phy1520

Position operator in momentum space representation

November 8, 2015 phy1520 , ,

[Click here for a PDF of this post with nicer formatting]

A derivation of the position space representation of the momentum operator \( -i \Hbar \partial_x \) is made in [1], starting with the position-momentum commutator. Here I’ll repeat that argument for the momentum space representation of the position operator.

What we want to do is expand the matrix element of the commutator. First using the definition of the commutator

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:20}
\bra{p’} X P – P X \ket{p”}
=
i \Hbar \braket{p’}{p”}
=
i \Hbar \delta{p’ – p”},
\end{equation}

and then by inserting an identity operation in a momentum space basis

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:40}
\begin{aligned}
\bra{p’} X P – P X \ket{p”}
&=
\int dp
\bra{p’} X \ket{p}\bra{p} P \ket{p”}
-\int dp
\bra{p’} P \ket{p}\bra{p} X \ket{p”} \\
&=
\int dp
\bra{p’} X \ket{p} p \delta(p – p”)
-\int dp
p \delta(p’ – p)
\bra{p} X \ket{p”} \\
&=
\bra{p’} X \ket{p”} p”

p’ \bra{p’} X \ket{p”}.
\end{aligned}
\end{equation}

So we have

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:60}
\bra{p’} X \ket{p”} p”

p’ \bra{p’} X \ket{p”}
=
i \Hbar \delta{p’ – p”}.
\end{equation}

Because the RHS is zero whenever \( p’ \ne p” \), the matrix element \( \bra{p’} X \ket{p”} \) must also include a delta function. Let

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:80}
\bra{p’} X \ket{p”} = \delta(p’ – p”) X(p”).
\end{equation}

Because \ref{eqn:positionOperatorInMomentumSpace:60} is an operator equation that really only takes on meaning when applied to a wave function and integrated, we do that

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:100}
\int dp” \delta(p’ – p”) X(p”) p” \psi(p”)

\int dp” p’ \delta(p’ – p”) X(p”) \psi(p”)
=
\int dp” i \Hbar \delta{p’ – p”} \psi(p”),
\end{equation}

or
\begin{equation}\label{eqn:positionOperatorInMomentumSpace:120}
i \Hbar \psi(p’)
=
X(p’) p’ \psi(p’)

p’
X(p’) \psi(p’).
\end{equation}

Provided \( X(p’) \) operates on everything to its right, this equation is solved by setting

\begin{equation}\label{eqn:positionOperatorInMomentumSpace:140}
\boxed{
X(p’) = i \Hbar \PD{p’}{}.
}
\end{equation}

References

[1] BR Desai. Quantum mechanics with basic field theory. Cambridge University Press, 2009.

PHY1520H Graduate Quantum Mechanics. Lecture 13: Time reversal (cont.), and angular momentum. Taught by Prof. Arun Paramekanti

November 7, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering \textchapref{{4}}, \textchapref{{3}} [1] content.

Time reversal (cont.)

Given a time reversed state

\begin{equation}\label{eqn:qmLecture13:20}
\ket{\tilde{\Psi}(t)} = \Theta \ket{\Psi(0)}
\end{equation}

which can alternately be written

\begin{equation}\label{eqn:qmLecture13:40}
\Theta^{-1} \ket{\tilde{\Psi}(t)} = \ket{\Psi(-t)} = e^{i \hat{H} t/\Hbar} \ket{\Psi(0)}
\end{equation}

The left hand side can be expanded as the evolution of the state as found at time \( -t \)

\begin{equation}\label{eqn:qmLecture13:60}
\begin{aligned}
\Theta^{-1} \ket{\tilde{\Psi}(t)}
&=
\Theta^{-1} e^{-i \hat{H} t/\Hbar} \ket{\tilde{\Psi}(-t)} \\
&=
\Theta^{-1} e^{-i \hat{H} t/\Hbar} \Theta \ket{\Psi(0)}.
\end{aligned}
\end{equation}

To first order for a small time increment \( \delta t \), we have

\begin{equation}\label{eqn:qmLecture13:80}
\lr{ 1 + i \frac{\hat{H}}{\Hbar} \delta t } \ket{\Psi(0)} =
\Theta^{-1} \lr{ 1 – i \frac{\hat{H}}{\Hbar} \delta t } \Theta \ket{\Psi(0)},
\end{equation}

or

\begin{equation}\label{eqn:qmLecture13:120}
i \frac{\hat{H}}{\Hbar} \delta t \ket{\Psi(0)}
=
\Theta^{-1} (- i) \frac{\hat{H}}{\Hbar} \delta t \Theta \ket{\Psi(0)}.
\end{equation}

Since this holds for any state \( \ket{\Psi(0)} \), the time reversal operator satisfies

\begin{equation}\label{eqn:qmLecture13:140}
i \hat{H}
=
\Theta^{-1} (- i) \hat{H} \Theta.
\end{equation}

Note that the factors of \( i \) have not been canceled on purpose, since we are allowing for the time reversal operator to not necessarily commute with imaginary numbers.

There are two possible solutions

  • If \( \Theta \) is unitary where \( \Theta i = i \Theta \), then

    \begin{equation}\label{eqn:qmLecture13:160}
    \hat{H}
    =
    -\Theta^{-1} \hat{H} \Theta,
    \end{equation}

    or
    \begin{equation}\label{eqn:qmLecture13:180}
    \Theta \hat{H}
    =
    – \hat{H} \Theta.
    \end{equation}

    Consider the implications of this on energy eigenstates
    \begin{equation}\label{eqn:qmLecture13:200}
    \hat{H} \ket{\Psi_n} = E_n \ket{\Psi_n},
    \end{equation}

    \begin{equation}\label{eqn:qmLecture13:220}
    \Theta \hat{H} \ket{\Psi_n} = E_n \Theta \ket{\Psi_n},
    \end{equation}

    but

    \begin{equation}\label{eqn:qmLecture13:240}
    -\hat{H} \Theta \ket{\Psi_n} = E_n \Theta \ket{\Psi_n},
    \end{equation}

    or

    \begin{equation}\label{eqn:qmLecture13:260}
    \hat{H} \lr{ \Theta \ket{\Psi_n}} = -E_n \lr{ \Theta \ket{\Psi_n} }.
    \end{equation}

    This would mean that \( \lr{ \Theta \ket{\Psi_n}} \) is an eigenket of \( \hat{H} \), but with a negative energy eigenvalue.

  • \( \Theta \) is antiunitary, where \( \Theta i = -i \Theta \).

