## PHY2403H Quantum Field Theory. Lecture 6: Canonical quantization, Simple Harmonic Oscillators, Symmetries. Taught by Prof. Erich Poppitz

### DISCLAIMER: Very rough notes from class, with some additional side notes (QM SHO review, …).

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Quantization of Field Theory

We are engaging in the “canonical” or Hamiltonian method of quantization. It is also possible to quantize using path integrals, but it is hard to prove that operators are unitary doing so. In fact, the mechanism used to show unitarity from path integrals is often to find the Lagrangian and show that there is a Hilbert space (i.e. using canonical quantization). Canonical quantization essentially demands that the fields obey a commutator relation of the following form
\label{eqn:qftLecture6:20}
\antisymmetric{\pi(\Bx, t)}{\phi(\By, t)} = -i \delta^3(\Bx – \By).

We assumed that the quantized fields obey the Hamiltonian relations
\label{eqn:qftLecture6:160}
\begin{aligned}
\ddt{\phi} &= i \antisymmetric{H}{\phi} \\
\ddt{\pi} &= i \antisymmetric{H}{\pi}.
\end{aligned}

We were working with the Hamiltonian density
\label{eqn:qftLecture6:40}
\mathcal{H} =
\inv{2} (\pi(\Bx, t))^2
+
+
\frac{m^2}{2} \phi^2
+
\frac{\lambda}{4} \phi^4,

which included a mass term $$m$$ and a potential term ($$\lambda$$). We will expand all quantities in Taylor series in $$\lambda$$ assuming they have a structure such as
\label{eqn:qftLecture6:180}
\begin{aligned}
f(\lambda) =
c_0 \lambda^0
+ c_1 \lambda^1
+ c_2 \lambda^2
+ c_3 \lambda^3
+ \cdots
\end{aligned}

We will stop this \underline{perturbation theory} approach at $$O(\lambda^2)$$, and will ignore functions such as $$e^{-1/\lambda}$$.

Within perturbation theory, to leaving order, set $$\lambda = 0$$, so that $$\phi$$ obeys the Klein-Gordon equation (if $$m = 0$$ we have just a d’Lambertian (wave equation)).

We can write our field as a Fourier transform
\label{eqn:qftLecture6:60}
\phi(\Bx, t) = \int \frac{d^3 p}{(2\pi)^3} e^{i \Bp \cdot \Bx} \tilde{\phi}(\Bp, t),

and due to a Hermitian assumption (i.e. real field) this implies
\label{eqn:qftLecture6:80}
\tilde{\phi}^\conj(\Bp, t) = \tilde{\phi}(-\Bp, t).

We found that the Klein-Gordon equation implied that the momentum space representation obey Harmonic oscillator equations
\label{eqn:qftLecture6:100}
\begin{aligned}
\ddot{\tilde{\phi}}(\Bp, t) &= – \omega_\Bp \tilde{\phi}(\Bp, t) \\
\omega_\Bp &= \sqrt{\Bp^2 + m^2}.
\end{aligned}

We may represent the solution to this equation as
\label{eqn:qftLecture6:120}
\tilde{\phi}(\Bq, t) = \inv{\sqrt{2 \omega_\Bq}} \lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} b_\Bq^\conj
}.

This is a general solution, but imposing $$a_\Bq = b_{-\Bq}$$ ensures \ref{eqn:qftLecture6:80} is satisfied.
This leaves us with
\label{eqn:qftLecture6:140}
\tilde{\phi}(\Bq, t) = \inv{\sqrt{2 \omega_\Bq}} \lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\conj
}.

We want to show that iff
\label{eqn:qftLecture6:200}
\antisymmetric{a_\Bq}{a^\dagger_\Bp} = \lr{ 2 \pi }^3 \delta^3(\Bp – \Bq),

then
\label{eqn:qftLecture6:220}
\antisymmetric{\pi(\By, t)}{\phi(\Bx, t)} = -i \delta^3(\Bx – \By)

where everything else commutes (i.e. $$\antisymmetric{a_\Bp}{a_\Bq} = \antisymmetric{a_\Bp^\dagger}{a_\Bq^\dagger} = 0$$).
We will only show one direction, but you can go the other way too.

\label{eqn:qftLecture6:240}
\phi(\Bx, t)
=
\int \frac{d^3 p}{(2\pi)^3 \sqrt{2 \omega_\Bp}} e^{i \Bp \cdot \Bx}
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}

\label{eqn:qftLecture6:260}
\pi(\Bx, t) = \dot{\phi}
=
i \int \frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}} \omega_\Bq e^{i \Bq \cdot \Bx}
\lr{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}

The commutator is
\label{eqn:qftLecture6:280}
\begin{aligned}
\antisymmetric{\pi(\By, t)}{\phi(\Bx, t)}
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\antisymmetric
{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
} \\
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\lr{
– e^{i (\omega_\Bp -\omega_\Bq) t}
\antisymmetric { a_\Bq } { a_{-\Bp}^\dagger }
+
e^{i (\omega_\Bq -\omega_\Bp) t}
\antisymmetric{a_{-\Bq}^\dagger}{ a_\Bp }
} \\
&=
i \int \frac{d^3 p}{(2\pi)^3
\sqrt{2 \omega_\Bp}}
\frac{d^3 q}{(2\pi)^3 \sqrt{2 \omega_\Bq}}
\omega_\Bq (2\pi)^3
e^{i \Bp \cdot \By + i \Bq \cdot \Bx}
\lr{
– e^{i (\omega_\Bp -\omega_\Bq) t} \delta^3(\Bq + \Bp)
– e^{i (\omega_\Bq -\omega_\Bp) t} \delta^3(-\Bq -\Bp)
} \\
&=
– 2 i \int \frac{d^3 p}{(2\pi)^3
2 \omega_\Bp}
\omega_\Bp
e^{i \Bp \cdot (\By – \Bx)} \\
&=
-i \delta^3(\By – \Bx),
\end{aligned}

which is what we wanted to prove.

## Free Hamiltonian

We call the $$\lambda = 0$$ case the “free” Hamiltonian.

