bivector

Maxwell’s equation Lagrangian (geometric algebra and tensor formalism)

November 1, 2020 math and physics play , , , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Maxwell’s equation using geometric algebra Lagrangian.

Motivation.

In my classical mechanics notes, I’ve got computations of Maxwell’s equation (singular in it’s geometric algebra form) from a Lagrangian in various ways (using a tensor, scalar and multivector Lagrangians), but all of these seem more convoluted than they should be.
Here we do this from scratch, starting with the action principle for field variables, covering:

  • Derivation of the relativistic form of the Euler-Lagrange field equations from the covariant form of the action,
  • Derivation of Maxwell’s equation (in it’s STA form) from the Maxwell Lagrangian,
  • Relationship of the STA Maxwell Lagrangian to the tensor equivalent,
  • Relationship of the STA form of Maxwell’s equation to it’s tensor equivalents,
  • Relationship of the STA Maxwell’s equation to it’s conventional Gibbs form.
  • Show that we may use a multivector valued Lagrangian with all of \( F^2 \), not just the scalar part.

It is assumed that the reader is thoroughly familiar with the STA formalism, and if that is not the case, there is no better reference than [1].

Field action.

Theorem 1.1: Relativistic Euler-Lagrange field equations.

Let \( \phi \rightarrow \phi + \delta \phi \) be any variation of the field, such that the variation
\( \delta \phi = 0 \) vanishes at the boundaries of the action integral
\begin{equation}\label{eqn:maxwells:2120}
S = \int d^4 x \LL(\phi, \partial_\nu \phi).
\end{equation}
The extreme value of the action is found when the Euler-Lagrange equations
\begin{equation}\label{eqn:maxwells:2140}
0 = \PD{\phi}{\LL} – \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{equation}
are satisfied. For a Lagrangian with multiple field variables, there will be one such equation for each field.

Start proof:

To ease the visual burden, designate the variation of the field by \( \delta \phi = \epsilon \), and perform a first order expansion of the varied Lagrangian
\begin{equation}\label{eqn:maxwells:20}
\begin{aligned}
\LL
&\rightarrow
\LL(\phi + \epsilon, \partial_\nu (\phi + \epsilon)) \\
&=
\LL(\phi, \partial_\nu \phi)
+
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon.
\end{aligned}
\end{equation}
The variation of the Lagrangian is
\begin{equation}\label{eqn:maxwells:40}
\begin{aligned}
\delta \LL
&=
\PD{\phi}{\LL} \epsilon +
\PD{(\partial_\nu \phi)}{\LL} \partial_\nu \epsilon \\
&=
\PD{\phi}{\LL} \epsilon +
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }

\epsilon \partial_\nu \PD{(\partial_\nu \phi)}{\LL},
\end{aligned}
\end{equation}
which we may plug into the action integral to find
\begin{equation}\label{eqn:maxwells:60}
\delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}
+
\int d^4 x
\partial_\nu \lr{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }.
\end{equation}
The last integral can be evaluated along the \( dx^\nu \) direction, leaving
\begin{equation}\label{eqn:maxwells:80}
\int d^3 x
\evalbar{ \PD{(\partial_\nu \phi)}{\LL} \epsilon }{\Delta x^\nu},
\end{equation}
where \( d^3 x = dx^\alpha dx^\beta dx^\gamma \) is the product of differentials that does not include \( dx^\nu \). By construction, \( \epsilon \) vanishes on the boundary of the action integral so \ref{eqn:maxwells:80} is zero. The action takes its extreme value when
\begin{equation}\label{eqn:maxwells:100}
0 = \delta S
=
\int d^4 x \epsilon \lr{
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}
}.
\end{equation}
The proof is complete after noting that this must hold for all variations of the field \( \epsilon \), which means that we must have
\begin{equation}\label{eqn:maxwells:120}
0 =
\PD{\phi}{\LL}

\partial_\nu \PD{(\partial_\nu \phi)}{\LL}.
\end{equation}

End proof.

Armed with the Euler-Lagrange equations, we can apply them to the Maxwell’s equation Lagrangian, which we will claim has the following form.

Theorem 1.2: Maxwell’s equation Lagrangian.

Application of the Euler-Lagrange equations to the Lagrangian
\begin{equation}\label{eqn:maxwells:2160}
\LL = – \frac{\epsilon_0 c}{2} F \cdot F + J \cdot A,
\end{equation}
where \( F = \grad \wedge A \), yields the vector portion of Maxwell’s equation
\begin{equation}\label{eqn:maxwells:2180}
\grad \cdot F = \inv{\epsilon_0 c} J,
\end{equation}
which implies
\begin{equation}\label{eqn:maxwells:2200}
\grad F = \inv{\epsilon_0 c} J.
\end{equation}
This is Maxwell’s equation.

Start proof:

