Mathematica

Mathematica notebooks updated, and a bivector addition visualization.

February 10, 2019 math and physics play , , ,

This blog now has a copy of all my Mathematica notebooks (as of Feb 10, 2019), complete with a chronological index.  I hadn’t updated that index since 2014, and it was quite stale.

I’ve also added an additional level of per-directory indexing.  For example, you can now look at just the notebooks for my book, Geometric Algebra for Electrical Engineers.  That was possible before, but you would have had to clone the entire git repository to be able to do so easily.

This update includes a new notebook written today, which has a Manipulate visualization of 3D bivector addition that is kind of fun.

Bivector addition, at least in 3D, can be done graphically almost like vector addition.  Instead of trying to add the planes (which can be done, as in the neat illustration in Geometric Algebra for Computer Science), you can do the task more simply by connecting the normals head to tail, where each of the normals are scaled by the area of the bivector (i.e. it’s absolute magnitude).  The resulting bivector has an area equal to the length of that sum of normals, and a “direction” perpendicular to that resulting normal.  This fun little Manipulate lets you interactively visualize this process, by changing the radius of a set of summed bivectors, each oriented in a different direction, and observing the effects of doing so.

Of course, you can interpret this visualization as nothing more than a representation of addition of cross products, if you were to interpret the vector representing a cross product as an oriented area with a normal equal to that cross product (where the normal’s magnitude equals the area, as in this bivector addition visualization.)  This works out nicely because of the duality relationship between the cross and wedge product, and the duality relationship between 3D bivectors and their normals.

Electric field due to spherical shell

August 24, 2016 math and physics play , ,

[Click here for a PDF of this post with nicer formatting]

Here’s a problem (2.7) from [1], to calculate the field due to a spherical shell. The field is

\begin{equation}\label{eqn:griffithsEM2_7:20}
\BE = \frac{\sigma}{4 \pi \epsilon_0} \int \frac{(\Br – \Br’)}{\Abs{\Br – \Br’}^3} da’,
\end{equation}

where \( \Br’ \) is the position to the area element on the shell. For the test position, let \( \Br = z \Be_3 \). We need to parameterize the area integral. A complex-number like geometric algebra representation works nicely.

\begin{equation}\label{eqn:griffithsEM2_7:40}
\begin{aligned}
\Br’
&= R \lr{ \sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta } \\
&= R \lr{ \Be_1 \sin\theta \lr{ \cos\phi + \Be_1 \Be_2 \sin\phi } + \Be_3 \cos\theta } \\
&= R \lr{ \Be_1 \sin\theta e^{i\phi} + \Be_3 \cos\theta }.
\end{aligned}
\end{equation}

Here \( i = \Be_1 \Be_2 \) has been used to represent to horizontal rotation plane.

The difference in position between the test vector and area-element is

\begin{equation}\label{eqn:griffithsEM2_7:60}
\Br – \Br’
= \Be_3 \lr{ z – R \cos\theta } – R \Be_1 \sin\theta e^{i \phi},
\end{equation}

with an absolute squared length of

\begin{equation}\label{eqn:griffithsEM2_7:80}
\begin{aligned}
\Abs{\Br – \Br’ }^2
&= \lr{ z – R \cos\theta }^2 + R^2 \sin^2\theta \\
&= z^2 + R^2 – 2 z R \cos\theta.
\end{aligned}
\end{equation}

As a side note, this is a kind of fun way to prove the old “cosine-law” identity. With that done, the field integral can now be expressed explicitly