    This time
    \begin{equation}\label{eqn:qmLecture13:280}
    i \hat{H} = i \Theta^{-1} \hat{H} \Theta,
    \end{equation}

    so

    \begin{equation}\label{eqn:qmLecture13:300}
    \Theta \hat{H} = \hat{H} \Theta.
    \end{equation}

    Acting on an energy eigenket, we’ve got

    \begin{equation}\label{eqn:qmLecture13:1400}
    \Theta \hat{H} \ket{\Psi_n}
    =
    E_n \lr{ \Theta \ket{\Psi_n} },
    \end{equation}

    and
    \begin{equation}\label{eqn:qmLecture13:1420}
    \lr{ \hat{H} \Theta } \ket{\Psi_n}
    =
    \hat{H} \lr{ \Theta \ket{\Psi_n} },
    \end{equation}

    so \( \Theta \ket{\Psi_n} \) is an eigenstate with energy \( E_n \).

What properties do we expect from \( \Theta \)?

We expect
\begin{equation}\label{eqn:qmLecture13:320}
\begin{aligned}
\hat{x} &\rightarrow \hat{x} \\
\hat{p} &\rightarrow -\hat{p} \\
\hat{\BL} &\rightarrow -\hat{\BL}
\end{aligned}
\end{equation}

where we have a sign flip in the time dependent momentum operator (and therefore angular momentum), but not for position. If we have

\begin{equation}\label{eqn:qmLecture13:340}
\Theta^{-1} \hat{x} \Theta = \hat{x},
\end{equation}

if that’s true, then how about the momentum operator in the position basis
\begin{equation}\label{eqn:qmLecture13:360}
\begin{aligned}
\Theta^{-1} \hat{p} \Theta
&=
\Theta^{-1} \lr{ -i \Hbar \PD{x}{} } \Theta \\
&=
\Theta^{-1} \lr{ -i \Hbar } \Theta \PD{x}{} \\
&=
i \Hbar \Theta^{-1} \Theta \PD{x}{} \\
&=
-\hat{p}.
\end{aligned}
\end{equation}

How about the \( x,p \) commutator? For that we have

\begin{equation}\label{eqn:qmLecture13:380}
\begin{aligned}
\Theta^{-1} \antisymmetric{\hat{x}}{\hat{p}} \Theta
&=
\Theta^{-1} \lr{ i \Hbar } \Theta \\
&=
-i \Hbar \Theta^{-1} \Theta \\
&=
– \antisymmetric{\hat{x}}{\hat{p}}.
\end{aligned}
\end{equation}

For the the angular momentum operators

\begin{equation}\label{eqn:qmLecture13:420}
\hat{L}_i = \epsilon_{ijk} \hat{r}_j \hat{p}_k,
\end{equation}

the time reversal operator should flip the sign due to its action on \( \hat{p}_k \).

Time reversal acting on spin 1/2 (Fermions). Attempt I.

Consider two spin states \( \ket{\uparrow}, \ket{\downarrow} \). What should the action of the time reversal operator on such a state be? Let’s (incorrectly) start by supposing that the time reversal operator effects are

\begin{equation}\label{eqn:qmLecture13:440}
\begin{aligned}
\Theta \ket{\uparrow} &= \ket{\downarrow} \\
\Theta \ket{\downarrow} &= \ket{\uparrow}.
\end{aligned}
\end{equation}

Given a general state
so that if

\begin{equation}\label{eqn:qmLecture13:740}
\ket{\Psi} = a \ket{\uparrow} + b \ket{\downarrow},
\end{equation}

the action of the time reversal operator would be

\begin{equation}\label{eqn:qmLecture13:760}
\Theta \ket{\Psi} = a^\conj \ket{\downarrow} + b^\conj \ket{\uparrow}.
\end{equation}

That action is:

\begin{equation}\label{eqn:qmLecture13:460}
\begin{aligned}
a \rightarrow b^\conj \\
b \rightarrow a^\conj
\end{aligned}
\end{equation}

Let’s consider whether or not such an action a spin operator with properties

\begin{equation}\label{eqn:qmLecture13:480}
\antisymmetric{\hat{S}_i}{\hat{S}_j} = i \epsilon_{ijk} \hat{S}_k.
\end{equation}

produce the desired inversion of sign

\begin{equation}\label{eqn:qmLecture13:500}
\Theta^{-1} \hat{S}_i \Theta = – \hat{S}_i.
\end{equation}

The expectations of the spin operators (without any application of time reversal) are

\begin{equation}\label{eqn:qmLecture13:1440}
\begin{aligned}
\bra{\Psi} \hat{S}_x \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\uparrow} + b^\conj \bra{\downarrow} }
\sigma_x
\lr{ a \ket{\uparrow} + b \ket{\downarrow} } \\
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\uparrow} + b^\conj \bra{\downarrow} }
\lr{ a \ket{\downarrow} + b \ket{\uparrow} } \\
&=
\frac{\Hbar}{2}
\lr{ a^\conj b + b^\conj a },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:qmLecture13:1460}
\begin{aligned}
\bra{\Psi} \hat{S}_y \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\uparrow} + b^\conj \bra{\downarrow} }
\sigma_y
\lr{ a \ket{\uparrow} + b \ket{\downarrow} } \\
&=
\frac{i\Hbar}{2}
\lr{ a^\conj \bra{\uparrow} + b^\conj \bra{\downarrow} }
\lr{ a \ket{\downarrow} – b \ket{\uparrow} } \\
&=
\frac{\Hbar}{2 i} \lr{ a^\conj b – b^\conj a },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:qmLecture13:1480}
\begin{aligned}
\bra{\Psi} \hat{S}_z \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\uparrow} + b^\conj \bra{\downarrow} }
\sigma_z
\lr{ a \ket{\uparrow} – b \ket{\downarrow} } \\
&=
\frac{\Hbar}{2} \lr{ \Abs{a}^2 – \Abs{b}^2 }
\end{aligned}
\end{equation}