\label{eqn:qftLecture6:300}
\begin{aligned}
H
&= \int d^3 x \lr{ \inv{2} \pi^2 + \inv{2} (\spacegrad \phi)^2 + \frac{m^2}{2} \phi^2 } \\
&=
\inv{2} \int d^3 x
\frac{d^3 p}{(2\pi)^3}
\frac{d^3 q}{(2\pi)^3}
\frac{
e^{i (\Bp + \Bq)\cdot \Bx}
}{\sqrt{2 \omega_\Bp}
\sqrt{2 \omega_\Bq}}
\lr{

(\omega_\Bp)
(\omega_\Bq)
\lr{
-e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
-e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
}

\Bp \cdot \Bq
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}
+
m^2
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bq t} a_\Bq
+
e^{i \omega_\Bq t} a_{-\Bq}^\dagger
}.
\end{aligned}

An immediate simplification is possible by identifying a delta function factor $$\int d^3 x e^{i(\Bp + \Bq) \cdot \Bx}/(2\pi)^3 = \delta^3(\Bp + \Bq)$$, so
\label{eqn:qftLecture6:1060}
\begin{aligned}
H
&=
\inv{2}
\int
\frac{d^3 p}{(2\pi)^3}
\frac{1
}{2 \omega_\Bp}
\lr{

(\omega_\Bp)^2
\lr{
-e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
-e^{-i \omega_\Bp t} a_{-\Bp}
+
e^{i \omega_\Bp t} a_{\Bp}^\dagger
}
}
+
(\Bp^2 + m^2)
\lr{
e^{-i \omega_\Bp t} a_\Bp
+
e^{i \omega_\Bp t} a_{-\Bp}^\dagger
}
\lr{
e^{-i \omega_\Bp t} a_{-\Bp}
+
e^{i \omega_\Bp t} a_{\Bp}^\dagger
} \\
&=
\inv{2} \int \frac{d^3 p}{(2 \pi)^3} \inv{2 \omega_\Bp}
\lr{
a_\Bp a_{-\Bp}
\lr{
{-\omega_\Bp^2 e^{-2 i \omega_\Bp t}}
+
{\omega_\Bp^2 e^{-2 i \omega_\Bp t}}
}
+
a_{-\Bp}^\dagger a_{\Bp}^\dagger
\lr{
-{\omega_\Bp^2 e^{2 i \omega_\Bp t}}
+
{\omega_\Bp^2 e^{2 i \omega_\Bp t}}
}
+
a_\Bp a^\dagger_{\Bp} \omega^2_\Bp(1 + 1)
+
a^\dagger_{-\Bp} a_{-\Bp} \omega^2_\Bp(1 + 1)
}
\end{aligned}

When all is said and done we are left with
\label{eqn:qftLecture6:320}
H =
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{2} \lr{
a^\dagger_{-\Bp}
a_{-\Bp}
+
a_{\Bp}
a^\dagger_{\Bp}
}

and finally with a $$\Bp \rightarrow -\Bp$$ transformation ($$\iiint_{-R}^R d^3 p \rightarrow (-1)^3 \iiint_R^{-R} d^3 p’ = (-1)^6 \iiint_{-R}^R d^3 p’$$) in the first integral our free Hamiltonian ($$\lambda = 0$$) is
\label{eqn:qftLecture6:340}
\boxed{
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{2} \lr{
a^\dagger_{\Bp}
a_{\Bp}
+
a_{\Bp}
a^\dagger_{\Bp}
}
}

From the commutator relationship \ref{eqn:qftLecture6:200} we can write
\label{eqn:qftLecture6:360}
a_\Bp a^\dagger_\Bq
=
a^\dagger_\Bq
a_\Bp
+ (2 \pi)^3 \delta^3(\Bp – \Bq),

so

\label{eqn:qftLecture6:380}
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
\lr{
a^\dagger_{\Bp}
a_{\Bp}
+
\inv{2} (2 \pi)^3 \delta^3(0)
}

The delta function term can be interpreted using
\label{eqn:qftLecture6:400}
(2 \pi)^3 \delta^3(\Bq)
= \int d^3 x e^{i \Bq \cdot \Bx},

so when $$\Bq = 0$$
\label{eqn:qftLecture6:420}
(2 \pi)^3 \delta^3(0) = \int d^3 x = V.

We can write the Hamiltonian now in terms of the volume
\label{eqn:qftLecture6:440}
\boxed{
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}
+ V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp }{2} \times 1
}

## QM SHO review

In units with $$m = 1$$ the non-relativistic QM SHO has the Hamiltonian
\label{eqn:qftLecture6:460}
H
= \inv{2} p^2 + \frac{\omega^2}{2} q^2.

If we define a position operator with a time-domain Fourier representation given by
\label{eqn:qftLecture6:480}
q = \inv{\sqrt{2\omega}} \lr{ a e^{-i \omega t} + a^\dagger e^{i \omega t} },

where the Fourier coefficients $$a, a^\dagger$$ are operator valued, then the momentum operator is
\label{eqn:qftLecture6:500}
p = \dot{q} =
\frac{i\omega}{\sqrt{2\omega}} \lr{ -a e^{-i \omega t} + a^\dagger e^{i \omega t} },

or inverting for $$a, a^\dagger$$
\label{eqn:qftLecture6:1080}
\begin{aligned}
a &= \sqrt{\frac{\omega}{2}} \lr{ q – \inv{i \omega} p } e^{-i \omega t} \\
a^\dagger &= \sqrt{\frac{\omega}{2}} \lr{ q + \inv{i \omega} p } e^{i \omega t}.
\end{aligned}

By inspection it is apparent that the product $$a^\dagger a$$ will be related to the Hamiltonian (i.e. a difference of squares). That product is
\label{eqn:qftLecture6:1120}
\begin{aligned}
a^\dagger a
&=
\frac{\omega}{2}
\lr{ q + \inv{i \omega} p }
\lr{ q – \inv{i \omega} p } \\
&=
\frac{\omega}{2} \lr{ q^2 + \inv{\omega^2} p^2 – \inv{i \omega} \antisymmetric{q}{p} } \\
&= \inv{2 \omega} \lr{ p^2 + \omega^2 q^2 – \omega },
\end{aligned}

or
\label{eqn:qftLecture6:1140}
H = \omega \lr{ a^\dagger a + \inv{2} }.

We can glean some of the properties of $$a, a^\dagger$$ by computing the commutator of $$p, q$$, since that has a well known value
\label{eqn:qftLecture6:520}
\begin{aligned}
i
&= \antisymmetric{q}{p} \\
&=
\frac{i\omega}{2 \omega} \antisymmetric
{ a e^{-i \omega t} + a^\dagger e^{i \omega t} }
{ -a e^{-i \omega t} + a^\dagger e^{i \omega t} } \\
&=
\frac{i}{2} \lr{
\antisymmetric{a}{a^\dagger} –
\antisymmetric{a^\dagger}{a} } \\
&=
i
\antisymmetric{a}{a^\dagger},
\end{aligned}

so
\label{eqn:qftLecture6:1100}
\antisymmetric{a}{a^\dagger} = 1.

The operator $$a^\dagger a$$ is the workhorse of the Hamiltonian and worth studying independently. In particular, assume that we have a set of states $$\ket{n}$$ that are eigenstates of $$a^\dagger a$$ with eigenvalues $$\lambda_n$$, that is
\label{eqn:qftLecture6:1160}
a^\dagger a \ket{n} = \lambda_n \ket{n}.