We wish to apply all of the Euler-Lagrange equations simultaneously (i.e. once for each of the four \(A_\mu\) components of the potential), and cast it into four-vector form
\begin{equation}\label{eqn:maxwells:140}
0 = \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL.
\end{equation}
Since our Lagrangian splits nicely into kinetic and interaction terms, this gives us
\begin{equation}\label{eqn:maxwells:160}
0 = \gamma_\nu \lr{ \PD{A_\nu}{(A \cdot J)} + \frac{\epsilon_0 c}{2} \partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)} }.
\end{equation}
The interaction term above is just
\begin{equation}\label{eqn:maxwells:180}
\gamma_\nu \PD{A_\nu}{(A \cdot J)}
=
\gamma_\nu \PD{A_\nu}{(A_\mu J^\mu)}
=
\gamma_\nu J^\nu
=
J,
\end{equation}
but the kinetic term takes a bit more work. Let’s start with evaluating
\begin{equation}\label{eqn:maxwells:200}
\begin{aligned}
\PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
\PD{(\partial_\mu A_\nu)}{ F } \cdot F
+
F \cdot \PD{(\partial_\mu A_\nu)}{ F } \\
&=
2 \PD{(\partial_\mu A_\nu)}{ F } \cdot F \\
&=
2 \PD{(\partial_\mu A_\nu)}{ (\partial_\alpha A_\beta) } \lr{ \gamma^\alpha \wedge \gamma^\beta } \cdot F \\
&=
2 \lr{ \gamma^\mu \wedge \gamma^\nu } \cdot F.
\end{aligned}
\end{equation}
We hit this with the \(\mu\)-partial and expand as a scalar selection to find
\begin{equation}\label{eqn:maxwells:220}
\begin{aligned}
\partial_\mu \PD{(\partial_\mu A_\nu)}{ (F \cdot F)}
&=
2 \lr{ \partial_\mu \gamma^\mu \wedge \gamma^\nu } \cdot F \\
&=
– 2 (\gamma^\nu \wedge \grad) \cdot F \\
&=
– 2 \gpgradezero{ (\gamma^\nu \wedge \grad) F } \\
&=
– 2 \gpgradezero{ \gamma^\nu \grad F – \gamma^\nu \cdot \grad F } \\
&=
– 2 \gamma^\nu \cdot \lr{ \grad \cdot F }.
\end{aligned}
\end{equation}
Putting all the pieces together yields
\begin{equation}\label{eqn:maxwells:240}
0
= J – \epsilon_0 c \gamma_\nu \lr{ \gamma^\nu \cdot \lr{ \grad \cdot F } }
= J – \epsilon_0 c \lr{ \grad \cdot F },
\end{equation}
but
\begin{equation}\label{eqn:maxwells:260}
\begin{aligned}
\grad \cdot F
&=
\grad F – \grad \wedge F \\
&=
\grad F – \grad \wedge (\grad \wedge A) \\
&=
\grad F,
\end{aligned}
\end{equation}
so the multivector field equations for this Lagrangian are
\begin{equation}\label{eqn:maxwells:280}
\grad F = \inv{\epsilon_0 c} J,
\end{equation}
as claimed.

End proof.

Problem: Correspondence with tensor formalism.

Cast the Lagrangian of \ref{eqn:maxwells:2160} into the conventional tensor form
\begin{equation}\label{eqn:maxwells:300}
\LL = \frac{\epsilon_0 c}{4} F_{\mu\nu} F^{\mu\nu} + A^\mu J_\mu.
\end{equation}
Also show that the four-vector component of Maxwell’s equation \( \grad \cdot F = J/(\epsilon_0 c) \) is equivalent to the conventional tensor form of the Gauss-Ampere law
\begin{equation}\label{eqn:maxwells:320}
\partial_\mu F^{\mu\nu} = \inv{\epsilon_0 c} J^\nu,
\end{equation}
where \( F^{\mu\nu} = \partial^\mu A^\nu – \partial^\nu A^\mu \) as usual. Also show that the trivector component of Maxwell’s equation \( \grad \wedge F = 0 \) is equivalent to the tensor form of the Gauss-Faraday law
\begin{equation}\label{eqn:maxwells:340}
\partial_\alpha \lr{ \epsilon^{\alpha \beta \mu \nu} F_{\mu\nu} } = 0.
\end{equation}

Answer

To show the Lagrangian correspondence we must expand \( F \cdot F \) in coordinates
\begin{equation}\label{eqn:maxwells:360}
\begin{aligned}
F \cdot F
&=
( \grad \wedge A ) \cdot
( \grad \wedge A ) \\
&=
\lr{ (\gamma^\mu \partial_\mu) \wedge (\gamma^\nu A_\nu) }
\cdot
\lr{ (\gamma^\alpha \partial_\alpha) \wedge (\gamma^\beta A_\beta) } \\
&=
\lr{ \gamma^\mu \wedge \gamma^\nu } \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta }
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
\lr{
{\delta^\mu}_\beta
{\delta^\nu}_\alpha

{\delta^\mu}_\alpha
{\delta^\nu}_\beta
}
(\partial_\mu A_\nu )
(\partial^\alpha A^\beta ) \\
&=
– \partial_\mu A_\nu \lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
– \partial_\mu A_\nu F^{\mu\nu} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu F^{\mu\nu}
+
\partial_\nu A_\mu F^{\nu\mu}
} \\
&=
– \inv{2} \lr{
\partial_\mu A_\nu

\partial_\nu A_\mu
}
F^{\mu\nu} \\
&=

\inv{2}
F_{\mu\nu}
F^{\mu\nu}.
\end{aligned}
\end{equation}
With a substitution of this and \( A \cdot J = A_\mu J^\mu \) back into the Lagrangian, we recover the tensor form of the Lagrangian.

