Fourier transform

A Green’s function solution to falling with resistance problem.

January 30, 2025 math and physics play , , , , , , , ,

[Click here for a PDF version of this post]

Motivation.

In a fun twitter/x post, we have a Green’s function solution to a constant acceleration problem with drag. The post is meant to be a joke, as the stated problem is: “A boy drops a ball from a height \( h \). What is the speed of the ball when it reaches the floor (no drag)?”

The joke is that nobody would solve this problem using Green’s functions, and nobody would solve this function using Green’s functions for the more general case, allowing for drag. Instead, you’d just solve this using energy balance, which makes the problem trivial.

That said, there are actually lots of cool ideas in the Green’s function method on the joke side of the solution.

So let’s play along with the joke and solve the general damped problem with Green’s functions. Along the way, we can fill in the missing details, and also explore some supplemental ideas that are worth understanding.

Setup.

The equation of motion is
\begin{equation}\label{eqn:greensDropWithResistance:20}
m \frac{d^2 \Bx}{dt^2} = – \gamma \frac{d \Bx}{dt} – m \Bg,
\end{equation}
where \( \Bg \) is a constant (positively oriented) force. The first detail that needs to be included, is that this isn’t the differential equation for the stated problem, and will become problematic should we attempt to apply Green’s function methods. We have to account for the “boy drops” part of the problem statement, and solve with a different forcing function, namely
\begin{equation}\label{eqn:greensDropWithResistance:40}
m \frac{d^2 \Bx}{dt^2} = – \gamma \frac{d \Bx}{dt} – m \Bg \Theta(t).
\end{equation}
This revised model of the system begins the application of the constant (gravitational) force, at time \( t = 0 \). This is now a system that will yield to Green’s function methods.

Fourier transform solution.

The joke solution has strong hints that Fourier transform methods were part of the story. In particular, it appears that the following definitions of the transform pair were used
\begin{equation}\label{eqn:greensDropWithResistance:60}
\begin{aligned}
\hatU(\omega) = F(u(t)) &= \int_{-\infty}^\infty u(t) e^{-i\omega t} dt \\
u(t) = F^{-1}(\hatU(\omega)) &= \inv{2\pi} \int_{-\infty}^\infty \hatU(\omega) e^{i\omega t} d\omega.
\end{aligned}
\end{equation}
However, if we are using Fourier transforms, why bother with Green’s functions? Instead, we can just solve for the system response using Fourier transforms. When looking for the system response, we usually pose the problem with more generality. For example, instead of the specific theta-weighted constant gravitational forcing function above, we seek to find the solution of
\begin{equation}\label{eqn:greensDropWithResistance:80}
m \frac{d^2 \Bx}{dt^2} + \gamma \frac{d \Bx}{dt} = \BF(t).
\end{equation}
We start by assuming that the Fourier transforms of \( \Bx(t), \BF(t) \) are \( \hat{\BX}(\omega), \hat{\BF}(\omega) \) so
\begin{equation}\label{eqn:greensDropWithResistance:100}
\Bx(t) = \inv{2\pi} \int_{-\infty}^\infty e^{i\omega t} \hat{\BX}(\omega) d\omega.
\end{equation}
Derivatives of this presumed Fourier representation are trivial
\begin{equation}\label{eqn:greensDropWithResistance:120}
\begin{aligned}
\Bx'(t) &= \inv{2\pi} \int_{-\infty}^\infty \lr{ i\omega } e^{i\omega t} \hat{\BX}(\omega) d\omega \\
\Bx”(t) &= \inv{2\pi} \int_{-\infty}^\infty \lr{ i\omega }^2 e^{i\omega t} \hat{\BX}(\omega) d\omega,
\end{aligned}
\end{equation}
so the frequency representation of our system is
\begin{equation}\label{eqn:greensDropWithResistance:140}
\inv{2\pi} \int_{-\infty}^\infty \lr{ m \lr{ i\omega }^2 + \gamma \lr{ i\omega} } e^{i\omega t} \hat{\BX}(\omega) d\omega
=
\inv{2\pi} \int_{-\infty}^\infty e^{i\omega t} \hat{\BF}(\omega) d\omega,
\end{equation}
or
\begin{equation}\label{eqn:greensDropWithResistance:160}
\hat{\BX}(\omega) = \frac{\hat{\BF}(\omega)}{-m \omega^2 + i \omega \gamma}.
\end{equation}
We now only have to inverse Fourier transform to find a solution, namely
\begin{equation}\label{eqn:greensDropWithResistance:180}
\begin{aligned}
\Bx(t)
&= \inv{2\pi} \int_{-\infty}^\infty e^{i\omega t} \frac{\hat{\BF}(\omega)}{-m \omega^2 + i \omega \gamma} d\omega \\
&= \inv{2\pi} \int_{-\infty}^\infty e^{i\omega t} \frac{1}{-m \omega^2 + i \omega \gamma} d\omega
\int_{-\infty}^\infty \BF(t’) e^{-i \omega t’} dt’ \\
&= \int_{-\infty}^\infty \lr{ -\inv{2\pi} \int_{-\infty}^\infty \frac{ e^{i\omega (t-t’)} }{m \omega^2 – i \omega \gamma} d\omega }F(t’) dt’,
\end{aligned}
\end{equation}
or
\begin{equation}\label{eqn:greensDropWithResistance:200}
\Bx(t) = \int_{-\infty}^\infty G(t – t’) \BF(t’) dt’,
\end{equation}
where
\begin{equation}\label{eqn:greensDropWithResistance:220}
G(\tau) = -\inv{2\pi} \int_{-\infty}^\infty \frac{ e^{i\omega \tau} }{\omega\lr{ m \omega – i \gamma}} d\omega.
\end{equation}