\begin{equation}\label{eqn:griffithsEM2_7:100}
\begin{aligned}
\BE
&= \frac{\sigma}{4 \pi \epsilon_0} \int_{\phi = 0}^{2\pi} \int_{\theta = 0}^\pi R^2 \sin\theta d\theta d\phi
\frac{\Be_3 \lr{ z – R \cos\theta } – R \Be_1 \sin\theta e^{i \phi}}
{
\lr{z^2 + R^2 – 2 z R \cos\theta}^{3/2}
} \\
&= \frac{2 \pi R^2 \sigma \Be_3}{4 \pi \epsilon_0} \int_{\theta = 0}^\pi \sin\theta d\theta
\frac{z – R \cos\theta}
{
\lr{z^2 + R^2 – 2 z R \cos\theta}^{3/2}
} \\
&= \frac{2 \pi R^2 \sigma \Be_3}{4 \pi \epsilon_0} \int_{\theta = 0}^\pi \sin\theta d\theta
\frac{ R( z/R – \cos\theta) }
{
(R^2)^{3/2} \lr{ (z/R)^2 + 1 – 2 (z/R) \cos\theta}^{3/2}
} \\
&= \frac{\sigma \Be_3}{2 \epsilon_0} \int_{u = -1}^{1} du
\frac{ z/R – u}
{
\lr{1 + (z/R)^2 – 2 (z/R) u}^{3/2}
}.
\end{aligned}
\end{equation}

Observe that all the azimuthal contributions get killed. We expect that due to the symmetry of the problem. We are left with an integral that submits to Mathematica, but doesn’t look fun to attempt manually. Specifically

\begin{equation}\label{eqn:griffithsEM2_7:120}
\int_{-1}^1 \frac{a-u}{\lr{1 + a^2 – 2 a u}^{3/2}} du
=
\left\{
\begin{array}{l l}
\frac{2}{a^2} & \quad \mbox{if \( a > 1 \) } \\
0 & \quad \mbox{if \( a < 1 \) } \end{array} \right., \end{equation} so \begin{equation}\label{eqn:griffithsEM2_7:140} \boxed{ \BE = \left\{ \begin{array}{l l} \frac{\sigma (R/z)^2 \Be_3}{\epsilon_0} & \quad \mbox{if \( z > R \) } \\
0 & \quad \mbox{if \( z < R \) } \end{array} \right. } \end{equation} In the problem, it is pointed out to be careful of the sign when evaluating \( \sqrt{ R^2 + z^2 - 2 R z } \), however, I don't see where that is even useful?

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

Expectation of spherically symmetric 3D potential derivative

December 14, 2015 phy1520 , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: [1] pr 5.16

For a particle in a spherically symmetric potential \( V(r) \) show that

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:20}
\Abs{\psi(0)}^2 = \frac{m}{2 \pi \Hbar^2} \expectation{ \frac{dV}{dr} },
\end{equation}

for all s-states, ground or excited.

Then show this is the case for the 3D SHO and hydrogen wave functions.

A:

The text works a problem that looks similar to this by considering the commutator of an operator \( A \), later set to \( A = p_r = -i \Hbar \PDi{r}{} \) the radial momentum operator. First it is noted that

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:40}
0 = \bra{nlm} \antisymmetric{H}{A} \ket{nlm},
\end{equation}

since \( H \) operating to either the right or the left is the energy eigenvalue \( E_n \). Next it appears the author uses an angular momentum factoring of the squared momentum operator. Looking earlier in the text that factoring is found to be

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:60}
\frac{\Bp^2}{2m}
= \inv{2 m r^2} \BL^2 – \frac{\Hbar^2}{2m} \lr{ \PDSq{r}{} + \frac{2}{r} \PD{r}{} }.
\end{equation}

With
\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:80}
R = – \frac{\Hbar^2}{2m} \lr{ \PDSq{r}{} + \frac{2}{r} \PD{r}{} }.
\end{equation}

we have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:100}
\begin{aligned}
0
&= \bra{nlm} \antisymmetric{H}{p_r} \ket{nlm} \\
&= \bra{nlm} \antisymmetric{\frac{\Bp^2}{2m} + V(r)}{p_r} \ket{nlm} \\
&= \bra{nlm} \antisymmetric{\inv{2 m r^2} \BL^2 + R + V(r)}{p_r} \ket{nlm} \\
&= \bra{nlm} \antisymmetric{\frac{-\Hbar^2 l (l+1)}{2 m r^2} + R + V(r)}{p_r} \ket{nlm}.
\end{aligned}
\end{equation}

