Unionville public school. Acting even more like a jail.

October 26, 2015 Incoherent ramblings , ,

I dropped off Karl’s lunch on the way to work (we didn’t have anything he would eat, so I made him something when we got back).

The school is more and more like a jail. In addition to the asinine security system, the secretary today wouldn’t even let me into the school office to drop off Karl’s lunch. She came to the door to get it, instead of letting me in for a few seconds.

I view the security system at the school as pandering to idiotic media fear porn. Implemented board wide, I’m sure that some security company is making bucket loads of cash at our expense.

Perhaps they wouldn’t let me into the school because I didn’t play their Oh Canada conformity training game, and have been open stating that their multiplication teaching methods are stupid. I’m definitely a bad influence. The new-math “four ways of multiplying” are great for making Karl (and other kids) confused, but are excellent ways of ensuring that we’ll have another generation of kids that have to use a calculator to do basic math, and will shortly live in a third world country with respect to the sciences.

Degeneracy in non-commuting observables that both commute with the Hamiltonian.

October 22, 2015 phy1520 ,

[Click here for a PDF of an older version of post with nicer formatting]. Updates will be made in my old grad quantum notes.

In problem 1.17 of [2] we are to show that non-commuting operators that both commute with the Hamiltonian, have, in general, degenerate energy eigenvalues. That is

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:320}
[A,H] = [B,H] = 0,
\end{equation}

but

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:340}
[A,B] \ne 0.
\end{equation}

Matrix example of non-commuting commutators

I thought perhaps the problem at hand would be easier if I were to construct some example matrices representing operators that did not commute, but did commuted with a Hamiltonian. I came up with

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:360}
\begin{aligned}
A &=
\begin{bmatrix}
\sigma_z & 0 \\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \\
B &=
\begin{bmatrix}
\sigma_x & 0 \\
0 & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \\
H &=
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\end{aligned}
\end{equation}

This system has \( \antisymmetric{A}{H} = \antisymmetric{B}{H} = 0 \), and

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:380}
\antisymmetric{A}{B}
=
\begin{bmatrix}
0 & 2 & 0 \\
-2 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\end{equation}

There is one shared eigenvector between all of \( A, B, H \)

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:400}
\ket{3} =
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.
\end{equation}

The other eigenvectors for \( A \) are
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:420}
\begin{aligned}
\ket{a_1} &=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix} \\
\ket{a_2} &=
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix},
\end{aligned}
\end{equation}

and for \( B \)
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:440}
\begin{aligned}
\ket{b_1} &=
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \\
\ket{b_2} &=
\inv{\sqrt{2}}
\begin{bmatrix}
1 \\
-1 \\
0
\end{bmatrix},
\end{aligned}
\end{equation}

This clearly has the degeneracy sought.

Looking to [1], it appears that it is possible to construct an even simpler example. Let

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:460}
\begin{aligned}
A &=
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \\
B &=
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} \\
H &=
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}.
\end{aligned}
\end{equation}

Here \( \antisymmetric{A}{B} = -A \), and \( \antisymmetric{A}{H} = \antisymmetric{B}{H} = 0 \), but the Hamiltonian isn’t interesting at all physically.

A less boring example builds on this. Let

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:480}
\begin{aligned}
A &=
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \\
B &=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} \\
H &=
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}.
\end{aligned}
\end{equation}

Here \( \antisymmetric{A}{B} \ne 0 \), and \( \antisymmetric{A}{H} = \antisymmetric{B}{H} = 0 \). I don’t see a way for any exception to be constructed.