We’ve been fast and loose above, swapping order of integration without proper justification, and have assumed that all Fourier transforms and inverse transforms exist. Given all those assumptions, we now have a general solution for the system, requiring only the convolution of our driving force \( F(t) \) with the system response function \( G(t) \). The only caveat is that we have to be able to perform the integral for the system response function, and that integral does not exist.

There are lots of integrals that do not strictly exist when playing the fast and loose physicist game with Fourier transforms. One such example can be found by looking at any transform pair. For example, given \( u(t) = F^{-1}(\hatU(\omega)) \), we have
\begin{equation}\label{eqn:greensDropWithResistance:240}
\begin{aligned}
u(t)
&= \inv{2\pi} \int_{-\infty}^\infty \hatU(\omega) e^{i\omega t} d\omega \\
&= \inv{2\pi} \int_{-\infty}^\infty \lr{ \int_{-\infty}^\infty u(t’) e^{-i\omega t’} dt’ } e^{i\omega t} d\omega \\
&= \int_{-\infty}^\infty u(t’) \lr{ \inv{2\pi} \int_{-\infty}^\infty e^{i\omega (t-t’)} d\omega } dt’.
\end{aligned}
\end{equation}
This is exactly the sort of integration order swapping that we did to find the system response function above, and we are left with a statement that \( f(t) \) is the convolution of \( f(t) \), with another, also non-integrable, convolution kernel. Any physics student will recognize that kernel as a representation of the Dirac delta function, and without blinking, would just write
\begin{equation}\label{eqn:greensDropWithResistance:260}
\delta(\tau) = \inv{2\pi} \int_{-\infty}^\infty e^{i\omega \tau} d\omega,
\end{equation}
without worrying that it is not possible to evaluate this integral. Somebody who is trying to use the right mathematical language, would say that this isn’t a function, but is, instead a distribution. Just like this delta function distribution, our system response integral, something that we also cannot actually evaluate in a strict sense, is a distribution. It’s a beastie that has delta function like characteristics, and if we want to try to integrate it, we have to play sneaky games.

Let’s put off evaluating that integral for now, and return to the Green’s function description of the story.

The Green’s function picture.