Let’s consider the commutator of each term separately. First

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:120}
\begin{aligned}
\antisymmetric{V}{p_r} \psi
&=
V p_r \psi

p_r V \psi \\
&=
V p_r \psi

(p_r V) \psi

V p_r \psi \\
&=

(p_r V) \psi \\
&=
i \Hbar \PD{r}{V} \psi.
\end{aligned}
\end{equation}

Setting \( V(r) = 1/r^2 \), we also have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:160}
\antisymmetric{\inv{r^2}}{p_r} \psi
=
-\frac{2 i \Hbar}{r^3} \psi.
\end{equation}

Finally
\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:180}
\begin{aligned}
\antisymmetric{\PDSq{r}{} + \frac{2}{r} \PD{r}{} }{ \PD{r}{}}
&=
\lr{ \partial_{rr} + \frac{2}{r} \partial_r } \partial_r

\partial_r \lr{ \partial_{rr} + \frac{2}{r} \partial_r } \\
&=
\partial_{rrr} + \frac{2}{r} \partial_{rr}

\lr{
\partial_{rrr} -\frac{2}{r^2} \partial_r + \frac{2}{r} \partial_{rr}
} \\
&=
-\frac{2}{r^2} \partial_r,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:200}
\antisymmetric{R}{p_r}
=-\frac{2}{r^2} \frac{-\Hbar^2}{2m} p_r
=\frac{\Hbar^2}{m r^2} p_r.
\end{equation}

Putting all the pieces back together, we’ve got
\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:220}
\begin{aligned}
0
&= \bra{nlm} \antisymmetric{\frac{-\Hbar^2 l (l+1)}{2 m r^2} + R + V(r)}{p_r} \ket{nlm} \\
&=
i \Hbar
\bra{nlm} \lr{
\frac{\Hbar^2 l (l+1)}{m r^3} – \frac{i\Hbar}{m r^2} p_r +
\PD{r}{V}
}
\ket{nlm}.
\end{aligned}
\end{equation}

Since s-states are those for which \( l = 0 \), this means

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:240}
\begin{aligned}
\expectation{\PD{r}{V}}
&= \frac{i\Hbar}{m } \expectation{ \inv{r^2} p_r } \\
&= \frac{\Hbar^2}{m } \expectation{ \inv{r^2} \PD{r}{} } \\
&= \frac{\Hbar^2}{m } \int_0^\infty dr \int_0^\pi d\theta \int_0^{2 \pi} d\phi r^2 \sin\theta \psi^\conj(r,\theta, \phi) \inv{r^2} \PD{r}{\psi(r,\theta,\phi)}.
\end{aligned}
\end{equation}

Since s-states are spherically symmetric, this is
\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:260}
\expectation{\PD{r}{V}}
= \frac{4 \pi \Hbar^2}{m } \int_0^\infty dr \psi^\conj \PD{r}{\psi}.
\end{equation}

That integral is

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:280}
\int_0^\infty dr \psi^\conj \PD{r}{\psi}
=
\evalrange{\Abs{\psi}^2}{0}{\infty} – \int_0^\infty dr \PD{r}{\psi^\conj} \psi.
\end{equation}

With the hydrogen atom, our radial wave functions are real valued. It’s reasonable to assume that we can do the same for other real-valued spherical potentials. If that is the case, we have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:300}
2 \int_0^\infty dr \psi^\conj \PD{r}{\psi}
=
\Abs{\psi(0)}^2,
\end{equation}

and

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:320}
\boxed{
\expectation{\PD{r}{V}}
= \frac{2 \pi \Hbar^2}{m } \Abs{\psi(0)}^2,
}
\end{equation}

which completes this part of the problem.

A: show this is the case for the 3D SHO and hydrogen wave functions

For a hydrogen like atom, in atomic units, we have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:360}
\begin{aligned}
\expectation{
\PD{r}{V}
}
&=
\expectation{
\PD{r}{} \lr{ -\frac{Z e^2}{r} }
} \\
&=
Z e^2
\expectation
{
\inv{r^2}
} \\
&=
Z e^2 \frac{Z^2}{n^3 a_0^2 \lr{ l + 1/2 }} \\
&=
\frac{\Hbar^2}{m a_0} \frac{2 Z^3}{n^3 a_0^2} \\
&=
\frac{2 \Hbar^2 Z^3}{m n^3 a_0^3}.
\end{aligned}
\end{equation}

On the other hand for \( n = 1 \), we have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:380}
\begin{aligned}
\frac{2 \pi \Hbar^2}{m} \Abs{R_{10}(0)}^2 \Abs{Y_{00}}^2
&=
\frac{2 \pi \Hbar^2}{m} \frac{Z^3}{a_0^3} 4 \inv{4 \pi} \\
&=
\frac{2 \Hbar^2 Z^3}{m a_0^3},
\end{aligned}
\end{equation}

and for \( n = 2 \), we have

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:400}
\begin{aligned}
\frac{2 \pi \Hbar^2}{m} \Abs{R_{20}(0)}^2 \Abs{Y_{00}}^2
&=
\frac{2 \pi \Hbar^2}{m} \frac{Z^3}{8 a_0^3} 4 \inv{4 \pi} \\
&=
\frac{\Hbar^2 Z^3}{4 m a_0^3}.
\end{aligned}
\end{equation}

These both match the potential derivative expectation when evaluated for the s-orbital (\( l = 0 \)).

For the 3D SHO I verified the ground state case in the Mathematica notebook sakuraiProblem5.16bSHO.nb

There it was found that

\begin{equation}\label{eqn:symmetricPotentialDerivativeExpectation:420}
\expectation{\PD{r}{V}}
= \frac{2 \pi \Hbar^2}{m } \Abs{\psi(0)}^2
= 2 \sqrt{\frac{m \omega ^3 \Hbar}{ \pi }}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

L_y perturbation

December 13, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Q: \( L_y \) perturbation. [1] pr. 5.17

Find the first non-zero energy shift for the perturbed Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:20}
H = A \BL^2 + B L_z + C L_y = H_0 + V.
\end{equation}

A:

The energy eigenvalues for state \( \ket{l, m} \) prior to perturbation are

\begin{equation}\label{eqn:LyPerturbation:40}
A \Hbar^2 l(l+1) + B \Hbar m.
\end{equation}

The first order energy shift is zero

\begin{equation}\label{eqn:LyPerturbation:60}
\begin{aligned}
\Delta^1
&=
\bra{l, m} C L_y \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
0,
\end{aligned}
\end{equation}

so we need the second order shift. Assuming no degeneracy to start, the perturbed state is

\begin{equation}\label{eqn:LyPerturbation:80}
\ket{l, m}’ = \sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m},
\end{equation}

and the next order energy shift is
\begin{equation}\label{eqn:LyPerturbation:100}
\begin{aligned}
\Delta^2
&=
\bra{l m} V
\sum’ \frac{\ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{\bra{l, m} V \ket{l’, m’} \bra{l’, m’}}{E_{l,m} – E_{l’, m’}} V \ket{l, m} \\
&=
\sum’ \frac{ \Abs{ \bra{l’, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l’, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{E_{l,m} – E_{l, m’}} \\
&=
\sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
\lr{ A \Hbar^2 l(l+1) + B \Hbar m }
-\lr{ A \Hbar^2 l(l+1) + B \Hbar m’ }
} \\
&=
\inv{B \Hbar} \sum_{m’ \ne m} \frac{ \Abs{ \bra{l, m’} V \ket{l, m} }^2 }{
m – m’
}.
\end{aligned}
\end{equation}

The sum over \( l’ \) was eliminated because \( V \) only changes the \( m \) of any state \( \ket{l,m} \), so the matrix element \( \bra{l’,m’} V \ket{l, m} \) must includes a \( \delta_{l’, l} \) factor.
Since we are now summing over \( m’ \ne m \), some of the matrix elements in the numerator should now be non-zero, unlike the case when the zero first order energy shift was calculated above.

\begin{equation}\label{eqn:LyPerturbation:120}
\begin{aligned}
\bra{l, m’} C L_y \ket{l, m}
&=
\frac{C}{2 i}
\bra{l, m’} \lr{ L_{+} – L_{-} } \ket{l, m} \\
&=
\frac{C}{2 i}
\bra{l, m’}
\lr{
L_{+}
\ket{l, m}
– L_{-}
\ket{l, m}
} \\
&=
\frac{C \Hbar}{2 i}
\bra{l, m’}
\lr{
\sqrt{(l – m)(l + m + 1)} \ket{l, m + 1}

\sqrt{(l + m)(l – m + 1)} \ket{l, m – 1}
} \\
&=
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.
\end{aligned}
\end{equation}

After squaring and summing, the cross terms will be zero since they involve products of delta functions with different indices. That leaves

\begin{equation}\label{eqn:LyPerturbation:140}
\begin{aligned}
\Delta^2
&=
\frac{C^2 \Hbar}{4 B} \sum_{m’ \ne m} \frac{
(l – m)(l + m + 1) \delta_{m’, m + 1}

(l + m)(l – m + 1) \delta_{m’, m – 1}
}{
m – m’
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{
\frac{ (l – m)(l + m + 1) }{ m – (m+1) }

\frac{ (l + m)(l – m + 1) }{ m – (m-1)}
} \\
&=
\frac{C^2 \Hbar}{4 B}
\lr{

(l^2 – m^2 + l – m)

(l^2 – m^2 + l + m)
} \\
&=
-\frac{C^2 \Hbar}{2 B} (l^2 – m^2 + l ),
\end{aligned}
\end{equation}

so to first order the energy shift is

\begin{equation}\label{eqn:LyPerturbation:160}
\boxed{
A \Hbar^2 l(l+1) + B \Hbar m \rightarrow
\Hbar l(l+1)
\lr{
A \Hbar
-\frac{C^2}{2 B}
}
+ B \Hbar m
+\frac{C^2 m^2 \Hbar}{2 B} .
}
\end{equation}

Exact perturbation equation

If we wanted to solve the Hamiltonian exactly, we’ve have to diagonalize the \( 2 m + 1 \) dimensional Hamiltonian

\begin{equation}\label{eqn:LyPerturbation:180}
\bra{l, m’} H \ket{l, m}
=
\lr{ A \Hbar^2 l(l+1) + B \Hbar m } \delta_{m’, m}
+
\frac{C \Hbar}{2 i}
\lr{
\sqrt{(l – m)(l + m + 1)} \delta_{m’, m + 1}

\sqrt{(l + m)(l – m + 1)} \delta_{m’, m – 1}
}.
\end{equation}

This Hamiltonian matrix has a very regular structure

\begin{equation}\label{eqn:LyPerturbation:200}
\begin{aligned}
H &=
(A l(l+1) \Hbar^2 – B \Hbar (l+1)) I \\
&+ B \Hbar
\begin{bmatrix}
1 & & & & \\
& 2 & & & \\
& & 3 & & \\
& & & \ddots & \\
& & & & 2 l + 1
\end{bmatrix} \\
&+
\frac{C \Hbar}{i}
\begin{bmatrix}
0 & -\sqrt{(2l-1)(1)} & & & \\
\sqrt{(2l-1)(1)} & 0 & -\sqrt{(2l-2)(2)}& & \\
& \sqrt{(2l-2)(2)} & & & \\
& & \ddots & & \\
& & & 0 & – \sqrt{(1)(2l-1)} \\
& & & \sqrt{(1)(2l-1)} & 0
\end{bmatrix}
\end{aligned}
\end{equation}

Solving for the eigenvalues of this Hamiltonian for increasing \( l \) in Mathematica (sakuraiProblem5.17a.nb), it appears that the eigenvalues are

\begin{equation}\label{eqn:LyPerturbation:220}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \sqrt{ 1 + \frac{4 C^2}{B^2} },
\end{equation}

so to first order in \( C^2 \), these are

\begin{equation}\label{eqn:LyPerturbation:221}
\lambda_m = A \Hbar^2 (l)(l+1) + \Hbar m B \lr{ 1 + \frac{2 C^2}{B^2} }.
\end{equation}

We have a \( C^2 \Hbar/B \) term in both the perturbative energy shift, and the first order expansion of the exact solution. Comparing this for the \( l = 5 \) case, the coefficients of \( C^2 \Hbar/B \) in the perturbative solution are all negative \( -17.5, -17., -16.5, -16., -15.5, -15., -14.5, -14., -13.5, -13., -12.5 \), whereas the coefficient of \( C^2 \Hbar/B \) in the first order expansion of the exact solution are \( 2 m \), ranging from \( [-10, 10] \).

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Antenna array design with Chebychev polynomials

March 23, 2015 ece1229 , , , ,

[Click here for a PDF of this post with nicer formatting]

Prof. Eleftheriades desribed a Chebychev antenna array design method that looks different than the one of the text [1].

Portions of that procedure are like that of the text. For example, if a side lobe level of \( 20 \log_{10} R \) is desired, a scaling factor

\begin{equation}\label{eqn:chebychevSecondMethod:20}
x_0 = \cosh\lr{ \inv{m} \cosh^{-1} R },
\end{equation}

is used. Given \( N \) elements in the array, a Chebychev polynomial of degree \( m = N – 1 \) is used. That is

\begin{equation}\label{eqn:chebychevSecondMethod:40}
T_m(x) = \cos\lr{ m \cos^{-1} x }.
\end{equation}

Observe that the roots \( x_n’ \) of this polynomial lie where

\begin{equation}\label{eqn:chebychevSecondMethod:60}
m \cos^{-1} x_n’ = \frac{\pi}{2} \pm \pi n,
\end{equation}

or

\begin{equation}\label{eqn:chebychevSecondMethod:80}
x_n’ = \cos\lr{ \frac{\pi}{2 m} \lr{ 2 n \pm 1 } },
\end{equation}

The class notes use the negative sign, and number \( n = 1,2, \cdots, m \). It is noted that the roots are symmetric with \( x_1′ = – x_m’ \), which can be seen by direct expansion

\begin{equation}\label{eqn:chebychevSecondMethod:100}
\begin{aligned}
x_{m-r}’
&= \cos\lr{ \frac{\pi}{2 m} \lr{ 2 (m – r) – 1 } } \\
&= \cos\lr{ \pi – \frac{\pi}{2 m} \lr{ 2 r + 1 } } \\
&= -\cos\lr{ \frac{\pi}{2 m} \lr{ 2 r + 1 } } \\
&= -\cos\lr{ \frac{\pi}{2 m} \lr{ 2 ( r + 1 ) – 1 } } \\
&= -x_{r+1}’.
\end{aligned}
\end{equation}

The next step in the procedure is the identification

\begin{equation}\label{eqn:chebychevSecondMethod:120}
\begin{aligned}
u_n’ &= 2 \cos^{-1} \lr{ \frac{x_n’}{x_0} } \\
z_n &= e^{j u_n’}.
\end{aligned}
\end{equation}

This has a factor of two that does not appear in the Balanis design method. It seems plausible that this factor of two was introduced so that the roots of the array factor \( z_n \) are conjugate pairs. Since \( \cos^{-1} (-z) = \pi – \cos^{-1} z \), this choice leads to such conjugate pairs

\begin{equation}\label{eqn:chebychevSecondMethod:140}
\begin{aligned}
\exp\lr{j u_{m-r}’}
&=
\exp\lr{j 2 \cos^{-1} \lr{ \frac{x_{m-r}’}{x_0} } } \\
&=
\exp\lr{j 2 \cos^{-1} \lr{ -\frac{x_{r+1}’}{x_0} } } \\
&=
\exp\lr{j 2 \lr{ \pi – \cos^{-1} \lr{ \frac{x_{r+1}’}{x_0} } } } \\
&=
\exp\lr{-j u_{r+1}}.
\end{aligned}
\end{equation}

Because of this, the array factor can be written

\begin{equation}\label{eqn:chebychevSecondMethod:180}
\begin{aligned}
\textrm{AF}
&= ( z – z_1 )( z – z_2 ) \cdots ( z – z_{m-1} ) ( z – z_m ) \\
&=
( z – z_1 )( z – z_1^\conj )
( z – z_2 )( z – z_2^\conj )
\cdots \\
&=
\lr{ z^2 – z ( z_1 + z_1^\conj ) + 1 }
\lr{ z^2 – z ( z_2 + z_2^\conj ) + 1 }
\cdots \\
&=
\lr{ z^2 – 2 z \cos\lr{ 2 \cos^{-1} \lr{ \frac{x_1′}{x_0} } } + 1 }
\lr{ z^2 – 2 z \cos\lr{ 2 \cos^{-1} \lr{ \frac{x_2′}{x_0} } } + 1 }
\cdots \\
&=
\lr{ z^2 – 2 z \lr{ 2 \lr{ \frac{x_1′}{x_0} }^2 – 1 } + 1 }
\lr{ z^2 – 2 z \lr{ 2 \lr{ \frac{x_2′}{x_0} }^2 – 1 } + 1 }
\cdots
\end{aligned}
\end{equation}

When \( m \) is even, there will only be such conjugate pairs of roots. When \( m \) is odd, the remainding factor will be

\begin{equation}\label{eqn:chebychevSecondMethod:160}
\begin{aligned}
z – e^{2 j \cos^{-1} \lr{ 0/x_0 } }
&=
z – e^{2 j \pi/2} \\
&=
z – e^{j \pi} \\
&=
z + 1.
\end{aligned}
\end{equation}

However, with this factor of two included, the connection between the final array factor polynomial \ref{eqn:chebychevSecondMethod:180}, and the Chebychev polynomial \( T_m \) is not clear to me. How does this scaling impact the roots?

Example: Expand \( \textrm{AF} \) for \( N = 4 \).

The roots of \( T_3(x) \) are

\begin{equation}\label{eqn:chebychevSecondMethod:200}
x_n’ \in \setlr{0, \pm \frac{\sqrt{3}}{2} },
\end{equation}

so the array factor is

\begin{equation}\label{eqn:chebychevSecondMethod:220}
\begin{aligned}
\textrm{AF}
&=
\lr{ z^2 + z \lr{ 2 – \frac{3}{x_0^2} } + 1 }\lr{ z + 1 } \\
&=
z^3
+ 3 z^2 \lr{ 1 – \frac{1}{x_0^2} }
+ 3 z \lr{ 1 – \frac{1}{x_0^2} }
+ 1.
\end{aligned}
\end{equation}

With \( 20 \log_{10} R = 30 \textrm{dB} \), \( x_0 = 2.1 \), so this is

\begin{equation}\label{eqn:chebychevSecondMethod:240}
\textrm{AF} = z^3 + 2.33089 z^2 + 2.33089 z + 1.
\end{equation}

With

\begin{equation}\label{eqn:chebychevSecondMethod:260}
z = e^{j (u + u_0) } = e^{j k d \cos\theta + j k u_0 },
\end{equation}

the array factor takes the form

\begin{equation}\label{eqn:chebychevSecondMethod:280}
\textrm{AF}
=
e^{j 3 k d \cos\theta + j 3 k u_0 }
+ 2.33089
e^{j 2 k d \cos\theta + j 2 k u_0 }
+ 2.33089
e^{j k d \cos\theta + j k u_0 }
+ 1.
\end{equation}

This array function is highly phase dependent, plotted for \( u_0 = 0 \) in fig. 1, and fig. 2.

ChebychevSecondMethodPolarFig3pn

fig 1. Plot with u_0 = 0, d = lambda/4

ChebychevSecondMethodSPolarFig4pn

fig 2. Spherical plot with u_0 = 0, d = lambda/4

This can be directed along a single direction (z-axis) with higher phase choices as illustrated in fig. 3, and fig. 4.

 

ChebychevSecondMethodPolarFig1pn

fig 3. Plot with u_0 = 3.5, d = 0.4 lambda

ChebychevSecondMethodSPolarFig2pn

fig 4. Spherical plot with u_0 = 3.5, d = 0.4 lambda

 

These can be explored interactively in this Mathematica Manipulate panel.

References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.