The problem

The concrete examples above give some intuition for solving the more abstract problem. Suppose that we are working in a basis that simultaneously diagonalizes operator \( A \) and the Hamiltonian \( H \). To make life easy consider the simplest case where this basis is also an eigenbasis for the second operator \( B \) for all but two of that operators eigenvectors. For such a system let’s write

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:160}
\begin{aligned}
H \ket{1} &= \epsilon_1 \ket{1} \\
H \ket{2} &= \epsilon_2 \ket{2} \\
A \ket{1} &= a_1 \ket{1} \\
A \ket{2} &= a_2 \ket{2},
\end{aligned}
\end{equation}
where \( \ket{1}\), and \( \ket{2} \) are not eigenkets of \( B \). Because \( B \) also commutes with \( H \), we must have

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:180}
H B \ket{1}
= H \sum_n \ket{n}\bra{n} B \ket{1}
= \sum_n \epsilon_n \ket{n} B_{n 1},
\end{equation}

and
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:200}
B H \ket{1}
= B \epsilon_1 \ket{1}
= \epsilon_1 \sum_n \ket{n}\bra{n} B \ket{1}
= \epsilon_1 \sum_n \ket{n} B_{n 1}.
\end{equation}

We can now compute the action of the commutators on \( \ket{1}, \ket{2} \),
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:220}
\antisymmetric{B}{H} \ket{1}
=
\sum_n \lr{ \epsilon_1 – \epsilon_n } \ket{n} B_{n 1}.
\end{equation}

Similarly
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:240}
\antisymmetric{B}{H} \ket{2}
=
\sum_n \lr{ \epsilon_2 – \epsilon_n } \ket{n} B_{n 2}.
\end{equation}

However, for those kets \( \ket{m} \in \setlr{ \ket{3}, \ket{4}, \cdots } \) that are eigenkets of \( B \), with \( B \ket{m} = b_m \ket{m} \), we have

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:280}
\antisymmetric{B}{H} \ket{m}
=
B \epsilon_m \ket{m} – H b_m \ket{m}
=
b_m \epsilon_m \ket{m} – \epsilon_m b_m \ket{m}
=
0,
\end{equation}

The sums in \ref{eqn:angularMomentumAndCentralForceCommutators:220} and \ref{eqn:angularMomentumAndCentralForceCommutators:240} reduce to
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:500}
\antisymmetric{B}{H} \ket{1}
=
\sum_{n=1}^2 \lr{ \epsilon_1 – \epsilon_n } \ket{n} B_{n 1}
=
\lr{ \epsilon_1 – \epsilon_2 } \ket{2} B_{2 1},
\end{equation}
and
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:520}
\antisymmetric{B}{H} \ket{2}
=
\sum_{n=1}^2 \lr{ \epsilon_2 – \epsilon_n } \ket{n} B_{n 2}
=
\lr{ \epsilon_2 – \epsilon_1 } \ket{1} B_{1 2}.
\end{equation}
Since the commutator is zero, the matrix elements of the commutator must all be zero, in particular
\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:260}
\begin{aligned}
\bra{1} \antisymmetric{B}{H} \ket{1} &= \lr{ \epsilon_1 – \epsilon_2 } B_{2 1} \braket{1}{2} = 0 \\
\bra{2} \antisymmetric{B}{H} \ket{1} &= \lr{ \epsilon_1 – \epsilon_2 } B_{2 1} \braket{1}{1} \\
\bra{1} \antisymmetric{B}{H} \ket{2} &= \lr{ \epsilon_2 – \epsilon_1 } B_{1 2} \braket{1}{2} = 0 \\
\bra{2} \antisymmetric{B}{H} \ket{2} &= \lr{ \epsilon_2 – \epsilon_1 } B_{1 2} \braket{2}{2}.
\end{aligned}
\end{equation}
We must either have

  • \( B_{2 1} = B_{1 2} = 0 \), or
  • \( \epsilon_1 = \epsilon_2 \).

If the first condition were true we would have

\begin{equation}\label{eqn:angularMomentumAndCentralForceCommutators:300}
B \ket{1}
=
\ket{n}\bra{n} B \ket{1}
=
\ket{n} B_{n 1}
=
\ket{1} B_{1 1},
\end{equation}

and \( B \ket{2} = B_{2 2} \ket{2} \). This contradicts the requirement that \( \ket{1}, \ket{2} \) not be eigenkets of \( B \), leaving only the second option. That second option means there must be a degeneracy in the system.