To recover the tensor form of Maxwell’s equation, we first split it into vector and trivector parts
\begin{equation}\label{eqn:maxwells:1580}
\grad \cdot F + \grad \wedge F = \inv{\epsilon_0 c} J.
\end{equation}
Now the vector component may be expanded in coordinates by dotting both sides with \( \gamma^\nu \) to find
\begin{equation}\label{eqn:maxwells:1600}
\inv{\epsilon_0 c} \gamma^\nu \cdot J = J^\nu,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1620}
\begin{aligned}
\gamma^\nu \cdot
\lr{ \grad \cdot F }
&=
\partial_\mu \gamma^\nu \cdot \lr{ \gamma^\mu \cdot \lr{ \gamma_\alpha \wedge \gamma_\beta } \partial^\alpha A^\beta } \\
&=
\lr{
{\delta^\mu}_\alpha
{\delta^\nu}_\beta

{\delta^\nu}_\alpha
{\delta^\mu}_\beta
}
\partial_\mu
\partial^\alpha A^\beta \\
&=
\partial_\mu
\lr{
\partial^\mu A^\nu

\partial^\nu A^\mu
} \\
&=
\partial_\mu F^{\mu\nu}.
\end{aligned}
\end{equation}
Equating \ref{eqn:maxwells:1600} and \ref{eqn:maxwells:1620} finishes the first part of the job. For the trivector component, we have
\begin{equation}\label{eqn:maxwells:1640}
0
= \grad \wedge F
= (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } \partial_\alpha A_\beta
= \inv{2} (\gamma^\mu \partial_\mu) \wedge \lr{ \gamma^\alpha \wedge \gamma^\beta } F_{\alpha \beta}.
\end{equation}
Wedging with \( \gamma^\tau \) and then multiplying by \( -2 I \) we find
\begin{equation}\label{eqn:maxwells:1660}
0 = – \lr{ \gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau } I \partial_\mu F_{\alpha \beta},
\end{equation}
but
\begin{equation}\label{eqn:maxwells:1680}
\gamma^\mu \wedge \gamma^\alpha \wedge \gamma^\beta \wedge \gamma^\tau = -I \epsilon^{\mu \alpha \beta \tau},
\end{equation}
which leaves us with
\begin{equation}\label{eqn:maxwells:1700}
\epsilon^{\mu \alpha \beta \tau} \partial_\mu F_{\alpha \beta} = 0,
\end{equation}
as expected.

Problem: Correspondence of tensor and Gibbs forms of Maxwell’s equations.

Given the identifications

\begin{equation}\label{eqn:lorentzForceCovariant:1500}
F^{k0} = E^k,
\end{equation}
and
\begin{equation}\label{eqn:lorentzForceCovariant:1520}
F^{rs} = -\epsilon^{rst} B^t,
\end{equation}
and
\begin{equation}\label{eqn:maxwells:1560}
J^\mu = \lr{ c \rho, \BJ },
\end{equation}
the reader should satisfy themselves that the traditional Gibbs form of Maxwell’s equations can be recovered from \ref{eqn:maxwells:320}.

Answer

The reader is referred to Exercise 3.4 “Electrodynamics, variational principle.” from [2].

Problem: Correspondence with grad and curl form of Maxwell’s equations.

With \( J = c \rho \gamma_0 + J^k \gamma_k \) and \( F = \BE + I c \BB \) show that Maxwell’s equation, as stated in \ref{eqn:maxwells:2200} expand to the conventional div and curl expressions for Maxwell’s equations.

Answer

To obtain Maxwell’s equations in their traditional vector forms, we pre-multiply both sides with \( \gamma_0 \)
\begin{equation}\label{eqn:maxwells:1720}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,
\end{equation}
and then select each grade separately. First observe that the RHS above has scalar and bivector components, as
\begin{equation}\label{eqn:maxwells:1740}
\gamma_0 J
=
c \rho + J^k \gamma_0 \gamma_k.
\end{equation}
In terms of the spatial bivector basis \( \Be_k = \gamma_k \gamma_0 \), the RHS of \ref{eqn:maxwells:1720} is
\begin{equation}\label{eqn:maxwells:1760}
\gamma_0 \frac{J}{\epsilon_0 c} = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
For the LHS, first note that
\begin{equation}\label{eqn:maxwells:1780}
\begin{aligned}
\gamma_0 \grad
&=
\gamma_0
\lr{
\gamma_0 \partial^0 +
\gamma_k \partial^k
} \\
&=
\partial_0 – \gamma_0 \gamma_k \partial_k \\
&=
\inv{c} \PD{t}{} + \spacegrad.
\end{aligned}
\end{equation}
We can express all the the LHS of \ref{eqn:maxwells:1720} in the bivector spatial basis, so that Maxwell’s equation in multivector form is
\begin{equation}\label{eqn:maxwells:1800}
\lr{ \inv{c} \PD{t}{} + \spacegrad } \lr{ \BE + I c \BB } = \frac{\rho}{\epsilon_0} – \mu_0 c \BJ.
\end{equation}
Selecting the scalar, vector, bivector, and trivector grades of both sides (in the spatial basis) gives the following set of respective equations
\begin{equation}\label{eqn:maxwells:1840}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1860}
\inv{c} \partial_t \BE + I c \spacegrad \wedge \BB = – \mu_0 c \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1880}
\spacegrad \wedge \BE + I \partial_t \BB = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:1900}
I c \spacegrad \cdot B = 0,
\end{equation}
which we can rewrite after some duality transformations (and noting that \( \mu_0 \epsilon_0 c^2 = 1 \)), we have
\begin{equation}\label{eqn:maxwells:1940}
\spacegrad \cdot \BE = \frac{\rho}{\epsilon_0}
\end{equation}
\begin{equation}\label{eqn:maxwells:1960}
\spacegrad \cross \BB – \mu_0 \epsilon_0 \PD{t}{\BE} = \mu_0 \BJ
\end{equation}
\begin{equation}\label{eqn:maxwells:1980}
\spacegrad \cross \BE + \PD{t}{\BB} = 0
\end{equation}
\begin{equation}\label{eqn:maxwells:2000}
\spacegrad \cdot B = 0,
\end{equation}
which are Maxwell’s equations in their traditional form.

Problem: Alternative multivector Lagrangian.

