triple product

Poynting theorem

November 7, 2016 math and physics play , , , ,

Poynting relationship
[Click here for a PDF of this post with nicer formatting]

Problem:

Given
\begin{equation}\label{eqn:poynting:20}
\spacegrad \cross \BE
= -\BM_i – \PD{t}{\BB},
\end{equation}

and
\begin{equation}\label{eqn:poynting:40}
\spacegrad \cross \BH
= \BJ_i + \BJ_c + \PD{t}{\BD},
\end{equation}

expand the divergence of \( \BE \cross \BH \) to find the form of the Poynting theorem.

Solution:

First we need the chain rule for of this sort of divergence. Using primes to indicate the scope of the gradient operation

\begin{equation}\label{eqn:poynting:60}
\begin{aligned}
\spacegrad \cdot \lr{ \BE \cross \BH }
&=
\spacegrad’ \cdot \lr{ \BE’ \cross \BH }

\spacegrad’ \cdot \lr{ \BH’ \cross \BE } \\
&=
\BH \cdot \lr{ \spacegrad’ \cross \BE’ }

\BH \cdot \lr{ \spacegrad’ \cross \BH’ } \\
&=
\BH \cdot \lr{ \spacegrad \cross \BE }

\BE \cdot \lr{ \spacegrad \cross \BH }.
\end{aligned}
\end{equation}

In the second step, cyclic permutation of the triple product was used.
This checks against the inside front cover of Jackson [1]. Now we can plug in the Maxwell equation cross products.

\begin{equation}\label{eqn:poynting:80}
\begin{aligned}
\spacegrad \cdot \lr{ \BE \cross \BH }
&=
\BH \cdot \lr{ -\BM_i – \PD{t}{\BB} }

\BE \cdot \lr{ \BJ_i + \BJ_c + \PD{t}{\BD} } \\
&=
-\BH \cdot \BM_i
-\mu \BH \cdot \PD{t}{\BH}

\BE \cdot \BJ_i

\BE \cdot \BJ_c

\epsilon \BE \cdot \PD{t}{\BE},
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:poynting:120}
\boxed{
0
=
\spacegrad \cdot \lr{ \BE \cross \BH }
+ \frac{\epsilon}{2} \PD{t}{} \Abs{ \BE }^2
+ \frac{\mu}{2} \PD{t}{} \Abs{ \BH }^2
+ \BH \cdot \BM_i
+ \BE \cdot \BJ_i
+ \sigma \Abs{\BE}^2.
}
\end{equation}

References

[1] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog: