commutator

An observation about the geometry of Pauli x,y matrices

July 19, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

The conventional form for the Pauli matrices is

\begin{equation}\label{eqn:pauliMatrixXYgeometry:20}
\begin{aligned}
\sigma_x &=
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix} \\
\sigma_y &=
\begin{bmatrix}
0 & -i \\
i & 0 \\
\end{bmatrix} \\
\sigma_z &=
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\end{aligned}.
\end{equation}

In [1] these forms are derived based on the commutation relations

\begin{equation}\label{eqn:pauliMatrixXYgeometry:40}
\antisymmetric{\sigma_r}{\sigma_s} = 2 i \epsilon_{r s t} \sigma_t,
\end{equation}

by defining raising and lowering operators \( \sigma_{\pm} = \sigma_x \pm i \sigma_y \) and figuring out what form the matrix must take. I noticed an interesting geometrical relation hiding in that derivation if \( \sigma_{+} \) is not assumed to be real.

Derivation

For completeness, I’ll repeat the argument of [1], which builds on the commutation relations of the raising and lowering operators. Those are

\begin{equation}\label{eqn:pauliMatrixXYgeometry:60}
\begin{aligned}
\antisymmetric{\sigma_z}{\sigma_{\pm}}
&=
\sigma_z \lr{ \sigma_x \pm i \sigma_y }
-\lr{ \sigma_x \pm i \sigma_y } \sigma_z \\
&=
\antisymmetric{\sigma_z}{\sigma_x} \pm i \antisymmetric{\sigma_z}{\sigma_y} \\
&=
2 i \sigma_y \pm i (-2 i) \sigma_x \\
&= \pm 2 \lr{ \sigma_x \pm i \sigma_y } \\
&= \pm 2 \sigma_{\pm},
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:pauliMatrixXYgeometry:80}
\begin{aligned}
\antisymmetric{\sigma_{+}}{\sigma_{-}}
&=
\lr{ \sigma_x + i \sigma_y } \lr{ \sigma_x – i \sigma_y }
-\lr{ \sigma_x – i \sigma_y } \lr{ \sigma_x + i \sigma_y } \\
&=
-i \sigma_x \sigma_y + i \sigma_y \sigma_x
– i \sigma_x \sigma_y + i \sigma_y \sigma_x \\
&= 2 i \antisymmetric{ \sigma_y }{\sigma_x} \\
&= 2 i (-2i) \sigma_z \\
&= 4 \sigma_z
\end{aligned}
\end{equation}

From these a matrix representation containing unknown values can be assumed. Let

\begin{equation}\label{eqn:pauliMatrixXYgeometry:100}
\sigma_{+} =
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}.
\end{equation}

The commutator with \( \sigma_z \) can be computed

\begin{equation}\label{eqn:pauliMatrixXYgeometry:120}
\begin{aligned}
\antisymmetric{\sigma_z}{\sigma_{+}}
&=
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}

\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\\
&=
\begin{bmatrix}
a & b \\
-c & -d
\end{bmatrix}

\begin{bmatrix}
a & -b \\
c & -d
\end{bmatrix} \\
&=
2
\begin{bmatrix}
0 & b \\
-c & 0
\end{bmatrix}
\end{aligned}
\end{equation}

Now compare this with \ref{eqn:pauliMatrixXYgeometry:60}

\begin{equation}\label{eqn:pauliMatrixXYgeometry:140}
2
\begin{bmatrix}
0 & b \\
-c & 0
\end{bmatrix}
=
2 \sigma_{+}
=
2
\begin{bmatrix}
a & b \\
d & d
\end{bmatrix}.
\end{equation}

This shows that \( a = 0 \), and \( d = 0 \). Similarly the \( \sigma_z \) commutator with the lowering operator is

\begin{equation}\label{eqn:pauliMatrixXYgeometry:160}
\begin{aligned}
\antisymmetric{\sigma_z}{\sigma_{-}}
&=
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\begin{bmatrix}
0 & -c^\conj \\
b^\conj & 0
\end{bmatrix}

\begin{bmatrix}
0 & -c^\conj \\
b^\conj & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\\
&=
\begin{bmatrix}
0 & -c^\conj \\
-b^\conj & 0
\end{bmatrix}

\begin{bmatrix}
0 & c^\conj \\
b^\conj & 0
\end{bmatrix} \\
&=
-2
\begin{bmatrix}
0 & c^\conj \\
b^\conj & 0
\end{bmatrix}
\end{aligned}
\end{equation}