The time reversed actions are

\begin{equation}\label{eqn:qmLecture13:1560}
\begin{aligned}
\bra{\Psi} \Theta^{-1} \hat{S}_x \Theta \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\sigma_x
\lr{ a \ket{\downarrow} + b \ket{\uparrow} } \\
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\lr{ a \ket{\uparrow} + b \ket{\downarrow} } \\
&=
\frac{\Hbar}{2}
\lr{ a^\conj b + b^\conj a },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:qmLecture13:1580}
\begin{aligned}
\bra{\Psi} \Theta^{-1} \hat{S}_y \Theta \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\sigma_y
\lr{ a \ket{\downarrow} + b \ket{\uparrow} } \\
&=
\frac{i\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\lr{ -a \ket{\uparrow} + b \ket{\downarrow} } \\
&=
\frac{\Hbar}{2 i} \lr{ -a^\conj b + b^\conj a },
\end{aligned}
\end{equation}

\begin{equation}\label{eqn:qmLecture13:1600}
\begin{aligned}
\bra{\Psi} \Theta^{-1} \hat{S}_z \Theta \ket{\Psi}
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\sigma_z
\lr{ a \ket{\downarrow} + b \ket{\uparrow} } \\
&=
\frac{\Hbar}{2}
\lr{ a^\conj \bra{\downarrow} + b^\conj \bra{\uparrow} }
\lr{ -a \ket{\downarrow} + b \ket{\uparrow} } \\
&=
\frac{\Hbar}{2} \lr{ -\Abs{a}^2 + \Abs{b}^2 }
\end{aligned}
\end{equation}

We see that this is not right, because the sign for the x component has not been flipped.

Spin 1/2 (Fermions). Attempt II.

Again assuming

\begin{equation}\label{eqn:qmLecture13:580}
\ket{\Psi} = a \ket{\uparrow} + b \ket{\downarrow},
\end{equation}

now try the action

\begin{equation}\label{eqn:qmLecture13:780}
\Theta \ket{\Psi} = a^\conj \ket{\downarrow} – b^\conj \ket{\uparrow}.
\end{equation}

This is the action:

\begin{equation}\label{eqn:qmLecture13:600}
\begin{aligned}
a \rightarrow -b^\conj \\
b \rightarrow a^\conj
\end{aligned}
\end{equation}

The correct action of time reversal on the basis states (up to a phase choice) is

\begin{equation}\label{eqn:qmLecture13:630}
\boxed{
\begin{aligned}
\Theta \ket{\uparrow} &= \ket{\downarrow} \\
\Theta \ket{\downarrow} &= -\ket{\uparrow} \\
\end{aligned}
}
\end{equation}

Note that acting the time reversal operator twice has the effects

\begin{equation}\label{eqn:qmLecture13:660}
\Theta^2 \ket{\uparrow} = \Theta \ket{\downarrow} = – \ket{\uparrow}
\end{equation}
\begin{equation}\label{eqn:qmLecture13:680}
\Theta^2 \ket{\downarrow} = \Theta (-\ket{\uparrow}) = – \ket{\uparrow}.
\end{equation}

We end up with the same state we started with, but with the opposite sign. This means that as an operator

\begin{equation}\label{eqn:qmLecture13:700}
\boxed{
\Theta^2 = -1.
}
\end{equation}

This is try for half integer particles (Fermions) \( S = 1/2, 3/2, 5/2, \cdots \), but for Bosons with integer spin \( S \).

\begin{equation}\label{eqn:qmLecture13:720}
\boxed{
\Theta^2 = 1.
}
\end{equation}

Kramer’s degeneracy for Spin 1/2 (Fermions)

Suppose we imagine there is state for which the action of the time reversal operator products the same state, just different in phase

\begin{equation}\label{eqn:qmLecture13:800}
\begin{aligned}
\Theta \ket{\Psi_n}
&= \ket{\tilde{\Psi}_n} \\
&= e^{i \delta} \ket{\tilde{\Psi}_n},
\end{aligned}
\end{equation}

then
\begin{equation}\label{eqn:qmLecture13:840}
\begin{aligned}
\Theta^2 \ket{\Psi_n}
&= \Theta e^{i \delta} \ket{\tilde{\Psi}_n} \\
&= e^{i \delta} e^{i \delta} \ket{\tilde{\Psi}_n},
\end{aligned}
\end{equation}

but

\begin{equation}\label{eqn:qmLecture13:860}
\begin{aligned}
\Theta e^{i \delta} \ket{\tilde{\Psi}_n}
&=
e^{-i \delta} \Theta \ket{\tilde{\Psi}_n} \\
&=
e^{-i \delta} e^{i \delta} \ket{\tilde{\Psi}_n} \\
&=
\ket{\tilde{\Psi}_n}
\ne
– \ket{\tilde{\Psi}_n}.
\end{aligned}
\end{equation}

This is a contradiction, so we must have at least a two-fold degeneracy. This is called Kramer’s degeneracy. In the homework we will show that this is not the case for integer spin particles.

Angular momentum

In classical mechanics the (orbital) angular momentum is

\begin{equation}\label{eqn:qmLecture13:880}
\BL = \Br \cross \Bp.
\end{equation}

Here “orbital” is to distinguish from spin angular momentum.

In quantum mechanics, the mapping to operators, in component form, is

\begin{equation}\label{eqn:qmLecture13:900}
\hat{L}_i = \epsilon_{ijk} \hat{r}_j \hat{p}_k.
\end{equation}

These operators do not commute
\begin{equation}\label{eqn:qmLecture13:920}
\antisymmetric{\hat{L}_i}{\hat{L}_j}
=
i \Hbar \epsilon_{ijk} \hat{L}_k.
\end{equation}

which means that we can’t simultaneously determine \( \hat{L}_i \) for all \( i \).

Aside: In quantum mechanics, we define an operator \( \hat{\BV} \) to be a vector operator if

\begin{equation}\label{eqn:qmLecture13:940}
\antisymmetric{\hat{L}_i}{\hatV_j}
=
i \Hbar \epsilon_{ijk} \hatV_k.
\end{equation}

The commutator of the squared angular momentum operator with any \( \hat{L}_i \), say \( \hat{L}_x \) is zero

\begin{equation}\label{eqn:qmLecture13:960}
\begin{aligned}
\antisymmetric{
\hat{L}_x^2 +
\hat{L}_y^2 +
\hat{L}_z^2
}
{\hat{L}_x}
&=
\hat{L}_y \hat{L}_y \hat{L}_x
– \hat{L}_x \hat{L}_y \hat{L}_y
+
\hat{L}_z \hat{L}_z \hat{L}_x
– \hat{L}_x \hat{L}_z \hat{L}_z \\
&=
\hat{L}_y \lr{ \antisymmetric{\hat{L}_y}{\hat{L}_x} + {\hat{L}_x \hat{L}_y} }
-\lr{ \antisymmetric{\hat{L}_x}{\hat{L}_y} + {\hat{L}_y \hat{L}_x} } \hat{L}_y \\
&\quad +\hat{L}_z \lr{ \antisymmetric{\hat{L}_z}{\hat{L}_x} + {\hat{L}_x \hat{L}_z} }
-\lr{ \antisymmetric{\hat{L}_x}{\hat{L}_z} + {\hat{L}_z \hat{L}_x} } \hat{L}_z \\
&=
\hat{L}_y \antisymmetric{\hat{L}_y}{\hat{L}_x}
-\antisymmetric{\hat{L}_x}{\hat{L}_y} \hat{L}_y
+\hat{L}_z \antisymmetric{\hat{L}_z}{\hat{L}_x}
-\antisymmetric{\hat{L}_x}{\hat{L}_z} \hat{L}_z \\
&=
i \Hbar \lr{
-\hat{L}_y \hat{L}_z
– \hat{L}_z \hat{L}_y
+\hat{L}_z \hat{L}_y
+ \hat{L}_y \hat{L}_z
} \\
&=
0.
\end{aligned}
\end{equation}

Suppose we have a state \( \ket{\Psi} \) with a well defined \( \hat{L}_z \) eigenvalue and well defined \( \hat{\BL^2} \) eigenvalue, written as

\begin{equation}\label{eqn:qmLecture13:1000}
\ket{\Psi} = \ket{a, b},
\end{equation}

where the label \( a \) is used for the eigenvalue of \( \hat{\BL}^2 \) and \( b \) labels the eigenvalue of \( \hat{L}_z \). Then

\begin{equation}\label{eqn:qmLecture13:1020}
\begin{aligned}
\hat{\BL}^2 \ket{a , b} &= \Hbar^2 a \ket{a ,b} \\
\hat{L}_z \ket{a , b} &= \Hbar b \ket{a ,b}.
\end{aligned}
\end{equation}

Things aren’t so nice when we act with other angular momentum operators, producing a scrambled mess

\begin{equation}\label{eqn:qmLecture13:1040}
\begin{aligned}
\hat{L}_x \ket{a , b} &= \sum_{a’, b’} \mathcal{A}^x_{a, b, a’, b’} \ket{a’, b’} \\
\hat{L}_y \ket{a , b} &= \sum_{a’, b’} \mathcal{A}^y_{a, b, a’, b’} \ket{a’, b’} \\
\end{aligned}
\end{equation}

With this representation, we have

\begin{equation}\label{eqn:qmLecture13:1060}
\hat{L}_x \hat{\BL}^2 \ket{a, b}
=
\hat{L}_x \Hbar^2 a
\sum_{a’, b’} \mathcal{A}^x_{a, b, a’, b’} \ket{a’, b’}.
\end{equation}

\begin{equation}\label{eqn:qmLecture13:1080}
\hat{\BL}^2 \hat{L}_x \ket{a, b}
=
\Hbar^2
\sum_{a’, b’} a’ \mathcal{A}^x_{a, b, a’, b’} \ket{a’, b’}.
\end{equation}

Since \( \hat{\BL}^2, \hat{L}_x \) commute, we must have

\begin{equation}\label{eqn:qmLecture13:1100}
\mathcal{A}^x_{a, b, a’, b’} = \delta_{a, a’} \mathcal{A}^x_{a’; b, b’},
\end{equation}

and similarly
\begin{equation}\label{eqn:qmLecture13:1120}
\mathcal{A}^y_{a, b, a’, b’} = \delta_{a, a’} \mathcal{A}^y_{a’; b, b’}.
\end{equation}

Simplifying things we can write the action of \( \hat{L}_x, \hat{L}_y \) on the state as

\begin{equation}\label{eqn:qmLecture13:1140}
\begin{aligned}
\hat{L}_x \ket{a , b} &= \sum_{ b’} \mathcal{A}^x_{a; b, b’} \ket{a, b’} \\
\hat{L}_y \ket{a , b} &= \sum_{ b’} \mathcal{A}^y_{a; b, b’} \ket{a, b’} \\
\end{aligned}
\end{equation}

Let’s define
\begin{equation}\label{eqn:qmLecture13:1160}
\begin{aligned}
\hat{L}_{+} &\equiv \hat{L}_x + i \hat{L}_y \\
\hat{L}_{-} &\equiv \hat{L}_x – i \hat{L}_y \\
\end{aligned}
\end{equation}

Because these are sums of \( \hat{L}_x, \hat{L}_y \) they must also commute with \( \hat{\BL}^2 \)

\begin{equation}\label{eqn:qmLecture13:1180}
\antisymmetric{\hat{\BL}^2}{\hat{L}_{\pm}} = 0.
\end{equation}

The commutators with \( \hat{L}_z \) are non-zero

\begin{equation}\label{eqn:qmLecture13:1740}
\begin{aligned}
\antisymmetric{\hat{L}_z}{\hat{L}_{\pm}}
&=
\hat{L}_z \lr{ \hat{L}_x \pm i \hat{L}_y }
– \lr{ \hat{L}_x \pm i \hat{L}_y } \hat{L}_z \\
&=
\antisymmetric{\hat{L}_z}{\hat{L}_x}
\pm i
\antisymmetric{\hat{L}_z}{\hat{L}_y} \\
&=
i \Hbar \lr{
\hat{L}_y \mp i \hat{L}_x
} \\
&=
\Hbar \lr{ i \hat{L}_y \pm \hat{L}_x } \\
&=
\pm \Hbar \lr{ \hat{L}_x \pm i \hat{L}_y } \\
&=
\pm \Hbar \hat{L}_{\pm}.
\end{aligned}
\end{equation}

Explicitly, that is

\begin{equation}\label{eqn:qmLecture13:1220}
\begin{aligned}
\hat{L}_z \hat{L}_{+} – \hat{L}_{+} \hat{L}_z &= \Hbar \hat{L}_{+} \\
\hat{L}_z \hat{L}_{-} – \hat{L}_{-} \hat{L}_z &= -\Hbar \hat{L}_{-}
\end{aligned}
\end{equation}

Now we are set to compute actions of these (assumed) raising and lowering operators on the eigenstate of \( \hat{L}_z, \hat{\BL}^2 \)

\begin{equation}\label{eqn:qmLecture13:1240}
\begin{aligned}
\hat{L}_z \hat{L}_{\pm} \ket{a, b}
&=
\Hbar \hat{L}_{\pm} \ket{a,b} \pm \hat{L}_{\pm} \hat{L}_z \ket{a,b} \\
&=
\Hbar \hat{L}_{\pm} \ket{a,b} \pm \Hbar b \hat{L}_{\pm} \ket{a,b} \\
&=
\Hbar \lr{ b \pm 1 } \hat{L}_{\pm} \ket{a, b} .
\end{aligned}
\end{equation}