Using Fourier transforms, we found that it theoretically possible to find a convolution solution to the system, and found the convolution kernel for the system. The rough idea behind Green’s functions is to assume that such a convolution exists, say
\begin{equation}\label{eqn:greensDropWithResistance:280}
\Bx(t) = \Bx_0(t) + \int_{-\infty}^\infty G(t,t’) \BF(t’) dt’,
\end{equation}
where \( \Bx_0(t) \) is any solution of the homogeneous problem satisfying, in this case,
\begin{equation}\label{eqn:greensDropWithResistance:300}
m \frac{d^2}{dt^2} \Bx_0(t) + \gamma \frac{d}{dt} \Bx_0(t) = 0,
\end{equation}
and \( G(t,t’) \) is a convolution kernel, representing the system response, to be determined.
If we plug this presumed solution into our differential equation, we find
\begin{equation}\label{eqn:greensDropWithResistance:320}
\int_{-\infty}^\infty \lr{
m \frac{\partial^2}{\partial t^2} G(t,t’)
+ \gamma \frac{\partial}{\partial t} G(t,t’)
} \BF(t’) dt’
=
\BF(t),
\end{equation}
but
\begin{equation}\label{eqn:greensDropWithResistance:340}
\BF(t) = \int_{-\infty}^\infty \BF(t’) \delta(t – t’) dt’,
\end{equation}
so, if we can find \( G \) satisfying
\begin{equation}\label{eqn:greensDropWithResistance:360}
m \frac{\partial^2}{\partial t^2} G(t,t’) + \gamma \frac{\partial}{\partial t} G(t,t’) = \delta(t – t’),
\end{equation}
then we have solved the system. We can simplify this slightly by presuming that the \( t,t’ \) dependence is always a difference, and seek \( G(\tau) \) such that
\begin{equation}\label{eqn:greensDropWithResistance:380}
m G”(\tau) + \gamma G'(\tau) = \delta(\tau).
\end{equation}
We now pull the Fourier transform out of our toolbox again, assuming that
\begin{equation}\label{eqn:greensDropWithResistance:400}
G(\tau) = \inv{2 \pi} \int_{-\infty}^\infty \hat{G}(\omega) e^{i\omega\tau} d\omega,
\end{equation}
for which
\begin{equation}\label{eqn:greensDropWithResistance:420}
\inv{2 \pi} \int_{-\infty}^\infty \lr{ m \lr{ i \omega }^2 + \gamma \lr{ i \omega } } \hat{G}(\omega) e^{i\omega \tau} d\omega
=
\inv{2 \pi } \int_{-\infty}^\infty e^{i\omega \tau} d\omega,
\end{equation}
or
\begin{equation}\label{eqn:greensDropWithResistance:440}
\hat{G}(\omega) = \inv{ m \lr{ i \omega }^2 + \gamma \lr{ i \omega } }.
\end{equation}
This is the Fourier transform of the Green’s function, and is exactly what we found earlier using pure Fourier transforms. Our starting point was different this time, as we just blatantly assumed that the solution had a convolution structure. We then found a differential equation for that convolution kernel, the Green’s function. Only then did we pull the Fourier transform out of the toolbox to attempt to find the structure of that Green’s function.

Evaluating the Green’s function integral.

We can’t go any further without figuring out what to do with our nasty little divergent integral \ref{eqn:greensDropWithResistance:220}. We may coerce this into something that we can evaluate using standard contour integration, if we offset the pole at the origin slightly. Given \( \epsilon > 0 \), let’s evaluate
\begin{equation}\label{eqn:greensDropWithResistance:460}
G(\tau, \epsilon) = -\inv{2\pi} \oint \frac{ e^{i z \tau} }{\lr{ z – i \epsilon } \lr{ m z – i \gamma}} dz.
\end{equation}
We can evaluate this integral using infinite semicircular contours, using an upper half plane contour for \( \tau > 0 \) and a lower half plane contour for \( \tau < 0 \), as illustrated in fig. 1, and fig. 2.

 

fig. 1. Contour for tau > 0.

 

 

fig. 2. Contour for tau < 0.

By Jordan’s lemma, that upper half plane infinite semicircular part of the contour integral is zero for the \( \tau > 0 \) case, and for the \( \tau < 0 \) case, the lower half plane infinite semicircular part of the contour integral is zero. We can proceed with the residue calculations. In the upper half plane, we have both of the enclosed poles, so \begin{equation}\label{eqn:greensDropWithResistance:480} \begin{aligned} G(\tau > 0, \epsilon)
&= -\inv{2\pi m } \int_{-\infty}^\infty \frac{ e^{i \omega \tau} }{\lr{ \omega – i \epsilon } \lr{ \omega – i \gamma/m}} d\omega \\
&= -\frac{ 2 \pi i }{ 2 \pi m} \lr{
\evalbar{ \frac{ e^{i z \tau} }{ z – i \gamma/m} }{z = i \epsilon}
+
\evalbar{ \frac{ e^{i z \tau} }{ z – i \epsilon } }{ z = i \gamma/m}
} \\
&=
-\frac{i}{m} \lr{
\frac{ e^{-\epsilon \tau} }{ i \epsilon – i \gamma/m}
+
\frac{ e^{-\gamma\tau/m} }{ i \gamma/m – i \epsilon }
} \\
&=
-\lr{
\frac{e^{-\epsilon \tau}}{ m \epsilon – \gamma }
+
\frac{ e^{-\gamma\tau/m} }{ \gamma – m \epsilon }
},
\end{aligned}
\end{equation}
and for the lower half plane, where there are no enclosed poles we have \( G(\tau < 0, \epsilon) = 0 \). In the \( \epsilon \rightarrow 0 \) limit, we are left with
\begin{equation}\label{eqn:greensDropWithResistance:500}
G(\tau) = \inv{\gamma} \lr{ 1 – e^{-\gamma \tau/m} } \Theta(\tau).
\end{equation}

Back to the original problem.

We may now go and find the specific solution for the original problem where \( F(t) = – m g \Be_2 \Theta(t) \). That solution is
\begin{equation}\label{eqn:greensDropWithResistance:520}
\begin{aligned}
\Bx(t)
&= \Bx(0) + \int_{-\infty}^\infty G(t – t’) \lr{ – m g \Be_2 \Theta(t’) } dt’ \\
&= \Bx(0) – m g \Be_2 \int_{-\infty}^\infty \frac{\Theta(t – t’)}{\gamma} \lr{ 1 – e^{-\gamma \lr{ t – t’}/m } } \Theta(t’) dt’ \\
&= \Bx(0) – m g \Be_2 \int_{0}^\infty \frac{\Theta(t – t’)}{\gamma} \lr{ 1 – e^{-\gamma \lr{ t – t’}/m } } dt’ \\
&= \Bx(0) – \frac{m g}{\gamma} \Be_2 \int_{0}^t \lr{ 1 – e^{-\gamma \lr{ t – t’}/m } } dt’ \\
&= \Bx(0) – \frac{m g}{\gamma} \Be_2 \int_0^t \lr{ 1 – e^{-\gamma u/m } } du \\
&= \Bx(0) – \frac{m g}{\gamma} \Be_2 \evalrange{ \lr{ t’ – \frac{e^{-\gamma u/m } }{-\gamma/m} } }{u=0}{t} \\
&= \Bx(0) – \frac{m g}{\gamma} \Be_2 \lr{ t + \frac{m e^{-\gamma t/m }}{\gamma} – \frac{m}{\gamma} } \\
&= \Bx(0) – \frac{m g t}{\gamma} \Be_2 – \frac{m^2 g}{\gamma^2} \lr{ 1 – e^{-\gamma t/m } }.
\end{aligned}
\end{equation}

Ignoring the missing factor of \( g \) on the last term in the twitter slide, this is the final result before the limiting argument on that slide.

Having found the Green’s function for this system, we could then, fairly trivially, use it to solve similar systems with different forcing functions. For example, suppose we have a mass on a table, with friction, and a forcing function (perhaps sinusoidal) moving that mass. We could then figure out the time response for that particular forcing function, and would only have a convolution integral to evaluate. That general applicability is one of the beauties of these transform or Green’s function methods.

Green’s function video series is now done

March 15, 2022 math and physics play , , , , , , , ,

I’ve been working on a Green’s function video series, available on both Odysee and the old legacy CensorshipTube.  In this series, I am working from the great Dover book [1].  You can think of this book as a one stop shop containing most of the advanced mathematical tricks that any graduate student in physics or engineering would ever need.

I chose to leisurely visit most of the single variable Green’s function content from chapter 7 of this book in this video series, with focus on the damped forced harmonic oscillator problem
\begin{equation}\label{eqn:greens:20}
\LL x(t) = F(t),
\end{equation}
where
\begin{equation}\label{eqn:greens:40}
\LL = \frac{d^2}{dt^2} + 2 \gamma \frac{d}{dt} + \omega_0^2.
\end{equation}
In more pedestrian notation, this problem is the differential equation
\begin{equation}\label{eqn:greens:60}
x”(t) + 2 \gamma x'(t) + \omega_0^2 x(t) = F(t).
\end{equation}

Green’s function solution to the forced damped harmonic oscillator

In the first video, of what I thought would probably be three videos, we formally solve this problem, by attacking it with Fourier transform pairs
\begin{equation}\label{eqn:greens:80}
\begin{aligned}
\hat{f}(k) &= \inv{\sqrt{2\pi}} \int_{-\infty}^\infty e^{i k t} f(t) dt \\
f(t) &= \inv{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-i k t} \hat{f}(k) dk,
\end{aligned}
\end{equation}
and find a specific solution to the forcing problem
\begin{equation}\label{eqn:greens:100}
x(t) = \int_{-\infty}^\infty G(t,t’) F(t’) dt’,
\end{equation}
where our convolution kernel (later shown to satisfy the Green’s function criteria) is
\begin{equation}\label{eqn:greens:120}
G(t,t’) = -\inv{2 \pi} \int_{-\infty}^\infty \frac{e^{-ik(t-t’)}}{k^2 + 2 i \gamma k – \omega_0^2} dk.
\end{equation}
We also find that the homogeneous solutions have the form
\begin{equation}\label{eqn:greens:140}
x(t) = e^{-\gamma t \pm i \alpha t},
\end{equation}
where \( \alpha = \sqrt{ \omega_0^2 – \gamma_2 } \).

Evaluating the Fourier convolution kernel for the forced damped harmonic oscillator

In the second video we proceed to dig out our coutour integration techniques and use them to evaluate the convolution kernel. I do a very quick non-rigorous refresher and justification of contour integration and residue analysis, and then proceed to tackle our convolution kernel, rewritten as
\begin{equation}\label{eqn:greens:160}
G(t,t’) = -\inv{2 \pi} \int_{-\infty}^\infty \frac{e^{-ik(t-t’)}}{\lr{k – k_1}\lr{ k – k_2}} dk.
\end{equation}
We evaluate this in top and bottom half plane infinite closed semi-circular contours (both of which include the real axis component that we are interested in).  We find that the upper half semi-circular path is zero for \( t – t’ < 0 \), as is the entire integral, as it encloses no poles. We find that the lower half semi-circular path is zero for \( t – t’ > 0 \), so the real axis integral can be evaluated by computing the two residues.  In the end we find
\begin{equation}\label{eqn:greens:180}
G(t,t’) = \Theta(t – t’) e^{-\gamma(t-t’)} \frac{\sin(\alpha (t – t’))}{\alpha}.
\end{equation}
Incidentally, we see that the Green’s function, in this case, is a Heavyside-theta weighted superposition of homogeneous solutions. Specifically, if
\begin{equation}\label{eqn:greens:200}
\begin{aligned}
x_1(t) &= e^{-\gamma t + i \alpha t} \\
x_2(t) &= e^{-\gamma t – i \alpha t},
\end{aligned}
\end{equation}
then
\begin{equation}\label{eqn:greens:220}
G(t,t’) = \Theta(t-t’) \lr{
\frac{x_1(-t’)}{2 i \alpha} x_1(t)

\frac{x_2(-t’)}{2 i \alpha} x_2(t)
}.
\end{equation}
This becomes relevant later in the series when we derive and utilize Wrokskian determinant form of the Green’s function.

Showing that the convolution kernel for the forced damped harmonic oscillator is a Greens function

In the third video, we demonstrate that the convolution kernel that we derived using Fourier transforms, and contour integration, is in fact a Green’s function for the problem. That is
\begin{equation}\label{eqn:greens:240}
\LL G(t,t’) = \delta(t- t’).
\end{equation}
This is a formal way of expressing the fact that the Green’s function is an inverse of the linear operator. Specifically, given
\begin{equation}\label{eqn:greens:260}
x(t) = \int_{-\infty}^{\infty} G(t,t’) F(t’) dt’,
\end{equation}
then application of our linear operator to both sides gives
\begin{equation}\label{eqn:greens:280}
\LL x(t) = \int_{-\infty}^{\infty} \LL G(t,t’) F(t’) dt’,
\end{equation}
so if \ref{eqn:greens:240} is true, we have
\begin{equation}\label{eqn:greens:300}
\LL x(t) = F(t),
\end{equation}
as desired.

Green’s function for a first order linear system: two different ways

My trilogy in four parts steps backwards slightly in preparation for examination of the Wronskian method of Green’s function construction. Here I tackle one of the simplest first order single variable systems, that of
\begin{equation}\label{eqn:greens:320}
\LL = \frac{d}{dt} + \alpha.
\end{equation}
We derive the Green’s function, first using the now familiar Fourier transform and contour integration methods, and then attempt to find the Green’s function by demanding that it has the structure of a piecewise superposition of homogeneous solutions, which is the method used in the book for second order systems. Since we have a first order system, our superposition is trivially simple, as it requires only scaling our homogeneous solution \( x_1(t) = e^{-\alpha t} \) in each of the domains
\begin{equation}\label{eqn:greens:340}
\begin{aligned}
G(t,t’) &= A x_1(t), \quad t – t’ > 0 \\
G(t,t’) &= B x_1(t), \quad t – t’ < 0.
\end{aligned}
\end{equation}
We find that
\begin{equation}\label{eqn:greens:360}
G(t,t’) = B e^{-\alpha t} + \Theta(t- t’) e^{-\alpha (t – t’) }.
\end{equation}
The second term is precisely what we found by direct Fourier transformation, and the first is related to the boundary conditions for the Green’s function itself, something that we address in the final video.

Wronskian form for the Green’s Function of a general 2nd order one variable differential equation

In this part of my trilogy in five parts, we derive the Wronskian form of the Green’s function for a second order differential equation. Given
\begin{equation}\label{eqn:greens:380}
\LL = f_0(t) \frac{d^2}{dt^2} + f_1(t) \frac{d}{dt} + f_2(t),
\end{equation}
and two homogenous solutions \( x_1(t), x_2(t) \), we find
\begin{equation}\label{eqn:greens:400}
G(t,t’) = \alpha x_1(t) + \beta x_2(t) +
\frac{\Theta(t- t’)}{f_0(t’)} \frac{
\begin{vmatrix}
x_1(t’) & x_2(t’) \\
x_1(t) & x_2(t) \\
\end{vmatrix}
}
{
\begin{vmatrix}
x_1(t’) & x_2(t’) \\
x_1′(t’) & x_2′(t’) \\
\end{vmatrix}
}.
\end{equation}
We use this to re-derive the Green’s function for the forced, damped, harmonic oscillator, finding the previous result from Fourier-transform and contour integration (provided we set \( \alpha = \beta = 0 \).)

Green’s function boundary value conditions

In this final sixth video, my channelling of Douglas Adams (trilogy in four and then five parts) fails completely. However, I do finally address boundary conditions for the Green’s function itself. I don’t use the damped forced harmonic oscillator, but the very simplest second order system
\begin{equation}\label{eqn:greens:420}
x”(t) = F(t).
\end{equation}
I chose this equation, and not the damped forced HO, because the Green’s function for this system was derived twice in the text by direct integration. Once for the single point boundary condition
\begin{equation}\label{eqn:greens:440}
\begin{aligned}
x(a) &= x_0 \\
x'(a) &= \bar{x}_0,
\end{aligned}
\end{equation}
and once for a two point boundary condition
\begin{equation}\label{eqn:greens:460}
\begin{aligned}
x(0) &= x_0 \\
x(1) &= x_1.
\end{aligned}
\end{equation}

I apply the Wronskian method to derive the Green’s function for this differential operator, which is just
\begin{equation}\label{eqn:greens:480}
G(t,t’) = \alpha + \beta t + \lr{t-t’} \Theta(t-t’),
\end{equation}
and then proceed to apply the pair of boundary conditions to the Green’s function, fixing the \( \alpha \) and \( \beta \) constants for each. There’s a bit of subtlety and hand waving required to get the right results, so it is probably worth repeating the problem for some more complex cases in the future and making sure that I do fully understand how this works. I am able to rederive the Green’s functions from the text for each of the two boundary condition cases.

This business of application of the boundary conditions to the Green’s function itself is very important, and as I found back when I took QM-I (phy356). If you don’t do it, then you get the wrong answers. Perhaps, now finally armed with a better understanding of the tools, I should go back, find that problem again and try it anew.

References

[1] F.W. Byron and R.W. Fuller. Mathematics of Classical and Quantum Physics. Dover Publications, 1992.

Geometric algebra notes collection split into two volumes

November 10, 2015 math and physics play , , , , , , , , , , , , ,

I’ve now split my (way too big) Exploring physics with Geometric Algebra into two volumes:

Each of these is now a much more manageable size, which should facilitate removing the redundancies in these notes, and making them more properly book like.

Also note I’ve also previously moved “Exploring Geometric Algebra” content related to:

  • Lagrangian’s
  • Hamiltonian’s
  • Noether’s theorem

into my classical mechanics collection (449 pages).