References

[1] Ronald M. Aarts. Commuting Matrices, 2015. URL http://mathworld.wolfram.com/CommutingMatrices.html. [Online; accessed 22-Oct-2015].

[2] Jun John Sakurai and Jim J Napolitano. Modern quantum mechanics. Pearson Higher Ed, 2014.

Greetings to new Markham-Unionville conservative rep Bob Saroya.

October 21, 2015 Incoherent ramblings , , , ,

The Honourable Bob Saroya,

Congratulations for your success winning your position in parliament for our district. Unfortunately for you, this means that you are also obligated to represent me. I did not vote for you. I effectively voted none-of-the-above, by voting for the Green Party representative Elvin Kao, knowing full well that he was too inexperienced to be successful. I’m not sad that he was not successful, because his emails expressed a belligerence in foreign policy matters that turned my stomach. He got my vote in the end because he answered my mailed questions, unlike yourself and unlike your like your Liberal running mate Mrs. Jiang. Your Liberal predecessor in Markham Unionville, Mr John McCallum, as a representative, has a 2/5 score for answering correspondence. However, that small non-zero portion of his positive score can really be attributed to his administrative assistant, Mr. Nicholson.

I have a very poor opinion of politics, and politicians, and as my representative, you have an infinitesimal chance of changing that position. Given that you did not answer correspondence sent while running, I do not expect there is much chance of that occurring. What I do expect is to see more voting for increased government when you have the chance. Take bill-C51, the police state bill, tabled by members of Minister Blainey’s hierarchy that effectively gave themselves paychecks and power. Despite knowing that there was a massive objection to this bill, so much that it probably cost the Conservatives their majority this election, it was still forced through. It seems to me that this bill owes its success to the putrid non-democratic policy of the party whip. Because the Liberal leadership was also deluded into thinking there was rational for a new Canadian police state, the average joe like me will slowly start to see how big government in Canada will exploit this to spy on all it’s could-be-terrorist citizens. Welcome to the new Canada, where fear mongering trumps rationality.

I am not surprised that fear mongering is so successful here. We are conditioned to be conformist and patriotic. Our schools are like jails, locked down, with active shooter drills, and require police checks of parent volunteers that discourage involvement of non-school personal in raising the little obedient soldiers who stand for their dose of Oh Canada every morning.

The desired product seems to be unthinking patriots that will be willing to go off to war to bomb the current bad-guy brown people de-jour. Such people are guilty of having been selected as targets by the USA and their North bordered military lackey, but this always occurs in a predictable way. First they are sold or given weapons, then later declared to be enemies. It’s a beautiful scheme to keep the armaments industry going.

What do we not see taught in schools? We don’t see anybody taught to think for themselves. We don’t see basics taught. We are raising a generation of kids that have to use a calculator because they haven’t learned their timetables, and have had the new math shoved down their throats. They won’t be able to multiply the way our generation, our parents, and grandparents learned, but by the time they have been subjected to the matrix method of multiplication, the line crossing method of multiplication, and the array method of multiplication … they will give up. Math will be viewed as too confusing, and we will have a generation of math illiteracy. Our generation has front row seats to watching our first world status get flushed down the toilet.

Ranting aside, I have a couple questions.

1) Should Mr Trudeau follow through with his unlikely promise to repeal parts of bill-C51, imagine that the party whip was given the day off, and you were given the chance to vote in a democratic fashion instead of having to obediently follow the party line like a good Oh Canada trained compliant patriot, how would you vote?

Yes, I know that it is unlikely that the party whip would be given the day off. A more likely scenario is that he/she gets correctly identified as a source of anti-free-speech and anti-democracy, and gets shot by terrorists inspired by Canadian bombing throughout the world.