There must be a proportionality of the form

\begin{equation}\label{eqn:qmLecture13:1260}
\ket{\hat{L}_{\pm}} \propto \ket{a, b \pm 1},
\end{equation}

The products of the raising and lowering operators are

\begin{equation}\label{eqn:qmLecture13:1280}
\begin{aligned}
\hat{L}_{-} \hat{L}_{+}
&=
\lr{ \hat{L}_x – i \hat{L}_y }
\lr{ \hat{L}_x + i \hat{L}_y } \\
&=
\hat{L}_x^2 + \hat{L}_y^2 + i \hat{L}_x \hat{L}_y – i \hat{L}_y \hat{L}_x \\
&=
\lr{ \hat{\BL}^2 – \hat{L}_z^2 } + i \antisymmetric{\hat{L}_x}{\hat{L}_y} \\
&=
\hat{\BL}^2 – \hat{L}_z^2 – \Hbar \hat{L}_z,
\end{aligned}
\end{equation}

and
\begin{equation}\label{eqn:qmLecture13:1300}
\begin{aligned}
\hat{L}_{+} \hat{L}_{-}
&=
\lr{ \hat{L}_x + i \hat{L}_y }
\lr{ \hat{L}_x – i \hat{L}_y } \\
&=
\hat{L}_x^2 + \hat{L}_y^2 – i \hat{L}_x \hat{L}_y + i \hat{L}_y \hat{L}_x \\
&=
\lr{ \hat{\BL}^2 – \hat{L}_z^2 } – i \antisymmetric{\hat{L}_x}{\hat{L}_y} \\
&=
\hat{\BL}^2 – \hat{L}_z^2 + \Hbar \hat{L}_z,
\end{aligned}
\end{equation}

So we must have

\begin{equation}\label{eqn:qmLecture13:1320}
\begin{aligned}
0
&\le \bra{a, b} \hat{L}_{-} \hat{L}_{+} \ket{a, b} \\
&=
\bra{a, b}
\lr{ \hat{\BL}^2 – \hat{L}_z^2 – \Hbar \hat{L}_z }
\ket{a, b} \\
&=
\Hbar^2 a – \Hbar^2 b^2 – \Hbar^2 b,
\end{aligned}
\end{equation}

and

\begin{equation}\label{eqn:qmLecture13:1340}
\begin{aligned}
0
&\le \bra{a, b} \hat{L}_{+} \hat{L}_{-} \ket{a, b} \\
&=
\bra{a, b}
\lr{ \hat{\BL}^2 – \hat{L}_z^2 + \Hbar \hat{L}_z }
\ket{a, b} \\
&=
\Hbar^2 a – \Hbar^2 b^2 + \Hbar^2 b.
\end{aligned}
\end{equation}

This puts constraints on \( a, b \), roughly of the form

  1. \begin{equation}\label{eqn:qmLecture13:1360}
    a – b( b + 1) \ge 0
    \end{equation}

    With \( b_{\textrm{max}} > 0 \), \( b_{\textrm{max}} \approx \sqrt{a} \).

  2. \begin{equation}\label{eqn:qmLecture13:1380}
    a – b( b – 1) \ge 0
    \end{equation}

    With \( b_{\textrm{min}} < 0 \), \( b_{\textrm{max}} \approx -\sqrt{a} \).

Question: Angular momentum commutators

Using \( \hat{L}_i = \epsilon_{ijk} \hat{r}_j \hat{p}_k \), show that

\begin{equation}\label{eqn:qmLecture13:1620}
\antisymmetric{\hat{L}_i}{\hat{L}_j} = i \Hbar \epsilon_{ijk} \hat{L}_k
\end{equation}

Answer

Let’s start without using abstract index expressions, computing the commutator for \( \hat{L}_1, \hat{L}_2 \), which should show the basic steps required

\begin{equation}\label{eqn:qmLecture13:1640}
\begin{aligned}
\antisymmetric{\hat{L}_1}{\hat{L}_2}
&=
\antisymmetric{\hat{r}_2 \hat{p}_3 – \hat{r}_3 \hat{p}_2}{\hat{r}_3 \hat{p}_1
– \hat{r}_1 \hat{p}_3} \\
&=
\antisymmetric{\hat{r}_2 \hat{p}_3}{\hat{r}_3 \hat{p}_1}
-\antisymmetric{\hat{r}_2 \hat{p}_3}{\hat{r}_1 \hat{p}_3}
-\antisymmetric{\hat{r}_3 \hat{p}_2}{\hat{r}_3 \hat{p}_1}
+\antisymmetric{\hat{r}_3 \hat{p}_2}{\hat{r}_1 \hat{p}_3}.
\end{aligned}
\end{equation}

The first of these commutators is

\begin{equation}\label{eqn:qmLecture13:1660}
\begin{aligned}
\antisymmetric{\hat{r}_2 \hat{p}_3}{\hat{r}_3 \hat{p}_1}
&=
{\hat{r}_2 \hat{p}_3}{\hat{r}_3 \hat{p}_1}

{\hat{r}_3 \hat{p}_1}
{\hat{r}_2 \hat{p}_3} \\
&=
\hat{r}_2 \hat{p}_1 \antisymmetric{\hat{p}_3}{\hat{r}_3} \\
&=
-i \Hbar \hat{r}_2 \hat{p}_1.
\end{aligned}
\end{equation}

We see that any factors in the commutator don’t have like indexes (i.e. \( \hat{r}_k, \hat{p}_k \)) on both position and momentum terms, can be pulled out of the commutator. This leaves

\begin{equation}\label{eqn:qmLecture13:1680}
\begin{aligned}
\antisymmetric{\hat{L}_1}{\hat{L}_2}
&=
\hat{r}_2 \hat{p}_1 \antisymmetric{\hat{p}_3}{\hat{r}_3}
-{\antisymmetric{\hat{r}_2 \hat{p}_3}{\hat{r}_1 \hat{p}_3}}
-{\antisymmetric{\hat{r}_3 \hat{p}_2}{\hat{r}_3 \hat{p}_1}}
+\hat{r}_1 \hat{p}_2 \antisymmetric{\hat{r}_3}{\hat{p}_3} \\
&=
i \Hbar \lr{ \hat{r}_1 \hat{p}_2 – \hat{r}_2 \hat{p}_1 } \\
&=
i \Hbar \hat{L}_3.
\end{aligned}
\end{equation}