The action of $$a^\dagger a$$ on $$a^\dagger \ket{n}$$ is easy to compute
\label{eqn:qftLecture6:1180}
\begin{aligned}
a^\dagger a a^\dagger \ket{n}
&=
a^\dagger \lr{ a^\dagger a + 1 } \ket{n} \\
&=
\lr{ \lambda_n + 1 } a^\dagger \ket{n},
\end{aligned}

so $$\lambda_n + 1$$ is an eigenvalue of $$a^\dagger \ket{n}$$. The state $$a^\dagger \ket{n}$$ has an energy eigenstate that is one unit of energy larger than $$\ket{n}$$. For this reason we called $$a^\dagger$$ the raising (or creation) operator.
Similarly,
\label{eqn:qftLecture6:1200}
\begin{aligned}
a^\dagger a a \ket{n}
&=
\lr{ a a^\dagger – 1 } a \ket{n} \\
&=
(\lambda_n – 1) a \ket{n},
\end{aligned}

so $$\lambda_n – 1$$ is the energy eigenvalue of $$a \ket{n}$$, having one less unit of energy than $$\ket{n}$$.
We call $$a$$ the annihilation (or lowering) operator.
If we argue that there is a lowest energy state, perhaps designated as $$\ket{0}$$ then we must have
\label{eqn:qftLecture6:560}
a\ket{0} = 0,

by the assumption that there are no energy eigenstates with less energy than $$\ket{0}$$.
We can think of higher order states being constructed from the ground state from using the raising operator $$a^\dagger$$
\label{eqn:qftLecture6:580}
\ket{n} = \frac{(a^\dagger)^n}{\sqrt{n!}} \ket{0}

## Discussion

We’ve diagonalized in the Fourier representation for the momentum space fields. For every value of momentum $$\Bp$$ we have a quantum SHO.

For our field space we call our space the Fock vacuum and
\label{eqn:qftLecture6:620}
a_\Bp\ket{0} = 0,

and call $$a_\Bp$$ the “annihilation operator”, and
call $$a^\dagger_\Bp$$ the “creation operator”.
We say that $$a^\dagger_\Bp \ket{0}$$ is the creation of a state of a single particle of momentum $$\Bp$$ by $$a^\dagger_\Bp$$.

We are discarding the volume term, a procedure called “normal ordering”. We define
\label{eqn:qftLecture6:640}
\frac{a^\dagger a + a a^\dagger}{2}
:\equiv
a^\dagger a

We are essentially forgetting the vacuum energy as some sort of unobservable quantity, leaving us with the free Hamiltonian of
\label{eqn:qftLecture6:660}
H_0 =
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}

Consider
\label{eqn:qftLecture6:680}
\begin{aligned}
H_0
a^\dagger_\Bq \ket{0}
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
a_{\Bp}
a^\dagger_\Bq
\ket{0} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp}
\lr{
a^\dagger_\Bq a_\Bp + (2 \pi)^3 \delta^3(\Bp – \Bq)
}
\ket{0} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp
a^\dagger_{\Bp} \lr{
a^\dagger_\Bq {a_\Bp \ket{0}}
+ (2 \pi)^3 \delta^3(\Bp – \Bq) \ket{0}
} \\
&=
\omega_\Bq a^\dagger_\Bq \ket{0}.
\end{aligned}

### Question:

Is it possible to modify the Lagrangian or Hamiltonian that we start with so that this vacuum ground state is eliminated? Answer: Only by imposing super-symmetric constraints (that pairs this (Bosonic) Hamiltonian to a Fermonic system in a way that there is exact cancellation).

We will see that the momentum operator has the form
\label{eqn:qftLecture6:700}
\mathcal{P}
=
\int \frac{d^3 p}{(2 \pi)^3} \Bp a^\dagger_\Bp a_\Bp.

We say that $$a^\dagger_\Bp a^\dagger_\Bq \ket{0}$$ a two particle space with energy $$\omega_\Bp + \omega_q$$, and $$(a^\dagger_\Bp)^m (a^\dagger_\Bq)^n \ket{0} \equiv (a^\dagger_\Bp)^m \ket{0} \otimes (a^\dagger_\Bq)^n \ket{0}$$, a $$m + n$$ particle space.

There is a connection to statistical mechanics that is of interest

\label{eqn:qftLecture6:720}
\begin{aligned}
\expectation{E}
&= \inv{Z} \sum_n E_n e^{-E_n/\kB T} \\
&= \inv{Z} \sum_n \bra{n} e^{-\hat{H}/\kB T} \hat{H} \ket{n},
\end{aligned}

so for a SHO Hamiltonian system
\label{eqn:qftLecture6:740}
\begin{aligned}
\expectation{E}
&= \inv{Z} \sum_n e^{-E_n/\kB T} \bra{n} \hat{H} \ket{n} \\
&= \inv{Z} \sum_n e^{-E_n/\kB T} \bra{n} \omega a^\dagger a \ket{n} \\
&= \frac{\omega}{e^{\omega/\kB T} – 1 } \\ \\
&= \expectation{ \omega a^\dagger a }_{\kB T}
\end{aligned}

the $$\kB T$$ ensemble average energy for a SHO system. Note that this sum was evaluated by noting that $$\bra{n} a^\dagger a \ket{n} = n$$ which leaves sums of the form
\label{eqn:qftLecture6:1220}
\begin{aligned}
\frac{\sum_{n = 0}^\infty n a^n }{\sum_{n = 0}^\infty a^n}
&=
a \frac{\sum_{n = 1}^\infty n a^{n-1} }{\sum_{n = 0}^\infty a^n} \\
&=
a (1 – a) \frac{d}{da} \lr{ \inv{1 – a} } \\
&=
\frac{a}{1 – a}.
\end{aligned}

If we consider a real scalar field of mass $$m$$ we have $$\omega_\Bp = \sqrt{ \Bp^2 + m^2 }$$, but for a Maxwell field $$\BE, \BB$$ where $$m = 0$$, our dispersion relation is $$\omega_\Bp = \Abs{\Bp}$$.

We will see that for a free Maxwell field (no charges or currents) the Hamiltonian is
\label{eqn:qftLecture6:760}
H_{\text{Maxwell}} =
\sum_{i = 1}^2
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp {a^i}^\dagger_\Bp {a^i}_\Bp,

where $$i$$ is a polarization index.

We expect that we can evaluate an average such as \ref{eqn:qftLecture6:740} for our field, and operate using the analogy

\label{eqn:qftLecture6:780}
\begin{aligned}
a a^\dagger &= a^\dagger a + 1 \\
a_\Bp a_\Bp^\dagger &= a_\Bp^\dagger a_\Bp + V_3.
\end{aligned}

so if we rescale by $$\sqrt{V_3}$$
\label{eqn:qftLecture6:800}
a_\Bp = \sqrt{V_3} \tilde{a}_\Bp

Then we have commutator relations like standard QM
\label{eqn:qftLecture6:820}
\tilde{a} \tilde{a}^\dagger = \tilde{a}^\dagger \tilde{a} + 1.