2) The Quirks and Quarks radio show hosted by Bob McDonald hosted a political debate on science topics. This was a pretty putrid affair, like all politician debates, and the point of the debaters seemed to be to win points for most spin, and least fact.

One point debated seemed to be fact checkable. Opposition members brought up the destruction of one or more Canadian research libraries by the conservative party. The conservative party rep claimed that they were lying, and said that the libraries were not destroyed but digitized to be made available for all. The opposition then predictably claimed that the conservative was also lying.

How many research libraries were destroyed? Where are the digitized copies of all the books available? Was that a 100% digitization, or a partial digitization. If partial, where is the policy used to decide what was destroyed, and are there records showing what was destroyed?

Sincerely,

Peeter Joot

PHY1520H Graduate Quantum Mechanics. Lecture 10: 1D Dirac scattering off potential step. Taught by Prof. Arun Paramekanti

October 20, 2015 phy1520 , ,

[Click here for a PDF of this post with nicer formatting]

Disclaimer

Peeter’s lecture notes from class. These may be incoherent and rough.

These are notes for the UofT course PHY1520, Graduate Quantum Mechanics, taught by Prof. Paramekanti.

Dirac scattering off a potential step

For the non-relativistic case we have

\begin{equation}\label{eqn:qmLecture10:20}
\begin{aligned}
E < V_0 &\Rightarrow T = 0, R = 1 \\ E > V_0 &\Rightarrow T > 0, R < 1.
\end{aligned}
\end{equation}

What happens for a relativistic 1D particle?

Referring to fig. 1.

fig. 1. Potential step

fig. 1. Potential step

the region I Hamiltonian is

\begin{equation}\label{eqn:qmLecture10:40}
H =
\begin{bmatrix}
\hat{p} c & m c^2 \\
m c^2 & – \hat{p} c
\end{bmatrix},
\end{equation}

for which the solution is

\begin{equation}\label{eqn:qmLecture10:60}
\Phi = e^{i k_1 x }
\begin{bmatrix}
\cos \theta_1 \\
\sin \theta_1
\end{bmatrix},
\end{equation}

where
\begin{equation}\label{eqn:qmLecture10:80}
\begin{aligned}
\cos 2 \theta_1 &= \frac{ \Hbar c k_1 }{E_{k_1}} \\
\sin 2 \theta_1 &= \frac{ m c^2 }{E_{k_1}} \\
\end{aligned}
\end{equation}

To consider the \( k_1 < 0 \) case, note that

\begin{equation}\label{eqn:qmLecture10:100}
\begin{aligned}
\cos^2 \theta_1 – \sin^2 \theta_1 &= \cos 2 \theta_1 \\
2 \sin\theta_1 \cos\theta_1 &= \sin 2 \theta_1
\end{aligned}
\end{equation}

so after flipping the signs on all the \( k_1 \) terms we find for the reflected wave

\begin{equation}\label{eqn:qmLecture10:120}
\Phi = e^{-i k_1 x}
\begin{bmatrix}
\sin\theta_1 \\
\cos\theta_1
\end{bmatrix}.
\end{equation}

FIXME: this reasoning doesn’t entirely make sense to me. Make sense of this by trying this solution as was done for the form of the incident wave solution.

The region I wave has the form

\begin{equation}\label{eqn:qmLecture10:140}
\Phi_I
=
A e^{i k_1 x}
\begin{bmatrix}
\cos\theta_1 \\
\sin\theta_1 \\
\end{bmatrix}
+
B e^{-i k_1 x}
\begin{bmatrix}
\sin\theta_1 \\
\cos\theta_1 \\
\end{bmatrix}.
\end{equation}

By the time we are done we want to have computed the reflection coefficient

\begin{equation}\label{eqn:qmLecture10:160}
R =
\frac{\Abs{B}^2}{\Abs{A}^2}.
\end{equation}

The region I energy is

\begin{equation}\label{eqn:qmLecture10:180}
E = \sqrt{ \lr{ m c^2}^2 + \lr{ \Hbar c k_1 }^2 }.
\end{equation}