Show that a scalar+pseudoscalar Lagrangian of the following form
\begin{equation}\label{eqn:maxwells:2220}
\LL = – \frac{\epsilon_0 c}{2} F^2 + J \cdot A,
\end{equation}
which omits the scalar selection of the Lagrangian in \ref{eqn:maxwells:2160}, also represents Maxwell’s equation. Discuss the scalar and pseudoscalar components of \( F^2 \), and show why the pseudoscalar inclusion is irrelevant.

Answer

The quantity \( F^2 = F \cdot F + F \wedge F \) has both scalar and pseudoscalar
components. Note that unlike vectors, a bivector wedge in 4D with itself need not be zero (example: \( \gamma_0 \gamma_1 + \gamma_2 \gamma_3 \) wedged with itself).
We can see this multivector nature nicely by expansion in terms of the electric and magnetic fields
\begin{equation}\label{eqn:maxwells:2020}
\begin{aligned}
F^2
&= \lr{ \BE + I c \BB }^2 \\
&= \BE^2 – c^2 \BB^2 + I c \lr{ \BE \BB + \BB \BE } \\
&= \BE^2 – c^2 \BB^2 + 2 I c \BE \cdot \BB.
\end{aligned}
\end{equation}
Both the scalar and pseudoscalar parts of \( F^2 \) are Lorentz invariant, a requirement of our Lagrangian, but most Maxwell equation Lagrangians only include the scalar \( \BE^2 – c^2 \BB^2 \) component of the field square. If we allow the Lagrangian to be multivector valued, and evaluate the Euler-Lagrange equations, we quickly find the same results
\begin{equation}\label{eqn:maxwells:2040}
\begin{aligned}
0
&= \gamma_\nu \lr{ \PD{A_\nu}{} – \partial_\mu \PD{(\partial_\mu A_\nu)}{} } \LL \\
&= \gamma_\nu \lr{ J^\nu + \frac{\epsilon_0 c}{2} \partial_\mu
\lr{
(\gamma^\mu \wedge \gamma^\nu) F
+
F (\gamma^\mu \wedge \gamma^\nu)
}
}.
\end{aligned}
\end{equation}
Here some steps are skipped, building on our previous scalar Euler-Lagrange evaluation experience. We have a symmetric product of two bivectors, which we can express as a 0,4 grade selection, since
\begin{equation}\label{eqn:maxwells:2060}
\gpgrade{ X F }{0,4} = \inv{2} \lr{ X F + F X },
\end{equation}
for any two bivectors \( X, F \). This leaves
\begin{equation}\label{eqn:maxwells:2080}
\begin{aligned}
0
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ (\grad \wedge \gamma^\nu) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F + (\gamma^\nu \cdot \grad) F }{0,4} \\
&= J + \epsilon_0 c \gamma_\nu \gpgrade{ -\gamma^\nu \grad F }{0,4} \\
&= J – \epsilon_0 c \gamma_\nu
\lr{
\gamma^\nu \cdot \lr{ \grad \cdot F } + \gamma^\nu \wedge \grad \wedge F
}.
\end{aligned}
\end{equation}
However, since \( \grad \wedge F = \grad \wedge \grad \wedge A = 0 \), we see that there is no contribution from the \( F \wedge F \) pseudoscalar component of the Lagrangian, and we are left with
\begin{equation}\label{eqn:maxwells:2100}
\begin{aligned}
0
&= J – \epsilon_0 c (\grad \cdot F) \\
&= J – \epsilon_0 c \grad F,
\end{aligned}
\end{equation}
which is Maxwell’s equation, as before.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] Peeter Joot. Quantum field theory. Kindle Direct Publishing, 2018.

Mathematica notebooks updated, and a bivector addition visualization.

February 10, 2019 math and physics play , , ,

This blog now has a copy of all my Mathematica notebooks (as of Feb 10, 2019), complete with a chronological index.  I hadn’t updated that index since 2014, and it was quite stale.

I’ve also added an additional level of per-directory indexing.  For example, you can now look at just the notebooks for my book, Geometric Algebra for Electrical Engineers.  That was possible before, but you would have had to clone the entire git repository to be able to do so easily.

This update includes a new notebook written today, which has a Manipulate visualization of 3D bivector addition that is kind of fun.

Bivector addition, at least in 3D, can be done graphically almost like vector addition.  Instead of trying to add the planes (which can be done, as in the neat illustration in Geometric Algebra for Computer Science), you can do the task more simply by connecting the normals head to tail, where each of the normals are scaled by the area of the bivector (i.e. it’s absolute magnitude).  The resulting bivector has an area equal to the length of that sum of normals, and a “direction” perpendicular to that resulting normal.  This fun little Manipulate lets you interactively visualize this process, by changing the radius of a set of summed bivectors, each oriented in a different direction, and observing the effects of doing so.

Of course, you can interpret this visualization as nothing more than a representation of addition of cross products, if you were to interpret the vector representing a cross product as an oriented area with a normal equal to that cross product (where the normal’s magnitude equals the area, as in this bivector addition visualization.)  This works out nicely because of the duality relationship between the cross and wedge product, and the duality relationship between 3D bivectors and their normals.