So we can immediately evaluate the energy expectation for our quantized fields
\label{eqn:qftLecture6:840}
\begin{aligned}
\expectation{H_0}
&=
\expectation{
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp a_\Bp^\dagger a_\Bp
} \\
&=
\int \frac{d^3 p}{(2 \pi)^3} \omega_\Bp V_3 \expectation{ \tilde{a}^\dagger_\Bp a_\Bp } \\
&=
V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\omega_\Bp}{e^{\omega_\Bp/\kB T} – 1}.
\end{aligned}

Using this with the Maxwell field, we have a factor of two from polarization
\label{eqn:qftLecture6:860}
U^{\text{Maxwell}} = 2 V_3
\int \frac{d^3 p}{(2 \pi)^3} \frac{\Abs{\Bp}}{e^{\omega_\Bp/\kB T} – 1},

which is Planck’s law describing the blackbody energy spectrum.

## Switching gears: Symmetries.

The question is how to apply the CCR results to moving frames, which is done using Lorentz transformations. Just like we know that the exponential of the Hamiltonian (times time) represents time translations, we will examine symmetries that relate results in different frames.

### Examples.

For scalar field(s) with action
\label{eqn:qftLecture6:880}
S = \int d^d x \LL(\phi^i, \partial_\mu \phi^i).

For example, we’ve been using our massive (Boson) real scalar field with Lagrangian density
\label{eqn:qftLecture6:900}
\LL = \inv{2} \partial_\mu \phi\partial^\mu \phi – \frac{m^2}{2} \phi^2 – V(\phi).

Internal symmetry example

\label{eqn:qftLecture6:920}
H = J \sum_{\expectation{n, n’}} \BS_n \cdot \BS_{n’},

where the sum means the sum over neighbouring indexes $$n, n’$$ as sketched in

fig. 1. Neighbouring spin cells.

Such a Hamiltonian is left invariant by the transformation $$\BS_n \rightarrow -\BS_n$$ since the Hamiltonian is quadratic.

Suppose that $$\phi \rightarrow -\phi$$ is a symmetry (it leaves the Lagrangian unchanged). Example

\label{eqn:qftLecture6:940}
\phi =
\begin{bmatrix}
\phi^1 \\
\phi^2 \\
\vdots
\phi^n \\
\end{bmatrix}

the Lagrangian
\label{eqn:qftLecture6:960}
\LL = \inv{2} \partial_\mu \phi^\T \partial^\mu \phi – \frac{m^2}{2} \phi^\T \phi – V(\phi^\T \phi).

If $$O$$ is any $$n \times n$$ orthogonal matrix, then it is symmetry since
\label{eqn:qftLecture6:980}
\phi^\T \phi \rightarrow \phi^\T O^\T O \phi = \phi^\T \phi.

O(2) model, HW, problem 2. Example for complex $$\phi$$
\label{eqn:qftLecture6:1000}
\phi \rightarrow e^{i \phi} \phi,

\label{eqn:qftLecture6:1020}
\phi = \frac{\psi_1 + i \psi_2}{\sqrt{2}}

\label{eqn:qftLecture6:1040}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\cos\alpha & \sin\alpha \\
-\sin\alpha & \cos\alpha
\end{bmatrix}
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix}

## PHY2403H Quantum Field Theory. Lecture 5: Klein-Gordon equation, Hamilton’s equations, SHOs, momentum space representation, raising and lowering operators. Taught by Prof. Erich Poppitz

### DISCLAIMER: Very rough notes from class. Some additional side notes, but otherwise barely edited.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Canonical quantization

Last time we introduced a Lagrangian density associated with the Klein-Gordon equation (with a quadratic potential coupling)
\label{eqn:qftLecture5:20}
L = \int d^3 x
\lr{
\inv{2} \lr{\partial_0 \phi}^2 – \inv{2} \lr{\spacegrad \phi}^2 – \frac{m^2}{2} \phi^2 – \frac{\lambda}{4} \phi^4
}.

This Lagrangian density was related to the action by
\label{eqn:qftLecture5:40}
S = \int dt L = \int dt d^3 x \LL,

with momentum canonically conjugate to the field $$\phi$$ defined as
\label{eqn:qftLecture5:60}
\Pi(\Bx, t) = \frac{\delta \LL}{\delta \phidot(\Bx, t) } = \PD{\phidot(\Bx, t)}{\LL}

The Hamiltonian defined as
\label{eqn:qftLecture5:80}
H = \int d^3 x \lr{ \Pi(\Bx, t) \phidot(\Bx, t) – \LL },

led to
\label{eqn:qftLecture5:680}
H
= \int d^3 x
\lr{ \inv{2} \Pi^2 + (\spacegrad \phi)^2 + \inv{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4 }.

Like the Lagrangian density, we may introduce a Hamiltonian density $$\mathcal{H}$$ as
\label{eqn:qftLecture5:100}
H = \int d^3 x \mathcal{H}(\Bx, t).

For our Klein-Gordon system, this is
\label{eqn:qftLecture5:120}
\mathcal{H}(\Bx, t) =
\inv{2} \Pi^2 + (\spacegrad \phi)^2 + \inv{2} m^2 \phi^2 + \frac{\lambda}{4} \phi^4.

### Canonical Commutation Relations (CCR)

:

We quantize the system by promoting our fields to Heisenberg-Picture (HP) operators, and imposing commutation relations
\label{eqn:qftLecture5:140}
\antisymmetric{\hat{\Pi}(\Bx, t)}{\hat{\phi}(\By, t)} = -i \delta^3 (\Bx – \By)

This is in analogy to
\label{eqn:qftLecture5:160}
\antisymmetric{\hat{p}_i}{\hat{q}_j} = -i \delta_{ij},

To choose a representation, we may map the $$\Psi$$ of QM $$\rightarrow$$ to a wave functional $$\Psi[\phi]$$
\label{eqn:qftLecture5:180}
\hat{\phi}(\By, t) \Psi[\phi] = \phi(\By, t) \Psi[\phi]

This is similar to the QM wave functions
\label{eqn:qftLecture5:200}
\begin{aligned}
\hat{q}_i \Psi(\setlr{q}) &= q_i \Psi(q) \\
\hat{p}_i \Psi(\setlr{q}) &= -i \PD{q_i}{} \Psi(p)
\end{aligned}

Our momentum operator is quantized by expressing it in terms of a variational derivative
\label{eqn:qftLecture5:220}
\hat{\Pi}(\Bx, t) = -i \frac{\delta}{\delta \phi(\Bx, t)}.

(Fixme: I’m not really sure exactly what is meant by using the variation derivative $$\delta$$ notation here), and to
quantize the Hamiltonian we just add hats, assuming that our fields are all now HP operators
\label{eqn:qftLecture5:240}
\hat{\mathcal{H}}(\Bx, t)
=
\inv{2} \hat{\Pi}^2 + (\spacegrad \hat{\phi})^2 + \inv{2} m^2 \hat{\phi}^2 + \frac{\lambda}{4} \hat{\phi}^4.