We must have
\begin{equation}\label{eqn:qmLecture10:200}
E
=
\sqrt{ \lr{ m c^2}^2 + \lr{ \Hbar c k_2 }^2 } + V_0
=
\sqrt{ \lr{ m c^2}^2 + \lr{ \Hbar c k_1 }^2 },
\end{equation}

so

\begin{equation}\label{eqn:qmLecture10:220}
\begin{aligned}
\lr{ \Hbar c k_2 }^2
&=
\lr{ E – V_0 }^2 – \lr{ m c^2}^2 \\
&=
\underbrace{\lr{ E – V_0 + m c }}_{r_1}\underbrace{\lr{ E – V_0 – m c }}_{r_2}.
\end{aligned}
\end{equation}

The \( r_1 \) and \( r_2 \) branches are sketched in fig. 2.

fig. 2. Energy signs

fig. 2. Energy signs

For low energies, we have a set of potentials for which we will have propagation, despite having a potential barrier. For still higher values of the potential barrier the product \( r_1 r_2 \) will be negative, so the solutions will be decaying. Finally, for even higher energies, there will again be propagation.

The non-relativistic case is sketched in fig. 3.

fig. 3. Effects of increasing potential for non-relativistic case

fig. 3. Effects of increasing potential for non-relativistic case

For the relativistic case we must consider three different cases, sketched in fig 4, fig 5, and fig 6 respectively. For the low potential energy, a particle with positive group velocity (what we’ve called right moving) can be matched to an equal energy portion of the potential shifted parabola in region II. This is a case where we have transmission, but no antiparticle creation. There will be an energy region where the region II wave function has only a dissipative term, since there is no region of either of the region II parabolic branches available at the incident energy. When the potential is shifted still higher so that \( V_0 > E + m c^2 \), a positive group velocity in region I with a given energy can be matched to an antiparticle branch in the region II parabolic energy curve.

lecture10Fig4a

Fig 4. Low potential energy

lecture10Fig4b

fig. 5. High enough potential energy for no propagation

lecture10Fig4c

fig 6. High potential energy

 

Boundary value conditions

We want to ensure that the current across the barrier is conserved (no particles are lost), as sketched in fig. 7.

 

fig. 7. Transmitted, reflected and incident components.

fig. 7. Transmitted, reflected and incident components.

Recall that given a wave function

\begin{equation}\label{eqn:qmLecture10:240}
\Psi =
\begin{bmatrix}
\psi_1 \\
\psi_2
\end{bmatrix},
\end{equation}

the density and currents are respectively

\begin{equation}\label{eqn:qmLecture10:260}
\begin{aligned}
\rho &= \psi_1^\conj \psi_1 + \psi_2^\conj \psi_2 \\
j &= \psi_1^\conj \psi_1 – \psi_2^\conj \psi_2
\end{aligned}
\end{equation}

Matching boundary value conditions requires

  1. For both the relativistic and non-relativistic cases we must have\begin{equation}\label{eqn:qmLecture10:280}
    \Psi_{\textrm{L}} = \Psi_{\textrm{R}}, \qquad \mbox{at \( x = 0 \).}
    \end{equation}
  2. For the non-relativistic case we want
    \begin{equation}\label{eqn:qmLecture10:300}
    \int_{-\epsilon}^\epsilon -\frac{\Hbar^2}{2m} \PDSq{x}{\Psi} =
    {\int_{-\epsilon}^\epsilon \lr{ E – V(x) } \Psi(x)}.
    \end{equation}The RHS integral is zero, so

    \begin{equation}\label{eqn:qmLecture10:320}
    -\frac{\Hbar^2}{2m} \lr{ \evalbar{\PD{x}{\Psi}}{{\textrm{R}}} – \evalbar{\PD{x}{\Psi}}{{\textrm{L}}} } = 0.
    \end{equation}