Potential solutions to the static Maxwell’s equation using geometric algebra

March 20, 2018 math and physics play , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

When neither the electromagnetic field strength \( F = \BE + I \eta \BH \), nor current \( J = \eta (c \rho – \BJ) + I(c\rho_m – \BM) \) is a function of time, then the geometric algebra form of Maxwell’s equations is the first order multivector (gradient) equation
\begin{equation}\label{eqn:staticPotentials:20}
\spacegrad F = J.
\end{equation}

While direct solutions to this equations are possible with the multivector Green’s function for the gradient
\begin{equation}\label{eqn:staticPotentials:40}
G(\Bx, \Bx’) = \inv{4\pi} \frac{\Bx – \Bx’}{\Norm{\Bx – \Bx’}^3 },
\end{equation}
the aim in this post is to explore second order (potential) solutions in a geometric algebra context. Can we assume that it is possible to find a multivector potential \( A \) for which
\begin{equation}\label{eqn:staticPotentials:60}
F = \spacegrad A,
\end{equation}
is a solution to the Maxwell statics equation? If such a solution exists, then Maxwell’s equation is simply
\begin{equation}\label{eqn:staticPotentials:80}
\spacegrad^2 A = J,
\end{equation}
which can be easily solved using the scalar Green’s function for the Laplacian
\begin{equation}\label{eqn:staticPotentials:240}
G(\Bx, \Bx’) = -\inv{\Norm{\Bx – \Bx’} },
\end{equation}
a beastie that may be easier to convolve than the vector valued Green’s function for the gradient.

It is immediately clear that some restrictions must be imposed on the multivector potential \(A\). In particular, since the field \( F \) has only vector and bivector grades, this gradient must have no scalar, nor pseudoscalar grades. That is
\begin{equation}\label{eqn:staticPotentials:100}
\gpgrade{\spacegrad A}{0,3} = 0.
\end{equation}
This constraint on the potential can be avoided if a grade selection operation is built directly into the assumed potential solution, requiring that the field is given by
\begin{equation}\label{eqn:staticPotentials:120}
F = \gpgrade{\spacegrad A}{1,2}.
\end{equation}
However, after imposing such a constraint, Maxwell’s equation has a much less friendly form
\begin{equation}\label{eqn:staticPotentials:140}
\spacegrad^2 A – \spacegrad \gpgrade{\spacegrad A}{0,3} = J.
\end{equation}
Luckily, it is possible to introduce a transformation of potentials, called a gauge transformation, that eliminates the ugly grade selection term, and allows the potential equation to be expressed as a plain old Laplacian. We do so by assuming first that it is possible to find a solution of the Laplacian equation that has the desired grade restrictions. That is
\begin{equation}\label{eqn:staticPotentials:160}
\begin{aligned}
\spacegrad^2 A’ &= J \\
\gpgrade{\spacegrad A’}{0,3} &= 0,
\end{aligned}
\end{equation}
for which \( F = \spacegrad A’ \) is a grade 1,2 solution to \( \spacegrad F = J \). Suppose that \( A \) is any formal solution, free of any grade restrictions, to \( \spacegrad^2 A = J \), and \( F = \gpgrade{\spacegrad A}{1,2} \). Can we find a function \( \tilde{A} \) for which \( A = A’ + \tilde{A} \)?

Maxwell’s equation in terms of \( A \) is
\begin{equation}\label{eqn:staticPotentials:180}
\begin{aligned}
J
&= \spacegrad \gpgrade{\spacegrad A}{1,2} \\
&= \spacegrad^2 A
– \spacegrad \gpgrade{\spacegrad A}{0,3} \\
&= \spacegrad^2 (A’ + \tilde{A})
– \spacegrad \gpgrade{\spacegrad A}{0,3}
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:staticPotentials:200}
\spacegrad^2 \tilde{A} = \spacegrad \gpgrade{\spacegrad A}{0,3}.
\end{equation}
This non-homogeneous Laplacian equation that can be solved as is for \( \tilde{A} \) using the Green’s function for the Laplacian. Alternatively, we may also solve the equivalent first order system using the Green’s function for the gradient.
\begin{equation}\label{eqn:staticPotentials:220}
\spacegrad \tilde{A} = \gpgrade{\spacegrad A}{0,3}.
\end{equation}
Clearly \( \tilde{A} \) is not unique, as we can add any function \( \psi \) satisfying the homogeneous Laplacian equation \( \spacegrad^2 \psi = 0 \).

In summary, if \( A \) is any multivector solution to \( \spacegrad^2 A = J \), that is
\begin{equation}\label{eqn:staticPotentials:260}
A(\Bx)
= \int dV’ G(\Bx, \Bx’) J(\Bx’)
= -\int dV’ \frac{J(\Bx’)}{\Norm{\Bx – \Bx’} },
\end{equation}
then \( F = \spacegrad A’ \) is a solution to Maxwell’s equation, where \( A’ = A – \tilde{A} \), and \( \tilde{A} \) is a solution to the non-homogeneous Laplacian equation or the non-homogeneous gradient equation above.

Integral form of the gauge transformation.

Additional insight is possible by considering the gauge transformation in integral form. Suppose that
\begin{equation}\label{eqn:staticPotentials:280}
A(\Bx) = -\int_V dV’ \frac{J(\Bx’)}{\Norm{\Bx – \Bx’} } – \tilde{A}(\Bx),
\end{equation}
is a solution of \( \spacegrad^2 A = J \), where \( \tilde{A} \) is a multivector solution to the homogeneous Laplacian equation \( \spacegrad^2 \tilde{A} = 0 \). Let’s look at the constraints on \( \tilde{A} \) that must be imposed for \( F = \spacegrad A \) to be a valid (i.e. grade 1,2) solution of Maxwell’s equation.
\begin{equation}\label{eqn:staticPotentials:300}
\begin{aligned}
F
&= \spacegrad A \\
&=
-\int_V dV’ \lr{ \spacegrad \inv{\Norm{\Bx – \Bx’} } } J(\Bx’)
– \spacegrad \tilde{A}(\Bx) \\
&=
\int_V dV’ \lr{ \spacegrad’ \inv{\Norm{\Bx – \Bx’} } } J(\Bx’)
– \spacegrad \tilde{A}(\Bx) \\
&=
\int_V dV’ \spacegrad’ \frac{J(\Bx’)}{\Norm{\Bx – \Bx’} } – \int_V dV’ \frac{\spacegrad’ J(\Bx’)}{\Norm{\Bx – \Bx’} }
– \spacegrad \tilde{A}(\Bx) \\
&=
\int_{\partial V} dA’ \ncap’ \frac{J(\Bx’)}{\Norm{\Bx – \Bx’} } – \int_V \frac{\spacegrad’ J(\Bx’)}{\Norm{\Bx – \Bx’} }
– \spacegrad \tilde{A}(\Bx).
\end{aligned}
\end{equation}
Where \( \ncap’ = (\Bx’ – \Bx)/\Norm{\Bx’ – \Bx} \), and the fundamental theorem of geometric calculus has been used to transform the gradient volume integral into an integral over the bounding surface. Operating on Maxwell’s equation with the gradient gives \( \spacegrad^2 F = \spacegrad J \), which has only grades 1,2 on the left hand side, meaning that \( J \) is constrained in a way that requires \( \spacegrad J \) to have only grades 1,2. This means that \( F \) has grades 1,2 if
\begin{equation}\label{eqn:staticPotentials:320}
\spacegrad \tilde{A}(\Bx)
= \int_{\partial V} dA’ \frac{ \gpgrade{\ncap’ J(\Bx’)}{0,3} }{\Norm{\Bx – \Bx’} }.
\end{equation}
The product \( \ncap J \) expands to
\begin{equation}\label{eqn:staticPotentials:340}
\begin{aligned}
\ncap J
&=
\gpgradezero{\ncap J_1} + \gpgradethree{\ncap J_2} \\
&=
\ncap \cdot (-\eta \BJ) + \gpgradethree{\ncap (-I \BM)} \\
&=- \eta \ncap \cdot \BJ -I \ncap \cdot \BM,
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:staticPotentials:360}
\spacegrad \tilde{A}(\Bx)
=
-\int_{\partial V} dA’ \frac{ \eta \ncap’ \cdot \BJ(\Bx’) + I \ncap’ \cdot \BM(\Bx’)}{\Norm{\Bx – \Bx’} }.
\end{equation}
Observe that if there is no flux of current density \( \BJ \) and (fictitious) magnetic current density \( \BM \) through the surface, then \( F = \spacegrad A \) is a solution to Maxwell’s equation without any gauge transformation. Alternatively \( F = \spacegrad A \) is also a solution if \( \lim_{\Bx’ \rightarrow \infty} \BJ(\Bx’)/\Norm{\Bx – \Bx’} = \lim_{\Bx’ \rightarrow \infty} \BM(\Bx’)/\Norm{\Bx – \Bx’} = 0 \) and the bounding volume is taken to infinity.

References

Generalizing Ampere’s law using geometric algebra.

March 16, 2018 math and physics play , , , , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting, and oriented integrals. All oriented integrals in this post have a clockwise direction.].

The question I’d like to explore in this post is how Ampere’s law, the relationship between the line integral of the magnetic field to current (i.e. the enclosed current)
\begin{equation}\label{eqn:flux:20}
\oint_{\partial A} d\Bx \cdot \BH = -\int_A \ncap \cdot \BJ,
\end{equation}
generalizes to geometric algebra where Maxwell’s equations for a statics configuration (all time derivatives zero) is
\begin{equation}\label{eqn:flux:40}
\spacegrad F = J,
\end{equation}
where the multivector fields and currents are
\begin{equation}\label{eqn:flux:60}
\begin{aligned}
F &= \BE + I \eta \BH \\
J &= \eta \lr{ c \rho – \BJ } + I \lr{ c \rho_\txtm – \BM }.
\end{aligned}
\end{equation}
Here (fictitious) the magnetic charge and current densities that can be useful in antenna theory have been included in the multivector current for generality.

My presumption is that it should be possible to utilize the fundamental theorem of geometric calculus for expressing the integral over an oriented surface to its boundary, but applied directly to Maxwell’s equation. That integral theorem has the form
\begin{equation}\label{eqn:flux:80}
\int_A d^2 \Bx \boldpartial F = \oint_{\partial A} d\Bx F,
\end{equation}
where \( d^2 \Bx = d\Ba \wedge d\Bb \) is a two parameter bivector valued surface, and \( \boldpartial \) is vector derivative, the projection of the gradient onto the tangent space. I won’t try to explain all of geometric calculus here, and refer the interested reader to [1], which is an excellent reference on geometric calculus and integration theory.

The gotcha is that we actually want a surface integral with \( \spacegrad F \). We can split the gradient into the vector derivative a normal component
\begin{equation}\label{eqn:flux:160}
\spacegrad = \boldpartial + \ncap (\ncap \cdot \spacegrad),
\end{equation}
so
\begin{equation}\label{eqn:flux:100}
\int_A d^2 \Bx \spacegrad F
=
\int_A d^2 \Bx \boldpartial F
+
\int_A d^2 \Bx \ncap \lr{ \ncap \cdot \spacegrad } F,
\end{equation}
so
\begin{equation}\label{eqn:flux:120}
\begin{aligned}
\oint_{\partial A} d\Bx F
&=
\int_A d^2 \Bx \lr{ J – \ncap \lr{ \ncap \cdot \spacegrad } F } \\
&=
\int_A dA \lr{ I \ncap J – \lr{ \ncap \cdot \spacegrad } I F }
\end{aligned}
\end{equation}

This is not nearly as nice as the magnetic flux relationship which was nicely split with the current and fields nicely separated. The \( d\Bx F \) product has all possible grades, as does the \( d^2 \Bx J \) product (in general). Observe however, that the normal term on the right has only grades 1,2, so we can split our line integral relations into pairs with and without grade 1,2 components
\begin{equation}\label{eqn:flux:140}
\begin{aligned}
\oint_{\partial A} \gpgrade{d\Bx F}{0,3}
&=
\int_A dA \gpgrade{ I \ncap J }{0,3} \\
\oint_{\partial A} \gpgrade{d\Bx F}{1,2}
&=
\int_A dA \lr{ \gpgrade{ I \ncap J }{1,2} – \lr{ \ncap \cdot \spacegrad } I F }.
\end{aligned}
\end{equation}

Let’s expand these explicitly in terms of the component fields and densities to check against the conventional relationships, and see if things look right. The line integrand expands to
\begin{equation}\label{eqn:flux:180}
\begin{aligned}
d\Bx F
&=
d\Bx \lr{ \BE + I \eta \BH }
=
d\Bx \cdot \BE + I \eta d\Bx \cdot \BH
+
d\Bx \wedge \BE + I \eta d\Bx \wedge \BH \\
&=
d\Bx \cdot \BE
– \eta (d\Bx \cross \BH)
+ I (d\Bx \cross \BE )
+ I \eta (d\Bx \cdot \BH),
\end{aligned}
\end{equation}
the current integrand expands to
\begin{equation}\label{eqn:flux:200}
\begin{aligned}
I \ncap J
&=
I \ncap
\lr{
\frac{\rho}{\epsilon} – \eta \BJ + I \lr{ c \rho_\txtm – \BM }
} \\
&=
\ncap I \frac{\rho}{\epsilon} – \eta \ncap I \BJ – \ncap c \rho_\txtm + \ncap \BM \\
&=
\ncap \cdot \BM
+ \eta (\ncap \cross \BJ)
– \ncap c \rho_\txtm
+ I (\ncap \cross \BM)
+ \ncap I \frac{\rho}{\epsilon}
– \eta I (\ncap \cdot \BJ).
\end{aligned}
\end{equation}

We are left with
\begin{equation}\label{eqn:flux:220}
\begin{aligned}
\oint_{\partial A}
\lr{
d\Bx \cdot \BE + I \eta (d\Bx \cdot \BH)
}
&=
\int_A dA
\lr{
\ncap \cdot \BM – \eta I (\ncap \cdot \BJ)
} \\
\oint_{\partial A}
\lr{
– \eta (d\Bx \cross \BH)
+ I (d\Bx \cross \BE )
}
&=
\int_A dA
\lr{
\eta (\ncap \cross \BJ)
– \ncap c \rho_\txtm
+ I (\ncap \cross \BM)
+ \ncap I \frac{\rho}{\epsilon}
-\PD{n}{} \lr{ I \BE – \eta \BH }
}.
\end{aligned}
\end{equation}
This is a crazy mess of dots, crosses, fields and sources. We can split it into one equation for each grade, which will probably look a little more regular. That is
\begin{equation}\label{eqn:flux:240}
\begin{aligned}
\oint_{\partial A} d\Bx \cdot \BE &= \int_A dA \ncap \cdot \BM \\
\oint_{\partial A} d\Bx \cross \BH
&=
\int_A dA
\lr{
– \ncap \cross \BJ
+ \frac{ \ncap \rho_\txtm }{\mu}
– \PD{n}{\BH}
} \\
\oint_{\partial A} d\Bx \cross \BE &=
\int_A dA
\lr{
\ncap \cross \BM
+ \frac{\ncap \rho}{\epsilon}
– \PD{n}{\BE}
} \\
\oint_{\partial A} d\Bx \cdot \BH &= -\int_A dA \ncap \cdot \BJ \\
\end{aligned}
\end{equation}
The first and last equations could have been obtained much more easily from Maxwell’s equations in their conventional form more easily. The two cross product equations with the normal derivatives are not familiar to me, even without the fictitious magnetic sources. It is somewhat remarkable that so much can be packed into one multivector equation:
\begin{equation}\label{eqn:flux:260}
\oint_{\partial A} d\Bx F
=
I \int_A dA \lr{ \ncap J – \PD{n}{F} }.
\end{equation}

References

[1] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

Solving Maxwell’s equation in freespace: Multivector plane wave representation

March 14, 2018 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

The geometric algebra form of Maxwell’s equations in free space (or source free isotopic media with group velocity \( c \)) is the multivector equation
\begin{equation}\label{eqn:planewavesMultivector:20}
\lr{ \spacegrad + \inv{c}\PD{t}{} } F(\Bx, t) = 0.
\end{equation}
Here \( F = \BE + I c \BB \) is a multivector with grades 1 and 2 (vector and bivector components). The velocity \( c \) is called the group velocity since \( F \), or its components \( \BE, \BH \) satisfy the wave equation, which can be seen by pre-multiplying with \( \spacegrad – (1/c)\PDi{t}{} \) to find
\begin{equation}\label{eqn:planewavesMultivector:n}
\lr{ \spacegrad^2 – \inv{c^2}\PDSq{t}{} } F(\Bx, t) = 0.
\end{equation}

Let’s look at the frequency domain solution of this equation with a presumed phasor representation
\begin{equation}\label{eqn:planewavesMultivector:40}
F(\Bx, t) = \textrm{Re} \lr{ F(\Bk) e^{-j \Bk \cdot \Bx + j \omega t} },
\end{equation}
where \( j \) is a scalar imaginary, not necessarily with any geometric interpretation.

Maxwell’s equation reduces to just
\begin{equation}\label{eqn:planewavesMultivector:60}
0
=
-j \lr{ \Bk – \frac{\omega}{c} } F(\Bk).
\end{equation}

If \( F(\Bk) \) has a left multivector factor
\begin{equation}\label{eqn:planewavesMultivector:80}
F(\Bk) =
\lr{ \Bk + \frac{\omega}{c} } \tilde{F},
\end{equation}
where \( \tilde{F} \) is a multivector to be determined, then
\begin{equation}\label{eqn:planewavesMultivector:100}
\begin{aligned}
\lr{ \Bk – \frac{\omega}{c} }
F(\Bk)
&=
\lr{ \Bk – \frac{\omega}{c} }
\lr{ \Bk + \frac{\omega}{c} } \tilde{F} \\
&=
\lr{ \Bk^2 – \lr{\frac{\omega}{c}}^2 } \tilde{F},
\end{aligned}
\end{equation}
which is zero if \( \Norm{\Bk} = \ifrac{\omega}{c} \).

Let \( \kcap = \ifrac{\Bk}{\Norm{\Bk}} \), and \( \Norm{\Bk} \tilde{F} = F_0 + F_1 + F_2 + F_3 \), where \( F_0, F_1, F_2, \) and \( F_3 \) are respectively have grades 0,1,2,3. Then
\begin{equation}\label{eqn:planewavesMultivector:120}
\begin{aligned}
F(\Bk)
&= \lr{ 1 + \kcap } \lr{ F_0 + F_1 + F_2 + F_3 } \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap F_1 + \kcap F_2 + \kcap F_3 \\
&=
F_0 + F_1 + F_2 + F_3
+
\kcap F_0 + \kcap \cdot F_1 + \kcap \cdot F_2 + \kcap \cdot F_3
+
\kcap \wedge F_1 + \kcap \wedge F_2 \\
&=
\lr{
F_0 + \kcap \cdot F_1
}
+
\lr{
F_1 + \kcap F_0 + \kcap \cdot F_2
}
+
\lr{
F_2 + \kcap \cdot F_3 + \kcap \wedge F_1
}
+
\lr{
F_3 + \kcap \wedge F_2
}.
\end{aligned}
\end{equation}
Since the field \( F \) has only vector and bivector grades, the grades zero and three components of the expansion above must be zero, or
\begin{equation}\label{eqn:planewavesMultivector:140}
\begin{aligned}
F_0 &= – \kcap \cdot F_1 \\
F_3 &= – \kcap \wedge F_2,
\end{aligned}
\end{equation}
so
\begin{equation}\label{eqn:planewavesMultivector:160}
\begin{aligned}
F(\Bk)
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap \cdot F_1 +
F_2 – \kcap \wedge F_2
} \\
&=
\lr{ 1 + \kcap } \lr{
F_1 – \kcap F_1 + \kcap \wedge F_1 +
F_2 – \kcap F_2 + \kcap \cdot F_2
}.
\end{aligned}
\end{equation}
The multivector \( 1 + \kcap \) has the projective property of gobbling any leading factors of \( \kcap \)
\begin{equation}\label{eqn:planewavesMultivector:180}
\begin{aligned}
(1 + \kcap)\kcap
&= \kcap + 1 \\
&= 1 + \kcap,
\end{aligned}
\end{equation}
so for \( F_i \in F_1, F_2 \)
\begin{equation}\label{eqn:planewavesMultivector:200}
(1 + \kcap) ( F_i – \kcap F_i )
=
(1 + \kcap) ( F_i – F_i )
= 0,
\end{equation}
leaving
\begin{equation}\label{eqn:planewavesMultivector:220}
F(\Bk)
=
\lr{ 1 + \kcap } \lr{
\kcap \cdot F_2 +
\kcap \wedge F_1
}.
\end{equation}

For \( \kcap \cdot F_2 \) to be non-zero \( F_2 \) must be a bivector that lies in a plane containing \( \kcap \), and \( \kcap \cdot F_2 \) is a vector in that plane that is perpendicular to \( \kcap \). On the other hand \( \kcap \wedge F_1 \) is non-zero only if \( F_1 \) has a non-zero component that does not lie in along the \( \kcap \) direction, but \( \kcap \wedge F_1 \), like \( F_2 \) describes a plane that containing \( \kcap \). This means that having both bivector and vector free variables \( F_2 \) and \( F_1 \) provide more degrees of freedom than required. For example, if \( \BE \) is any vector, and \( F_2 = \kcap \wedge \BE \), then
\begin{equation}\label{eqn:planewavesMultivector:240}
\begin{aligned}
\lr{ 1 + \kcap }
\kcap \cdot F_2
&=
\lr{ 1 + \kcap }
\kcap \cdot \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\lr{
\BE

\kcap \lr{ \kcap \cdot \BE }
} \\
&=
\lr{ 1 + \kcap }
\kcap \lr{ \kcap \wedge \BE } \\
&=
\lr{ 1 + \kcap }
\kcap \wedge \BE,
\end{aligned}
\end{equation}
which has the form \( \lr{ 1 + \kcap } \lr{ \kcap \wedge F_1 } \), so the solution of the free space Maxwell’s equation can be written
\begin{equation}\label{eqn:planewavesMultivector:260}
\boxed{
F(\Bx, t)
=
\textrm{Re} \lr{
\lr{ 1 + \kcap }
\BE\,
e^{-j \Bk \cdot \Bx + j \omega t}
}
,
}
\end{equation}
where \( \BE \) is any vector for which \( \BE \cdot \Bk = 0 \).