### QM SHO review

Recall the QM SHO had a Hamiltonian
\label{eqn:qftLecture5:260}
\hat{H} = \inv{2} \hat{p}^2 + \inv{2} \omega^2 \hat{q}^2,

where
\label{eqn:qftLecture5:280}
\antisymmetric{\hat{p}}{\hat{q}} = -i,

and that
HP time evolution operators $$O$$ satisfied
\label{eqn:qftLecture5:700}
\ddt{\hatO} = i \antisymmetric{\hatH}{\hatO}.

In particular
\label{eqn:qftLecture5:300}
\begin{aligned}
\ddt{\hat{p}}
&= i \antisymmetric{\hat{H}}{\hatp} \\
&= i \frac{\omega^2}{2} \antisymmetric{\hat{q}^2}{\hatp} \\
&= i \frac{\omega^2}{2} (2 i \hat{q}) \\
&= -i \omega^2 \hat{q},
\end{aligned}

and
\label{eqn:qftLecture5:320}
\begin{aligned}
\ddt{\hat{q}}
&= i \antisymmetric{\hat{H}}{\hat{q}} \\
&= i \inv{2} \antisymmetric{\hatp^2}{\hat{q}} \\
&= \frac{i}{2}(-2 i \hatp ) \\
&= \hatp.
\end{aligned}

Applying the time evolution operator twice, we find
\label{eqn:qftLecture5:340}
\frac{d^2}{dt^2}{\hat{q}}
= \ddt{\hat{p}}
= – \omega^2 \hat{q}.

We see that the Heisenberg operators obey the classical equations of motion.

Now we want to try this with the quantized QFT fields we’ve promoted to operators
\label{eqn:qftLecture5:360}
\begin{aligned}
\ddt{\hat{\Pi}}(\Bx, t)
&= i \antisymmetric{\hatH}{\hat{\Pi}(\Bx, t)} \\
&=
i \int d^3 y \inv{2} \antisymmetric{ \lr{\spacegrad \phihat(\By) }^2 }{\hat{\Pi}(\Bx) }
+
i \int d^3 y \frac{m^2}{2} \antisymmetric{ \phihat(\By)^2 }{\hat{\Pi}(\Bx) }
+
i \frac{\lambda}{4} \int d^3 \antisymmetric{ \phihat(\By)^4 }{\hat{\Pi}(\Bx) }
\end{aligned}

Starting with the non-gradient commutators, and utilizing the HP field analogues of the relations $$\antisymmetric{\hat{q}^n}{\hatp} = n i \hat{q}^{n-1}$$, we find
\label{eqn:qftLecture5:780}
\int d^3 y \antisymmetric{ \lr{ \phihat(\By) }^2 }{\hat{\Pi}(\Bx) }
=
\int d^3 y 2 i \phihat(\By) \delta^3(\Bx – \By)
= 2 i \phihat(\Bx).

\label{eqn:qftLecture5:740}
\int d^3 y \antisymmetric{ \lr{ \phihat(\By) }^4 }{\hat{\Pi}(\Bx) }
=
\int d^3 y 4 i \phihat(\By)^3 \delta^3(\Bx – \By)
= 4 i \phihat(\Bx)^3.

For the gradient commutators, we have more work. Prof Poppitz blitzed through that, just calling it integration by parts. I had trouble seeing what he was doing, so here’s a more explicit dumb expansion required to calculate the commutator
\label{eqn:qftLecture5:720}
\begin{aligned}
\int d^3 y (\spacegrad \phihat(\By))^2 \hat{\Pi}(\Bx)
&=
\int d^3 y
&=
\int d^3 y
\lr{ \spacegrad (\phihat(\By) \hat{\Pi}(\Bx)) } \\
&=
\int d^3 y
\lr{ \spacegrad (\hat{\Pi}(\Bx) \phihat(\By) + i \delta^3(\Bx – \By)) } \\
&=
\int d^3 y
\Biglr{
+ i
} \\
&=
\int d^3 y
\Biglr{
\spacegrad \lr{ \hat{\Pi}(\Bx) \phihat(\By) + i \delta^3(\Bx – \By) } \cdot \spacegrad \phihat(\By)
+ i
} \\
&=
\int d^3 y
\hat{\Pi}(\Bx)
\lr{
}
+ 2 i
\int d^3 y
&=
\int d^3 y
+
2 i
\int d^3 y

2 i
\int d^3 y
\delta^3(\Bx – \By) \spacegrad^2 \phihat(\By) \\
&=
\int d^3 y
+
2 i
\int_\partial d^2 y
\delta^3(\Bx – \By)

\end{aligned}

Here we take advantage of the fact that the derivative operators $$\spacegrad = \spacegrad_\By$$ commute with $$\hat{\Pi}(\Bx)$$, and use the identity
$$\spacegrad \cdot (a \spacegrad b) = (\spacegrad a) \cdot (\spacegrad b) + a \spacegrad^2 b$$, so the commutator is
\label{eqn:qftLecture5:800}
\begin{aligned}
&=
2 i
\int_\partial d^2 y
\delta^3(\Bx – \By)

&=

\end{aligned}

where the boundary integral is presumed to be zero (without enough justification.) All the pieces can now be put back together
\label{eqn:qftLecture5:820}
\ddt{} \hat{\Pi}(\Bx, t)
=

m^2 \phihat(\Bx, t)

\lambda \phihat^3(\Bx, t).

Now, for the $$\phihat$$ time evolution, which is much easier
\label{eqn:qftLecture5:380}
\begin{aligned}
\ddt{\hat{\phi}}(\Bx, t)
&= i \antisymmetric{\hatH}{\hat{\phi}(\Bx, t)} \\
&= i \inv{2} \int d^3 y \antisymmetric{\hat{\Pi}^2(\By)}{\hat{\phi}(\Bx)} \\
&= i \inv{2} \int d^3 y (-2 i) \hat{\Pi}(\By, t) \delta^3(\Bx – \By) \\
&= \hat{\Pi}(\Bx, t)
\end{aligned}

\label{eqn:qftLecture5:400}
\frac{d^2}{dt^2}{\hat{\phi}}(\Bx, t)
=
-m^2 \phi – \lambda \phihat^3.

That is
\label{eqn:qftLecture5:420}
\ddot{\phihat} – \spacegrad^2 \phihat + m^2 \phihat + \lambda \phihat^3 = 0,

which is the classical Euler-Lagrange equation, also obeyed by the Heisenberg operator $$\phi(\Bx, t)$$. When $$\lambda = 0$$ this is the Klein-Gordon equation.