    We have to match

    For the relativistic case

    \begin{equation}\label{eqn:qmLecture10:460}
    -i \Hbar \sigma_z \int_{-\epsilon}^\epsilon \PD{x}{\Psi} +
    {m c^2 \sigma_x \int_{-\epsilon}^\epsilon \psi}
    =
    {\int_{-\epsilon}^\epsilon \lr{ E – V_0 } \psi},
    \end{equation}

the second two integrals are wiped out, so

\begin{equation}\label{eqn:qmLecture10:340}
-i \Hbar c \sigma_z \lr{ \psi(\epsilon) – \psi(-\epsilon) }
=
-i \Hbar c \sigma_z \lr{ \psi_{\textrm{R}} – \psi_{\textrm{L}} }.
\end{equation}

so we must match

\begin{equation}\label{eqn:qmLecture10:360}
\sigma_z \psi_{\textrm{R}} = \sigma_z \psi_{\textrm{L}} .
\end{equation}

It appears that things are simpler, because we only have to match the wave function values at the boundary, and don’t have to match the derivatives too. However, we have a two component wave function, so there are still two tasks.

Solving the system

Let’s look for a solution for the \( E + m c^2 > V_0 \) case on the right branch, as sketched in fig. 8.

 

fig. 8. High potential region. Anti-particle transmission.

fig. 8. High potential region. Anti-particle transmission.

While the right branch in this case is left going, this might work out since that is an antiparticle. We could try both.

Try

\begin{equation}\label{eqn:qmLecture10:480}
\Psi_{II} = D e^{i k_2 x}
\begin{bmatrix}
-\sin\theta_2 \\
\cos\theta_2
\end{bmatrix}.
\end{equation}

This is justified by

\begin{equation}\label{eqn:qmLecture10:500}
+E \rightarrow
\begin{bmatrix}
\cos\theta \\
\sin\theta
\end{bmatrix},
\end{equation}

so

\begin{equation}\label{eqn:qmLecture10:520}
-E \rightarrow
\begin{bmatrix}
-\sin\theta \\
\cos\theta \\
\end{bmatrix}
\end{equation}

At \( x = 0 \) the exponentials vanish, so equating the waves at that point means

\begin{equation}\label{eqn:qmLecture10:380}
\begin{bmatrix}
\cos\theta_1 \\
\sin\theta_1 \\
\end{bmatrix}
+
\frac{B}{A}
\begin{bmatrix}
\sin\theta_1 \\
\cos\theta_1 \\
\end{bmatrix}
=
\frac{D}{A}
\begin{bmatrix}
-\sin\theta_2 \\
\cos\theta_2
\end{bmatrix}.
\end{equation}

Solving this yields

\begin{equation}\label{eqn:qmLecture10:400}
\frac{B}{A} = – \frac{\cos(\theta_1 – \theta_2)}{\sin(\theta_1 + \theta_2)}.
\end{equation}

This yields

\begin{equation}\label{eqn:qmLecture10:420}
\boxed{
R = \frac{1 + \cos( 2 \theta_1 – 2 \theta_2) }{1 – \cos( 2 \theta_1 – 2 \theta_2)}.
}
\end{equation}

As \( V_0 \rightarrow \infty \) this simplifies to

\begin{equation}\label{eqn:qmLecture10:440}
R = \frac{ E – \sqrt{ E^2 – \lr{ m c^2 }^2 } }{ E + \sqrt{ E^2 – \lr{ m c^2 }^2 } }.
\end{equation}

Filling in the details for these results part of problem set 4.

Second update of aggregate notes for phy1520, Graduate Quantum Mechanics

October 20, 2015 phy1520 , , , , , , , , , , , ,

I’ve posted a second update of my aggregate notes for PHY1520H Graduate Quantum Mechanics, taught by Prof. Arun Paramekanti. In addition to what was noted previously, this contains lecture notes up to lecture 9, my ungraded solutions for the second problem set, and some additional worked practise problems.

Most of the content was posted individually in the following locations, but those original documents will not be maintained individually any further.