Again comparing to \ref{eqn:pauliMatrixXYgeometry:60}, we have
\begin{equation}\label{eqn:pauliMatrixXYgeometry:180}
-2
\begin{bmatrix}
0 & c^\conj \\
b^\conj & 0
\end{bmatrix}
= – 2 \sigma_{-}
= – 2
\begin{bmatrix}
0 & -c^\conj \\
b^\conj & 0
\end{bmatrix},
\end{equation}

so \( c = 0 \). Computing the commutator of the raising and lowering operators fixes \( b \)

\begin{equation}\label{eqn:pauliMatrixXYgeometry:200}
\begin{aligned}
\antisymmetric{\sigma_{+}}{\sigma_{-}}
&=
\begin{bmatrix}
0 & b \\
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
b^\conj & 0 \\
\end{bmatrix}

\begin{bmatrix}
0 & 0 \\
b^\conj & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & b \\
0 & 0 \\
\end{bmatrix} \\
&=
\begin{bmatrix}
\Abs{b}^2 & 0 \\
0 & 0
\end{bmatrix}

\begin{bmatrix}
0 & 0
0 & -\Abs{b}^2 \\
\end{bmatrix} \\
&=
\Abs{b}^2
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\\
&=
\Abs{b}^2 \sigma_z.
\end{aligned}
\end{equation}

From \ref{eqn:pauliMatrixXYgeometry:80} it must be that \( \Abs{b}^2 = 4\), so the most general form of the raising operator is

\begin{equation}\label{eqn:pauliMatrixXYgeometry:220}
\sigma_{+}
=
2
\begin{bmatrix}
0 & e^{i \phi} \\
0 & 0
\end{bmatrix}.
\end{equation}

Observation

The conventional choice is to set \( \phi = 0 \), but I found it interesting to see the form of \( \sigma_x, \sigma_y \) without that choice. That is

\begin{equation}\label{eqn:pauliMatrixXYgeometry:240}
\begin{aligned}
\sigma_x
&= \inv{2} \lr{ \sigma_{+} + \sigma_{-} } \\
&=
\begin{bmatrix}
0 & e^{i \phi} \\
e^{-i \phi} & 0 \\
\end{bmatrix}
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:pauliMatrixXYgeometry:260}
\begin{aligned}
\sigma_y
&= \inv{2 i} \lr{ \sigma_{+} – \sigma_{-} } \\
&=
\begin{bmatrix}
0 & -i e^{i \phi} \\
-i e^{-i \phi} & 0 \\
\end{bmatrix} \\
&=
\begin{bmatrix}
0 & e^{i (\phi – \pi/2) } \\
e^{-i (\phi – \pi/2)} & 0 \\
\end{bmatrix}.
\end{aligned}
\end{equation}

Notice that the Pauli matrices \( \sigma_x \) and \( \sigma_y \) actually both have the same form as \( \sigma_x \), but the phase of the complex argument of each differs by \(90^\circ\). That \( 90^\circ \) separation isn’t obvious in the standard form \ref{eqn:pauliMatrixXYgeometry:20}.

It’s a small detail, but I thought it was kind of cool that the orthogonality of these matrix unit vector representations is built directly into the structure of their matrix representations.

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

Update to old phy356 (Quantum Mechanics I) notes.

February 12, 2015 math and physics play , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

It’s been a long time since I took QM I. My notes from that class were pretty rough, but I’ve cleaned them up a bit.

The main value to these notes is that I worked a number of introductory Quantum Mechanics problems.

These were my personal lecture notes for the Fall 2010, University of Toronto Quantum mechanics I course (PHY356H1F), taught by Prof. Vatche Deyirmenjian.

The official description of this course was:

The general structure of wave mechanics; eigenfunctions and eigenvalues; operators; orbital angular momentum; spherical harmonics; central potential; separation of variables, hydrogen atom; Dirac notation; operator methods; harmonic oscillator and spin.

This document contains a few things

• My lecture notes.
Typos, if any, are probably mine(Peeter), and no claim nor attempt of spelling or grammar correctness will be made. The first four lectures had chosen not to take notes for since they followed the text very closely.
• Notes from reading of the text. This includes observations, notes on what seem like errors, and some solved problems. None of these problems have been graded. Note that my informal errata sheet for the text has been separated out from this document.
• Some assigned problems. I have corrected some the errors after receiving grading feedback, and where I have not done so I at least recorded some of the grading comments as a reference.
• Some worked problems associated with exam preparation.