## Momentum space representation.

Dropping hats, we now consider the momentum space representation of our operators, as determined by Fourier transform pairs
\label{eqn:qftLecture5:440}
\begin{aligned}
\phi(\Bx, t) &= \int \frac{d^3 p}{(2\pi)^3} e^{i \Bp \cdot \Bx} \tilde{\phi}(\Bp, t) \\
\tilde{\phi}(\Bp, t) &= \int d^3 x e^{-i \Bp \cdot \Bx} \phi(\Bx, t)
\end{aligned}

We can discover a representation of the delta function by applying these both in turn
\label{eqn:qftLecture5:480}
\tilde{\phi}(\Bp, t)
= \int d^3 x e^{-i \Bp \cdot \Bx} \int \frac{d^3 q}{(2 \pi)^3} e^{i \Bq \cdot \Bx} \tilde{\phi}(\Bq, t)

so
\label{eqn:qftLecture5:500}
\boxed{
\int d^3 x e^{i \BA \cdot \Bx} = (2 \pi)^3 \delta^3(\BA)
}

Also observe that $$\phi^\conj(\Bx, t) = \phi(\Bx, t)$$ iff $$\tilde{\phi}(\Bp, t) = \tilde{\phi}^\conj(-\Bp, t)$$.

We want the EOM for $$\tilde{\phi}(\Bp, t)$$ where the operator obeys the KG equation
\label{eqn:qftLecture5:520}
\lr{ \partial_t^2 – \spacegrad^2 + m^2 } \phi(\Bx, t) = 0

Inserting the transform relation \ref{eqn:qftLecture5:440} we get
\label{eqn:qftLecture5:540}
\int \frac{d^3 p}{(2 \pi)^3} e^{i \Bp \cdot \Bx}
\lr{
\ddot{\tilde{\phi}}(\Bp, t) + \lr{ \Bp^2 + m^2 }
\tilde{\phi}(\Bp, t)
}
= 0,

or
\label{eqn:qftLecture5:580}
\boxed{
\ddot{\tilde{\phi}}(\Bp, t) = – \omega_\Bp^2 \,\tilde{\phi}(\Bp, t),
}

where
\label{eqn:qftLecture5:560}
\omega_\Bp = \sqrt{ \Bp^2 + m^2 }.

The Fourier components of the HP operators are SHOs!

As we have SHO’s and know how to deal with these in QM, we use the same strategy, introducing raising and lowering operators
\label{eqn:qftLecture5:600}
\tilde{\phi}(\Bp, t) = \inv{\sqrt{2 \omega_\Bp}} \lr{ e^{-i \omega_\Bp t } a_\Bp + e^{i \omega_\Bp t} a^\dagger_{-\Bp}
}

Observe that
\label{eqn:qftLecture5:840}
\begin{aligned}
\tilde{\phi}^\dagger(-\Bp, t)
&= \inv{\sqrt{2 \omega_\Bp}} \lr{ e^{i \omega_\Bp t } a^\dagger_{-\Bp} + e^{-i \omega_\Bp t} a_{\Bp} } \\
&=
\tilde{\phi}(\Bp, t),
\end{aligned}

or
\label{eqn:qftLecture5:620}
\tilde{\phi}^\dagger(\Bp, t) = \tilde{\phi}(-\Bp, t),

so $$\phi(\Bp, t)$$ has a real representation in terms of $$a_\Bp$$.

We will find (Wednesday) that
\label{eqn:qftLecture5:640}
\antisymmetric{a_\Bq}{a^+_\Bp} = \delta^3(\Bp – \Bq) (2 \pi)^3.

These are equivalent to
\label{eqn:qftLecture5:660}
\antisymmetric{\hat{\Pi}(\By, t)}{\tilde{\phi}(\Bx, t)} = -i \delta^3(\Bx – \By)

## PHY2403H Quantum Field Theory. Lecture 4: Scalar action, least action principle, Euler-Lagrange equations for a field, canonical quantization. Taught by Prof. Erich Poppitz

### DISCLAIMER: Very rough notes from class. May have some additional side notes, but otherwise probably barely edited.

These are notes for the UofT course PHY2403H, Quantum Field Theory I, taught by Prof. Erich Poppitz fall 2018.

## Principles (cont.)

• Lorentz (Poincar\’e : Lorentz and spacetime translations)
• locality
• dimensional analysis
• gauge invariance

These are the requirements for an action. We postulated an action that had the form
\label{eqn:qftLecture4:20}
\int d^d x \partial_\mu \phi \partial^\mu \phi,

called the “Kinetic term”, which mimics $$\int dt \dot{q}^2$$ that we’d see in quantum or classical mechanics. In principle there exists an infinite number of local Poincar\’e invariant terms that we can write. Examples:

• $$\partial_\mu \phi \partial^\mu \phi$$
• $$\partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi$$
• $$\lr{\partial_\mu \phi \partial^\mu \phi}^2$$
• $$f(\phi) \partial_\mu \phi \partial^\mu \phi$$
• $$f(\phi, \partial_\mu \phi \partial^\mu \phi)$$
• $$V(\phi)$$

It turns out that nature (i.e. three spatial dimensions and one time dimension) is described by a finite number of terms. We will now utilize dimensional analysis to determine some of the allowed forms of the action for scalar field theories in $$d = 2, 3, 4, 5$$ dimensions. Even though the real world is only $$d = 4$$, some of the $$d < 4$$ theories are relevant in condensed matter studies, and $$d = 5$$ is just for fun (but also applies to string theories.)

With $$[x] \sim \inv{M}$$ in natural units, we must define $$[\phi]$$ such that the kinetic term is dimensionless in d spacetime dimensions

\label{eqn:qftLecture4:40}
\begin{aligned}
[d^d x] &\sim \inv{M^d} \\
[\partial_\mu] &\sim M
\end{aligned}

so it must be that
\label{eqn:qftLecture4:60}
[\phi] = M^{(d-2)/2}

It will be easier to characterize the dimensionality of any given term by the power of the mass units, that is

\label{eqn:qftLecture4:80}
\begin{aligned}
[\text{mass}] &= 1 \\
[d^d x] &= -d \\
[\partial_\mu] &= 1 \\
[\phi] &= (d-2)/2 \\
[S] &= 0.
\end{aligned}

Since the action is
\label{eqn:qftLecture4:100}
S = \int d^d x \lr{ \LL(\phi, \partial_\mu \phi) },

and because action had dimensions of $$\Hbar$$, so in natural units, it must be dimensionless, the Lagrangian density dimensions must be $$[d]$$. We will abuse language in QFT and call the Lagrangian density the Lagrangian.

## $$d = 2$$

Because $$[\partial_\mu \phi \partial^\mu \phi ] = 2$$, the scalar field must be dimension zero, or in symbols
\label{eqn:qftLecture4:120}
[\phi] = 0.

This means that introducing any function $$f(\phi) = 1 + a \phi + b\phi^2 + c \phi^3 + \cdots$$ is also dimensionless, and
\label{eqn:qftLecture4:140}
[f(\phi) \partial_\mu \phi \partial^\mu \phi ] = 2,

for any $$f(\phi)$$. Another implication of this is that the a potential term in the Lagrangian $$[V(\phi)] = 0$$ needs a coupling constant of dimension 2. Letting $$\mu$$ have mass dimensions, our Lagrangian must have the form
\label{eqn:qftLecture4:160}
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi).

An infinite number of coupling constants of positive mass dimensions for $$V(\phi)$$ are also allowed. If we have higher order derivative terms, then we need to compensate for the negative mass dimensions. Example (still for $$d = 2$$).
\label{eqn:qftLecture4:180}
\LL =
f(\phi) \partial_\mu \phi \partial^\mu \phi + \mu^2 V(\phi) + \inv{{\mu’}^2}\partial_\mu \phi \partial_\nu \partial^\nu \partial^\mu \phi + \lr{ \partial_\mu \phi \partial^\mu \phi }^2 \inv{\tilde{\mu}^2}.

The last two terms, called \underline{couplings} (i.e. any non-kinetic term), are examples of terms with negative mass dimension. There is an infinite number of those in any theory in any dimension.

### Definitions

• Couplings that are dimensionless are called (classically) marginal.
• Couplings that have positive mass dimension are called (classically) relevant.
• Couplings that have negative mass dimension are called (classically) irrelevant.

In QFT we are generally interested in the couplings that are measurable at long distances for some given energy. Classically irrelevant theories are generally not interesting in $$d > 2$$, so we are very lucky that we don’t live in three dimensional space. This means that we can get away with a finite number of classically marginal and relevant couplings in 3 or 4 dimensions. This was mentioned in the Wilczek’s article referenced in the class forum [1]\footnote{There’s currently more in that article that I don’t understand than I do, so it is hard to find it terribly illuminating.}

Long distance physics in any dimension is described by the marginal and relevant couplings. The irrelevant couplings die off at low energy. In two dimensions, a priori, an infinite number of marginal and relevant couplings are possible. 2D is a bad place to live!

## $$d = 3$$

Now we have
\label{eqn:qftLecture4:200}
[\phi] = \inv{2}

so that
\label{eqn:qftLecture4:220}
[\partial_\mu \phi \partial^\mu \phi] = 3.

A 3D Lagrangian could have local terms such as
\label{eqn:qftLecture4:240}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu^{3/2} \phi^3 + \mu’ \phi^4
+ \lr{\mu”}{1/2} \phi^5
+ \lambda \phi^6.

where $$m, \mu, \mu”$$ all have mass dimensions, and $$\lambda$$ is dimensionless. i.e. $$m, \mu, \mu”$$ are relevant, and $$\lambda$$ marginal. We stop at the sixth power, since any power after that will be irrelevant.

## $$d = 4$$

Now we have
\label{eqn:qftLecture4:260}
[\phi] = 1

so that
\label{eqn:qftLecture4:280}
[\partial_\mu \phi \partial^\mu \phi] = 4.

In this number of dimensions $$\phi^k \partial_\mu \phi \partial^\mu$$ is an irrelevant coupling.

A 4D Lagrangian could have local terms such as
\label{eqn:qftLecture4:300}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \mu \phi^3 + \lambda \phi^4.

where $$m, \mu$$ have mass dimensions, and $$\lambda$$ is dimensionless. i.e. $$m, \mu$$ are relevant, and $$\lambda$$ is marginal.

## $$d = 5$$

Now we have
\label{eqn:qftLecture4:320}
[\phi] = \frac{3}{2},

so that
\label{eqn:qftLecture4:340}
[\partial_\mu \phi \partial^\mu \phi] = 5.

A 5D Lagrangian could have local terms such as
\label{eqn:qftLecture4:360}
\LL = \partial_\mu \phi \partial^\mu \phi + m^2 \phi^2 + \sqrt{\mu} \phi^3 + \inv{\mu’} \phi^4.

where $$m, \mu, \mu’$$ all have mass dimensions. In 5D there are no marginal couplings. Dimension 4 is the last dimension where marginal couplings exist. In condensed matter physics 4D is called the “upper critical dimension”.

From the point of view of particle physics, all the terms in the Lagrangian must be the ones that are relevant at long distances.

## Least action principle (classical field theory).

Now we want to study 4D scalar theories. We have some action
\label{eqn:qftLecture4:380}
S[\phi] = \int d^4 x \LL(\phi, \partial_\mu \phi).

Let’s keep an example such as the following in mind
\label{eqn:qftLecture4:400}
\LL = \underbrace{\inv{2} \partial_\mu \phi \partial^\mu \phi}_{\text{Kinetic term}} – \underbrace{m^2 \phi – \lambda \phi^4}_{\text{all relevant and marginal couplings}}.

The even powers can be justified by assuming there is some symmetry that kills the odd powered terms.

fig. 1. Cylindrical spacetime boundary.

We will be integrating over a space time region such as that depicted in fig. 1, where a cylindrical spatial cross section is depicted that we allow to tend towards infinity. We demand that the field is fixed on the infinite spatial boundaries. The easiest way to demand that the field dies off on the spatial boundaries, that is
\label{eqn:qftLecture4:420}
\lim_{\Abs{\Bx} \rightarrow \infty} \phi(\Bx) \rightarrow 0.

The functional $$\phi(\Bx, t)$$ that obeys the boundary condition as stated extremizes $$S[\phi]$$.

Extremizing the action means that we seek $$\phi(\Bx, t)$$
\label{eqn:qftLecture4:440}
\delta S[\phi] = 0 = S[\phi + \delta \phi] – S[\phi].

How do we compute the variation?
\label{eqn:qftLecture4:460}
\begin{aligned}
\delta S
&= \int d^d x \lr{ \LL(\phi + \delta \phi, \partial_\mu \phi + \partial_\mu \delta \phi) – \LL(\phi, \partial_\mu \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi + \PD{(\partial_mu \phi)}{\LL} (\partial_\mu \delta \phi) } \\
&= \int d^d x \lr{ \PD{\phi}{\LL} \delta \phi
+ \partial_\mu \lr{ \PD{(\partial_mu \phi)}{\LL} \delta \phi}
– \lr{ \partial_\mu \PD{(\partial_mu \phi)}{\LL} } \delta \phi
} \\
&=
\int d^d x
\delta \phi
\lr{ \PD{\phi}{\LL}
– \partial_\mu \PD{(\partial_mu \phi)}{\LL} }
+ \int d^3 \sigma_\mu \lr{ \PD{(\partial_\mu \phi)}{\LL} \delta \phi }
\end{aligned}

If we are explicit about the boundary term, we write it as
\label{eqn:qftLecture4:480}
\int dt d^3 \Bx \partial_t \lr{ \PD{(\partial_t \phi)}{\LL} \delta \phi }
=
\int d^3 \Bx \evalrange{ \PD{(\partial_t \phi)}{\LL} \delta \phi }{t = -T}{t = T}
– \int dt d^2 \BS \cdot \lr{ \PD{(\spacegrad \phi)}{\LL} \delta \phi }.

but $$\delta \phi = 0$$ at $$t = \pm T$$ and also at the spatial boundaries of the integration region.

This leaves
\label{eqn:qftLecture4:500}
\delta S[\phi] = \int d^d x \delta \phi
\lr{ \PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} } = 0 \forall \delta \phi.

That is

\label{eqn:qftLecture4:540}
\boxed{
\PD{\phi}{\LL} – \partial_\mu \PD{(\partial_mu \phi)}{\LL} = 0.
}

This are the Euler-Lagrange equations for a single scalar field.

Returning to our sample scalar Lagrangian
\label{eqn:qftLecture4:560}
\LL = \inv{2} \partial_\mu \phi \partial^\mu \phi – \inv{2} m^2 \phi^2 – \frac{\lambda}{4} \phi^4.

This example is related to the Ising model which has a $$\phi \rightarrow -\phi$$ symmetry. Applying the Euler-Lagrange equations, we have
\label{eqn:qftLecture4:580}
\PD{\phi}{\LL} = -m^2 \phi – \lambda \phi^3,

and
\label{eqn:qftLecture4:600}
\begin{aligned}
\PD{(\partial_\mu \phi)}{\LL}
&=
\PD{(\partial_\mu \phi)}{} \lr{
\inv{2} \partial_\nu \phi \partial^\nu \phi } \\
&=
\inv{2} \partial^\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\nu \phi
+
\inv{2} \partial_\nu \phi
\PD{(\partial_\mu \phi)}{}
\partial_\alpha \phi g^{\nu\alpha} \\
&=
\inv{2} \partial^\mu \phi
+
\inv{2} \partial_\nu \phi g^{\nu\mu} \\
&=
\partial^\mu \phi
\end{aligned}

so we have
\label{eqn:qftLecture4:620}
\begin{aligned}
0
&=
\PD{\phi}{\LL} -\partial_\mu
\PD{(\partial_\mu \phi)}{\LL} \\
&=
-m^2 \phi – \lambda \phi^3 – \partial_\mu \partial^\mu \phi.
\end{aligned}

For $$\lambda = 0$$, the free field theory limit, this is just
\label{eqn:qftLecture4:640}
\partial_\mu \partial^\mu \phi + m^2 \phi = 0.

Written out from the observer frame, this is
\label{eqn:qftLecture4:660}
(\partial_t)^2 \phi – \spacegrad^2 \phi + m^2 \phi = 0.

With a non-zero mass term
\label{eqn:qftLecture4:680}
\lr{ \partial_t^2 – \spacegrad^2 + m^2 } \phi = 0,

is called the Klein-Gordan equation.

If we also had $$m = 0$$ we’d have
\label{eqn:qftLecture4:700}
\lr{ \partial_t^2 – \spacegrad^2 } \phi = 0,

which is the wave equation (for a massless free field). This is also called the D’Alembert equation, which is familiar from electromagnetism where we have
\label{eqn:qftLecture4:720}
\begin{aligned}
\lr{ \partial_t^2 – \spacegrad^2 } \BE &= 0 \\
\lr{ \partial_t^2 – \spacegrad^2 } \BB &= 0,
\end{aligned}

in a source free region.

## Canonical quantization.

\label{eqn:qftLecture4:740}
\LL = \inv{2} \dot{q} – \frac{\omega^2}{2} q^2

This has solution $$\ddot{q} = – \omega^2 q$$.

Let
\label{eqn:qftLecture4:760}
p = \PD{\dot{q}}{\LL} = \dot{q}

\label{eqn:qftLecture4:780}
H(p,q) = \evalbar{p \dot{q} – \LL}{\dot{q}(p, q)}
= p p – \inv{2} p^2 + \frac{\omega^2}{2} q^2 = \frac{p^2}{2} + \frac{\omega^2}{2} q^2

In QM we quantize by mapping Poisson brackets to commutators.
\label{eqn:qftLecture4:800}
\antisymmetric{\hatp}{\hat{q}} = -i

One way to represent is to say that states are $$\Psi(\hat{q})$$, a wave function, $$\hat{q}$$ acts by $$q$$
\label{eqn:qftLecture4:820}
\hat{q} \Psi = q \Psi(q)

With
\label{eqn:qftLecture4:840}
\hatp = -i \PD{q}{},

so
\label{eqn:qftLecture4:860}
\antisymmetric{ -i \PD{q}{} } { q} = -i

Let’s introduce an explicit space time split. We’ll write
\label{eqn:qftLecture4:880}
L = \int d^3 x \lr{
\inv{2} (\partial_0 \phi(\Bx, t))^2 – \inv{2} \lr{ \spacegrad \phi(\Bx, t) }^2 – \frac{m^2}{2} \phi
},

so that the action is
\label{eqn:qftLecture4:900}
S = \int dt L.

The dynamical variables are $$\phi(\Bx)$$. We define
\label{eqn:qftLecture4:920}
\begin{aligned}
\pi(\Bx, t) = \frac{\delta L}{\delta (\partial_0 \phi(\Bx, t))}
&=
\partial_0 \phi(\Bx, t) \\
&=
\dot{\phi}(\Bx, t),
\end{aligned}

called the canonical momentum, or the momentum conjugate to $$\phi(\Bx, t)$$. Why $$\delta$$? Has to do with an implicit Dirac function to eliminate the integral?

\label{eqn:qftLecture4:940}
\begin{aligned}
H
&= \int d^3 x \evalbar{\lr{ \pi(\bar{\Bx}, t) \dot{\phi}(\bar{\Bx}, t) – L }}{\dot{\phi}(\bar{\Bx}, t) = \pi(x, t) } \\
&= \int d^3 x \lr{ (\pi(\Bx, t))^2 – \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi)^2 + \frac{m}{2} \phi^2 },
\end{aligned}

or
\label{eqn:qftLecture4:960}
H
= \int d^3 x \lr{ \inv{2} (\pi(\Bx, t))^2 + \inv{2} (\spacegrad \phi(\Bx, t))^2 + \frac{m}{2} (\phi(\Bx, t))^2 }

In analogy to the momentum, position commutator in QM
\label{eqn:qftLecture4:1000}
\antisymmetric{\hat{p}_i}{\hat{q}_j} = -i \delta_{ij},

we “quantize” the scalar field theory by promoting $$\pi, \phi$$ to operators and insisting that they also obey a commutator relationship
\label{eqn:qftLecture4:980}
\antisymmetric{\pi(\Bx, t)}{\phi(\By, t)} = -i \delta^3(\Bx – \By).

# References

[1] Frank Wilczek. Fundamental constants. arXiv preprint arXiv:0708.4361, 2007. URL https://arxiv.org/abs/0708.4361.