With cyclic permutation this is really enough to consider \ref{eqn:qmLecture13:1620} proven. However, can we do this in the general case with the abstract index expression? The quantity to simplify looks forbidding

\begin{equation}\label{eqn:qmLecture13:1700}
\antisymmetric{\hat{L}_i}{\hat{L}_j}
=
\epsilon_{i a b }
\epsilon_{j s t }
\antisymmetric{ \hat{r}_a \hat{p}_b }{ \hat{r}_s \hat{p}_t }
\end{equation}

Because there are no repeated indexes, this doesn’t submit to any of the normal reduction identities. Note however, since we only care about the \( i \ne j \) case, that one of the indexes \( a, b \) must be \( j \) for this quantity to be non-zero. Therefore (for \( i \ne j \))

\begin{equation}\label{eqn:qmLecture13:1720}
\begin{aligned}
\antisymmetric{\hat{L}_i}{\hat{L}_j}
&=
\epsilon_{i j b }
\epsilon_{j s t }
\antisymmetric{ \hat{r}_j \hat{p}_b }{ \hat{r}_s \hat{p}_t }
+
\epsilon_{i a j }
\epsilon_{j s t }
\antisymmetric{ \hat{r}_a \hat{p}_j }{ \hat{r}_s \hat{p}_t } \\
&=
\epsilon_{i j b }
\epsilon_{j s t }
\lr{
\antisymmetric{ \hat{r}_j \hat{p}_b }{ \hat{r}_s \hat{p}_t }

\antisymmetric{ \hat{r}_b \hat{p}_j }{ \hat{r}_s \hat{p}_t }
} \\
&=
-\delta^{s t}_{[i b]}
\antisymmetric{ \hat{r}_j \hat{p}_b – \hat{r}_b \hat{p}_j }{ \hat{r}_s
\hat{p}_t } \\
&=
\antisymmetric{ \hat{r}_j \hat{p}_b – \hat{r}_b \hat{p}_j }{ \hat{r}_b
\hat{p}_i – \hat{r}_i \hat{p}_b } \\
&=
\antisymmetric{ \hat{r}_j \hat{p}_b }{ \hat{r}_b \hat{p}_i }
– {\antisymmetric{ \hat{r}_j \hat{p}_b }{ \hat{r}_i \hat{p}_b }}
– {\antisymmetric{ \hat{r}_b \hat{p}_j }{ \hat{r}_b \hat{p}_i }}
+ \antisymmetric{ \hat{r}_b \hat{p}_j }{ \hat{r}_i \hat{p}_b } \\
&=
\hat{r}_j \hat{p}_i \antisymmetric{ \hat{p}_b }{ \hat{r}_b }
+ \hat{r}_i \hat{p}_j \antisymmetric{ \hat{r}_b }{ \hat{p}_b } \\
&=
i \Hbar \lr{ \hat{r}_i \hat{p}_j – \hat{r}_j \hat{p}_i } \\
&=
i \Hbar \epsilon_{i j k} \hat{r}_i \hat{p}_j .
\end{aligned}
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

PHY1520H Graduate Quantum Mechanics. Lecture 12: Symmetry (cont.). Taught by Prof. Arun Paramekanti

November 5, 2015 phy1520 , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti, covering chap. 4 content from [1].

Parity (review)

\begin{equation}\label{eqn:qmLecture12:20}
\hat{\Pi} \hat{x} \hat{\Pi} = – \hat{x}
\end{equation}
\begin{equation}\label{eqn:qmLecture12:40}
\hat{\Pi} \hat{p} \hat{\Pi} = – \hat{p}
\end{equation}

These are polar vectors, in contrast to an axial vector such as \( \BL = \Br \cross \Bp \).

\begin{equation}\label{eqn:qmLecture12:60}
\hat{\Pi}^2 = 1
\end{equation}

\begin{equation}\label{eqn:qmLecture12:80}
\Psi(x) \rightarrow \Psi(-x)
\end{equation}

If \( \antisymmetric{\hat{\Pi}}{\hat{H}} = 0 \) then all the eigenstates are either

  • even: \( \hat{\Pi} \) eigenvalue is \( + 1 \).
  • odd: \( \hat{\Pi} \) eigenvalue is \( – 1 \).

We are done with discrete symmetry operators for now.

Translations

Define a (continuous) translation operator

\begin{equation}\label{eqn:qmLecture12:100}
\hat{T}_\epsilon \ket{x} = \ket{x + \epsilon}
\end{equation}

The action of this operator is sketched in fig. 1.

lecture12Fig1

fig. 1. Translation operation.

 

This is a unitary operator

\begin{equation}\label{eqn:qmLecture12:120}
\hat{T}_{-\epsilon} = \hat{T}_{\epsilon}^\dagger = \hat{T}_{\epsilon}^{-1}
\end{equation}

In a position basis, the action of this operator is

\begin{equation}\label{eqn:qmLecture12:140}
\bra{x} \hat{T}_{\epsilon} \ket{\psi} = \braket{x-\epsilon}{\psi} = \psi(x – \epsilon)
\end{equation}

\begin{equation}\label{eqn:qmLecture12:160}
\Psi(x – \epsilon) \approx \Psi(x) – \epsilon \PD{x}{\Psi}
\end{equation}

\begin{equation}\label{eqn:qmLecture12:180}
\bra{x} \hat{T}_{\epsilon} \ket{\Psi}
= \braket{x}{\Psi} – \frac{\epsilon}{\Hbar} \bra{ x} i \hat{p} \ket{\Psi}
\end{equation}

\begin{equation}\label{eqn:qmLecture12:200}
\hat{T}_{\epsilon} \approx \lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{p} }
\end{equation}

A non-infinitesimal translation can be composed of many small translations, as sketched in fig. 2.

fig. 2. Composition of small translations

fig. 2. Composition of small translations

For \( \epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a \), the total translation operator is

\begin{equation}\label{eqn:qmLecture12:220}
\begin{aligned}
\hat{T}_{a}
&= \hat{T}_{\epsilon}^N \\
&= \lim_{\epsilon \rightarrow 0, N \rightarrow \infty, N \epsilon = a }
\lr{ 1 – \frac{\epsilon}{\Hbar} \hat{p} }^N \\
&= e^{-i a \hat{p}/\Hbar}
\end{aligned}
\end{equation}

The momentum \( \hat{p} \) is called a “Generator” generator of translations. If a Hamiltonian \( H \) is translationally invariant, then

\begin{equation}\label{eqn:qmLecture12:240}
\antisymmetric{\hat{T}_{a}}{H} = 0, \qquad \forall a.
\end{equation}

This means that momentum will be a good quantum number

\begin{equation}\label{eqn:qmLecture12:260}
\antisymmetric{\hat{p}}{H} = 0.
\end{equation}

Rotations

Rotations form a non-Abelian group, since the order of rotations \( \hatR_1 \hatR_2 \ne \hatR_2 \hatR_1 \).

Given a rotation acting on a ket

\begin{equation}\label{eqn:qmLecture12:280}
\hatR \ket{\Br} = \ket{R \Br},
\end{equation}

observe that the action of the rotation operator on a wave function is inverted

\begin{equation}\label{eqn:qmLecture12:300}
\bra{\Br} \hatR \ket{\Psi}
=
\bra{R^{-1} \Br} \ket{\Psi}
= \Psi(R^{-1} \Br).
\end{equation}

Example: Z axis normal rotation

Consider an infinitesimal rotation about the z-axis as sketched in fig. 3(a),(b)

lecture12Fig3

fig 3(a). Rotation about z-axis.

fig 3(b). Rotation about z-axis.

fig 3(b). Rotation about z-axis.

\begin{equation}\label{eqn:qmLecture12:320}
\begin{aligned}
x’ &= x – \epsilon y \\
y’ &= y + \epsilon y \\
z’ &= z
\end{aligned}
\end{equation}

The rotated wave function is

\begin{equation}\label{eqn:qmLecture12:340}
\tilde{\Psi}(x,y,z)
= \Psi( x + \epsilon y, y – \epsilon x, z )
=
\Psi( x, y, z )
+
\epsilon y \underbrace{\PD{x}{\Psi}}_{i \hat{p}_x/\Hbar}

\epsilon x \underbrace{\PD{y}{\Psi}}_{i \hat{p}_y/\Hbar}.
\end{equation}

The state must then transform as

\begin{equation}\label{eqn:qmLecture12:360}
\ket{\tilde{\Psi}}
=
\lr{
1
+ i \frac{\epsilon}{\Hbar} \hat{y} \hat{p}_x
– i \frac{\epsilon}{\Hbar} \hat{x} \hat{p}_y
}
\ket{\Psi}.
\end{equation}

Observe that the combination \( \hat{x} \hat{p}_y – \hat{y} \hat{p}_x \) is the \( \hat{L}_z \) component of angular momentum \( \hat{\BL} = \hat{\Br} \cross \hat{\Bp} \), so the infinitesimal rotation can be written

\begin{equation}\label{eqn:qmLecture12:380}
\boxed{
\hatR_z(\epsilon) \ket{\Psi}
=
\lr{ 1 – i \frac{\epsilon}{\Hbar} \hat{L}_z } \ket{\Psi}.
}
\end{equation}

For a finite rotation \( \epsilon \rightarrow 0, N \rightarrow \infty, \phi = \epsilon N \), the total rotation is

\begin{equation}\label{eqn:qmLecture12:420}
\hatR_z(\phi)
=
\lr{ 1 – \frac{i \epsilon}{\Hbar} \hat{L}_z }^N,
\end{equation}

or
\begin{equation}\label{eqn:qmLecture12:440}
\boxed{
\hatR_z(\phi)
=
e^{-i \frac{\phi}{\Hbar} \hat{L}_z}.
}
\end{equation}

Note that \( \antisymmetric{\hat{L}_x}{\hat{L}_y} \ne 0 \).

By construction using Euler angles or any other method, a general rotation will include contributions from components of all the angular momentum operator, and will have the structure

\begin{equation}\label{eqn:qmLecture12:480}
\boxed{
\hatR_\ncap(\phi)
=
e^{-i \frac{\phi}{\Hbar} \lr{ \hat{\BL} \cdot \ncap }}.
}
\end{equation}

Rotationally invariant \( \hat{H} \).

Given a rotationally invariant Hamiltonian

\begin{equation}\label{eqn:qmLecture12:520}
\antisymmetric{\hat{R}_\ncap(\phi)}{\hat{H}} = 0 \qquad \forall \ncap, \phi,
\end{equation}

then every

\begin{equation}\label{eqn:qmLecture12:540}
\antisymmetric{\BL \cdot \ncap}{\hat{H}} = 0,
\end{equation}

or
\begin{equation}\label{eqn:qmLecture12:560}
\antisymmetric{L_i}{\hat{H}} = 0,
\end{equation}

Non-Abelian implies degeneracies in the spectrum.

Time-reversal

Imagine that we have something moving along a curve at time \( t = 0 \), and ending up at the final position at time \( t = t_f \).

fig. 4. Time reversal trajectory.

fig. 4. Time reversal trajectory.

Imagine that we flip the direction of motion (i.e. flipping the velocity) and run time backwards so the final-time state becomes the initial state.

If the time reversal operator is designated \( \hat{\Theta} \), with operation

\begin{equation}\label{eqn:qmLecture12:580}
\hat{\Theta} \ket{\Psi} = \ket{\tilde{\Psi}},
\end{equation}

so that

\begin{equation}\label{eqn:qmLecture12:600}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(t)} = \ket{\Psi(0)},
\end{equation}

or

\begin{equation}\label{eqn:qmLecture12:620}
\hat{\Theta}^{-1} e^{-i \hat{H} t/\Hbar} \hat{\Theta} \ket{\Psi(0)} = \ket{\Psi(-t)}.
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

A curious proof of the Baker-Campbell-Hausdorff formula

November 4, 2015 phy1520 , , ,

[Click here for a PDF of this post with nicer formatting]

Equation (39) of [1] states the Baker-Campbell-Hausdorff formula for two operators \( a, b\) that commute with their commutator \( \antisymmetric{a}{b} \)

\begin{equation}\label{eqn:bakercambell:20}
e^a e^b = e^{a + b + \antisymmetric{a}{b}/2},
\end{equation}

and provides the outline of an interesting method of proof. That method is to consider the derivative of

\begin{equation}\label{eqn:bakercambell:40}
f(\lambda) = e^{\lambda a} e^{\lambda b} e^{-\lambda (a + b)},
\end{equation}

