_\phi A_\rho
}
+
\zcap \spacegrad^2 A_z.
}
\end{equation}

This matches the results of \ref{eqn:laplacianCylindrical:220}, …, from the painful expansion of
\( \spacegrad \lr{ \spacegrad \cdot \BA } – \spacegrad \cross \lr{ \spacegrad \cross \BA } \).

Dipole and Quadropole electrostatic potential moments and coefficents

November 5, 2016 math and physics play , , , ,

<a href=”https://peeterjoot.com/archives/math2016//momentCoeffiecients.pdf”>[Click here for a PDF of this post with nicer formatting]</a>

In class Thursday we calculated the \( q_{1,1} \) coefficient of the electrostatic moment, as covered in [1] chapter 4. Let’s verify the rest, as well as the tensor sum formula for the quadropole moment, and the spherical harmonic sum that yields the dipole moment potential.

The quadropole term of the potential was stated to be

\begin{equation}\label{eqn:momentCoeffiecients:120}
\inv{4 \pi \epsilon_0} \frac{4 \pi}{5 r^3} \sum_{m=-2}^2 \int (r’)^2 \rho(\Bx’) Y_{lm}^\conj(\theta’, \phi’) Y_{lm}(\theta, \phi)
=
\inv{2} \sum_{ij} Q_{ij} \frac{x_i x_j}{r^5},
\end{equation}

where

\begin{equation}\label{eqn:momentCoeffiecients:140}
Q_{i,j} = \int \lr{ 3 x_i’ x_j’ – \delta_{ij} (r’)^2 } \rho(\Bx’) d^3 x’.
\end{equation}

Let’s verify this. First note that

\begin{equation}\label{eqn:momentCoeffiecients:160}
Y_{l,m} = \sqrt{\frac{2 l + 1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{i m \phi},
\end{equation}

and
\begin{equation}\label{eqn:momentCoeffiecients:180}
P_l^{-m}(x) =
(-1)^m \frac{(l-m)!}{(l+m)!} P_l^m(x),
\end{equation}

so
\begin{equation}\label{eqn:momentCoeffiecients:200}
\begin{aligned}
Y_{l,-m}
&= \sqrt{\frac{2 l + 1}{4 \pi} \frac{(l+m)!}{(l-m)!} }
P_l^{-m}(\cos\theta)
e^{-i m \phi} \\
&=
(-1)^m
\sqrt{\frac{2 l + 1}{4 \pi} \frac{(l-m)!}{(l+m)!} }
P_l^m(x)
e^{-i m \phi} \\
&=
(-1)^m Y_{l,m}^\conj.
\end{aligned}
\end{equation}

That means

\begin{equation}\label{eqn:momentCoeffiecients:220}
\begin{aligned}
q_{l,-m}
&=
\int (r’)^l \rho(\Bx’)
Y^\conj_{l,-m}(\theta’, \phi’)
d^3 x’ \\
&=
(-1)^m
\int (r’)^l \rho(\Bx’)
Y_{l,m}(\theta’, \phi’)
d^3 x’ \\
&=
(-1)^m q_{lm}^\conj.
\end{aligned}
\end{equation}

In particular, for \( m \ne 0 \)

\begin{equation}\label{eqn:momentCoeffiecients:320}
(r’)^l Y_{l, m}^\conj (\theta’, \phi’) r^l Y_{l, m}(\theta, \phi)
+ (r’)^l Y_{l, -m}^\conj (\theta’, \phi’) r^l Y_{l, -m}(\theta, \phi)
=
(r’)^l Y_{l, m}^\conj (\theta’, \phi’) r^l Y_{l, m}(\theta, \phi)
+ (r’)^l Y_{l, m} (\theta’, \phi’) r^l Y_{l, m}^\conj(\theta, \phi) ,
\end{equation}

or
\begin{equation}\label{eqn:momentCoeffiecients:340}
(r’)^l Y_{l, m}^\conj (\theta’, \phi’) r^l Y_{l, m}(\theta, \phi)
+ (r’)^l Y_{l, -m}^\conj (\theta’, \phi’) r^l Y_{l, -m}(\theta, \phi)
=
2 \textrm{Re} \lr{ (r’)^l Y_{l, m}^\conj (\theta’, \phi’) r^l Y_{l, m}(\theta, \phi) }.
\end{equation}

To verify the quadropole expansion formula in a compact way it is helpful to compute some intermediate results.

\begin{equation}\label{eqn:momentCoeffiecients:360}
\begin{aligned}
r Y_{1, 1}
&= -r \sqrt{\frac{3}{8 \pi}} \sin\theta e^{i\phi} \\
&= -\sqrt{\frac{3}{8 \pi}} (x + i y),
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:380}
\begin{aligned}
r Y_{1, 0}
&= r \sqrt{\frac{3}{4 \pi}} \cos\theta \\
&= \sqrt{\frac{3}{4 \pi}} z,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:400}
\begin{aligned}
r^2 Y_{2, 2}
&= -r^2 \sqrt{\frac{15}{32 \pi}} \sin^2\theta e^{2 i\phi} \\
&= – \sqrt{\frac{15}{32 \pi}} (x + i y)^2,
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:420}
\begin{aligned}
r^2 Y_{2, 1}
&= r^2 \sqrt{\frac{15}{8 \pi}} \sin\theta \cos\theta e^{i\phi} \\
&= \sqrt{\frac{15}{8 \pi}} z ( x + i y ),
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:440}
\begin{aligned}
r^2 Y_{2, 0}
&= r^2 \sqrt{\frac{5}{16 \pi}} \lr{ 3 \cos^2\theta – 1 } \\
&= \sqrt{\frac{5}{16 \pi}} \lr{ 3 z^2 – r^2 }.
\end{aligned}
\end{equation}

Given primed coordinates and integrating the conjugate of each of these with \( \rho(\Bx’) dV’ \), we obtain the \( q_{lm} \) moment coeffients. Those are

\begin{equation}\label{eqn:momentCoeffiecients:460}
q_{11}
= -\sqrt{\frac{3}{8 \pi}} \int d^3 x’ \rho(\Bx’) (x – i y),
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:480}
q_{1, 0}
= \sqrt{\frac{3}{4 \pi}} \int d^3 x’ \rho(\Bx’) z’,
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:500}
q_{2, 2}
= – \sqrt{\frac{15}{32 \pi}} \int d^3 x’ \rho(\Bx’) (x’ – i y’)^2,
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:520}
q_{2, 1}
= \sqrt{\frac{15}{8 \pi}} \int d^3 x’ \rho(\Bx’) z’ ( x’ – i y’ ),
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:540}
q_{2, 0}
= \sqrt{\frac{5}{16 \pi}} \int d^3 x’ \rho(\Bx’) \lr{ 3 (z’)^2 – (r’)^2 }.
\end{equation}

For the potential we are interested in

\begin{equation}\label{eqn:momentCoeffiecients:560}
\begin{aligned}
2 \textrm{Re} q_{11} r^2 Y_{11}(\theta, \phi)
&= 2 \frac{3}{8 \pi} \int d^3 x’ \rho(\Bx’) \textrm{Re} \lr{ (x’ – i y’)( x + i y) } \\
&= \frac{3}{4 \pi} \int d^3 x’ \rho(\Bx’) \lr{ x x’ + y y’ },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:580}
q_{1, 0} r Y_{1,0}(\theta, \phi)
= \frac{3}{4 \pi} \int d^3 x’ \rho(\Bx’) z’ z,
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:600}
\begin{aligned}
2 \textrm{Re} q_{22} r^2 Y_{22}(\theta, \phi)
&= 2 \frac{15}{32 \pi} \int d^3 x’ \rho(\Bx’) \textrm{Re} \lr{
(x’ – i y’)^2
(x + i y)^2
} \\
&= \frac{15}{16 \pi} \int d^3 x’ \rho(\Bx’) \textrm{Re} \lr{
((x’)^2 – 2 i x’ y’ -(y’)^2)
(x^2 + 2 i x y -y^2)
} \\
&= \frac{15}{16 \pi} \int d^3 x’ \rho(\Bx’) \lr{
((x’)^2 -(y’)^2) (x^2 -y^2)
+ 4 x x’ y y’
},
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:momentCoeffiecients:620}
\begin{aligned}
2 \textrm{Re} q_{21} r^2 Y_{21}(\theta, \phi)
&= 2 \frac{15}{8 \pi} \int d^3 x’ \rho(\Bx’) z \textrm{Re} \lr{ ( x’ – i y’ ) (x + i y) } \\
&= \frac{15}{4 \pi} \int d^3 x’ \rho(\Bx’) z \lr{ x x’ + y y’ },
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:momentCoeffiecients:640}
q_{2, 0} r^2 Y_{20}(\theta, \phi)
= \frac{5}{16 \pi} \int d^3 x’ \rho(\Bx’) \lr{ 3 (z’)^2 – (r’)^2 } \lr{ 3 z^2 – r^2 }.
\end{equation}

The dipole term of the potential is

\begin{equation}\label{eqn:momentCoeffiecients:660}
\begin{aligned}
\inv{ 4 \pi \epsilon_0 } \frac{4 \pi}{3 r^3}
\lr{
\frac{3}{4 \pi} \int d^3 x’ \rho(\Bx’) \lr{ x x’ + y y’ }
+
\frac{3}{4 \pi} \int d^3 x’ \rho(\Bx’) z’ z
} \\
&=
\inv{ 4 \pi \epsilon_0 r^3}
\Bx \cdot \int d^3 x’ \rho(\Bx’) \Bx’ \\
&=
\frac{\Bx \cdot \Bp}{ 4 \pi \epsilon_0 r^3},
\end{aligned}
\end{equation}

as obtained directly when a strict dipole approximation was used.

Summing all the terms for the quadrople gives

\begin{equation}\label{eqn:momentCoeffiecients:680}
\begin{aligned}
\inv{ 4 \pi \epsilon r^5 } \frac{ 4 \pi }{5}
\Bigl(
&\frac{15}{16 \pi} \int d^3 x’ \rho(\Bx’) \lr{
((x’)^2 -(y’)^2) (x^2 -y^2)
+ 4 x x’ y y’
} \\
&+
\frac{15}{4 \pi} \int d^3 x’ \rho(\Bx’) z z’ \lr{ x x’ + y y’ } \\
&+
\frac{5}{16 \pi} \int d^3 x’ \rho(\Bx’) \lr{ 3 (z’)^2 – (r’)^2 } \lr{ 3 z^2 – r^2 }
\Bigr) \\
=
\inv{ 4 \pi \epsilon r^5 }
\int d^3 x’ \rho(\Bx’)
\inv{4}
\Bigl(
&3
\lr{
((x’)^2 -(y’)^2) (x^2 -y^2)
+ 4 x x’ y y’
} \\
&+
12
z z’ \lr{ x x’ + y y’ } \\
&+
\lr{ 3 (z’)^2 – (r’)^2 } \lr{ 3 z^2 – r^2 }
\Bigr).
\end{aligned}
\end{equation}

The portion in brackets is

\begin{equation}\label{eqn:momentCoeffiecients:700}
\begin{aligned}
3
&\lr{
((x’)^2 -(y’)^2) (x^2 -y^2)
+ 4 x x’ y y’
} \\
+
12
& z z’ \lr{ x x’ + y y’ } \\
+
&\lr{ 2 (z’)^2 – (x’)^2 – (y’)^2} \lr{ 2 z^2 – x^2 -y^2 } \\
=
x^2 &\lr{
3 (x’)^2 – 3(y’)^2

\lr{ 2 (z’)^2 – (x’)^2 – (y’)^2}
} \\
+
y^2 &\lr{
-3 (x’)^2 + 3 (y’)^2

\lr{ 2 (z’)^2 – (x’)^2 – (y’)^2}
} \\
+
2 z^2 &\lr{
2 (z’)^2 – (x’)^2 – (y’)^2
} \\
+
&12{ x x’ y y’ + x x’ z z’ + y y’ z z’ } \\
=
2 x^2 &\lr{
2 (x’)^2 – (y’)^2 – (z’)^2
} \\
+
2 y^2 &\lr{
2 (y’)^2 – (x’)^2 – (z’)^2
} \\
+
2 z^2 &\lr{
2 (z’)^2 – (x’)^2 – (y’)^2
} \\
+
&12{ x x’ y y’ + x x’ z z’ + y y’ z z’ }.
\end{aligned}
\end{equation}

The quadopole sum can now be written as
\begin{equation}\label{eqn:momentCoeffiecients:720}
\inv{2}
\inv{ 4 \pi \epsilon r^5 }
\int d^3 x’ \rho(\Bx’)
\biglr{
x^2 \lr{ 3 (x’)^2 – (r’)^2 }
+y^2 \lr{ 3 (y’)^2 – (r’)^2 }
+z^2 \lr{ 3 (z’)^2 – (r’)^2 }
+
3 \lr{
x y x’ y’
+y x y’ x’
+x z x’ z’
+z x z’ x’
+y z y’ z’
+z y z’ y’
}
},
\end{equation}

which is precisely \ref{eqn:momentCoeffiecients:120}, the quadropole potential stated in the text and class notes.

<h1>References</h1>

[1] JD Jackson. <em>Classical Electrodynamics</em>. John Wiley and Sons, 2nd edition, 1975.

TPP sales pitch from Bob Saroya, my “representative” in parliament.

November 2, 2016 Incoherent ramblings , , , , , , ,

My “representative” member of parliament, Bob Saroya, is busy wasting my money my sending out TPP sales propaganda, apparently believing that I’m stupid enough to fall for this bit of fear mongering.

img_20161102_211854298

My response was:

I received your TPP sales pitch.  I’m not surprised to see a member of parliament attempting to sell Canada to unaccountable corporate tribunals, using a misleading attempt to disguise this as a “free trade”.

This is of course the function of government “representation”, to take resources from people who actually work for them, and channel them into the hands of power elite.  Your letter demonstrates that you are serving this purpose admirably!
Of course there’s a chance that you are just spouting the party line without actually believing or understanding what you are writing.  Even if that is the case, it is disappointing and frustrating to see taxpayer resources wasted on such empty propaganda.