That derivative is
\begin{equation}\label{eqn:bakercambell:60}
\begin{aligned}
\frac{df}{d\lambda}
&=
e^{\lambda a} a e^{\lambda b} e^{-\lambda (a + b)}
+
e^{\lambda a} b e^{\lambda b} e^{-\lambda (a + b)}

e^{\lambda a} b e^{\lambda b} (a + b)e^{-\lambda (a + b)} \\
&=
e^{\lambda a} \lr{
a e^{\lambda b}
+
b e^{\lambda b}

e^{\lambda b} (a+b)
}
e^{-\lambda (a + b)} \\
&=
e^{\lambda a} \lr{
\antisymmetric{a}{e^{\lambda b}}
+
{\antisymmetric{b}{e^{\lambda b}}}
}
e^{-\lambda (a + b)} \\
&=
e^{\lambda a}
\antisymmetric{a}{e^{\lambda b}}
e^{-\lambda (a + b)}
.
\end{aligned}
\end{equation}

The commutator above is proportional to \( \antisymmetric{a}{b} \)

\begin{equation}\label{eqn:bakercambell:80}
\begin{aligned}
\antisymmetric{a}{e^{\lambda b}}
&=
\sum_{k=0}^\infty \frac{\lambda^k}{k!} \antisymmetric{a}{ b^k } \\
&=
\sum_{k=0}^\infty \frac{\lambda^k}{k!} k b^{k-1} \antisymmetric{a}{b} \\
&=
\lambda \sum_{k=1}^\infty \frac{\lambda^{k-1}}{(k-1)!} b^{k-1}
\antisymmetric{a}{b} \\
&=
\lambda e^{\lambda b} \antisymmetric{a}{b},
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:bakercambell:100}
\frac{df}{d\lambda} = \lambda \antisymmetric{a}{b} f.
\end{equation}

To get the above, we should also do the induction demonstration for \( \antisymmetric{a}{ b^k } = k b^{k-1} \antisymmetric{a}{b} \).

This clearly holds for \( k = 0,1 \). For any other \( k \) we have

\begin{equation}\label{eqn:bakercambell:120}
\begin{aligned}
\antisymmetric{a}{b^{k+1}}
&=
a b^{k+1} – b^{k+1} a \\
&=
\lr{ \antisymmetric{a}{b^{k}} + b^k a
} b – b^{k+1} a \\
&=
k b^{k-1} \antisymmetric{a}{b} b
+ b^k \lr{ \antisymmetric{a}{b} + {b a} }
– {b^{k+1} a} \\
&=
k b^{k} \antisymmetric{a}{b}
+ b^k \antisymmetric{a}{b} \\
&=
(k+1) b^k \antisymmetric{a}{b}.
\end{aligned}
\end{equation}

Observe that \ref{eqn:bakercambell:100} is solved by

\begin{equation}\label{eqn:bakercambell:140}
f = e^{\lambda^2\antisymmetric{a}{b}/2},
\end{equation}

which gives

\begin{equation}\label{eqn:bakercambell:160}
e^{\lambda^2 \antisymmetric{a}{b}/2} =
e^{\lambda a} e^{\lambda b} e^{-\lambda (a + b)}.
\end{equation}

Right multiplication by \( e^{\lambda (a + b)} \) which commutes with \( e^{\lambda^2 \antisymmetric{a}{b}/2} \) and setting \( \lambda = 1 \) recovers \ref{eqn:bakercambell:20} as desired.

What I wonder looking at this, is what thought process led to trying this in the first place? This is not what I would consider an obvious approach to demonstrating this identity.

References

[1] Roy J Glauber. Some notes on multiple-boson processes. Physical Review, 84 (3), 1951.

More on (SHO) coherent states

November 4, 2015 phy1520 , , , ,

[Click here for a PDF of this post with nicer formatting]

[1] pr. 2.19(c)

Show that \( \Abs{f(n)}^2 \) for a coherent state written as

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:561}
\ket{z} = \sum_{n=0}^\infty f(n) \ket{n}
\end{equation}

has the form of a Poisson distribution, and find the most probable value of \( n\), and thus the most probable energy.

A:

The Poisson distribution has the form

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:581}
P(n) = \frac{\mu^{n} e^{-\mu}}{n!}.
\end{equation}

Here \( \mu \) is the mean of the distribution

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:601}
\begin{aligned}
\expectation{n}
&= \sum_{n=0}^\infty n P(n) \\
&= \sum_{n=1}^\infty n \frac{\mu^{n} e^{-\mu}}{n!} \\
&= \mu e^{-\mu} \sum_{n=1}^\infty \frac{\mu^{n-1}}{(n-1)!} \\
&= \mu e^{-\mu} e^{\mu} \\
&= \mu.
\end{aligned}
\end{equation}

We found that the coherent state had the form

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:621}
\ket{z} = c_0 \sum_{n=0} \frac{z^n}{\sqrt{n!}} \ket{n},
\end{equation}

so the probability coefficients for \( \ket{n} \) are

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:641}
\begin{aligned}
P(n)
&= c_0^2 \frac{\Abs{z^n}^2}{n!} \\
&= e^{-\Abs{z}^2} \frac{\Abs{z^n}^2}{n!}.
\end{aligned}
\end{equation}

This has the structure of the Poisson distribution with mean \( \mu = \Abs{z}^2 \). The most probable value of \( n \) is that for which \( \Abs{f(n)}^2 \) is the largest. This is, in general, hard to compute, since we have a maximization problem in the integer domain that falls outside the normal toolbox. If we assume that \( n \) is large, so that Stirling’s approximation can be used to approximate the factorial, and also seek a non-integer value that maximizes the distribution, the most probable value will be the closest integer to that, and this can be computed. Let

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:661}
\begin{aligned}
g(n)
&= \Abs{f(n)}^2 \\
&= \frac{e^{-\mu} \mu^n}{n!} \\
&= \frac{e^{-\mu} \mu^n}{e^{\ln n!}} \\
&\approx e^{-\mu – n \ln n + n } \mu^n \\
&= e^{-\mu – n \ln n + n + n \ln \mu }
\end{aligned}
\end{equation}

This is maximized when

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:681}
0
= \frac{dg}{dn}
= \lr{ – \ln n – 1 + 1 + \ln \mu } g(n),
\end{equation}

which is maximized at \( n = \mu \). One of the integers \( n = \lfloor \mu \rfloor \) or \( n = \lceil \mu \rceil \) that brackets this value \( \mu = \Abs{z}^2 \) is the most probable. So, if an energy measurement is made of a coherent state \( \ket{z} \), the most probable value will be one of

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:701}
E = \Hbar \lr{
\lceil\Abs{z}^2\rceil
+ \inv{2} },
\end{equation}

or

\begin{equation}\label{eqn:gradQuantumProblemSet2Problem1:721}
E = \Hbar \lr{
\lfloor\Abs{z}^2\rfloor
+ \inv{2} },
\end{equation}

References

[1] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.