## Maxwell equation boundary conditions in media

Following [1], Maxwell’s equations in media, including both electric and magnetic sources and currents are

\label{eqn:boundaryConditionsInMedia:40}
\spacegrad \cross \BE = -\BM – \partial_t \BB

\label{eqn:boundaryConditionsInMedia:60}
\spacegrad \cross \BH = \BJ + \partial_t \BD

\label{eqn:boundaryConditionsInMedia:80}

\label{eqn:boundaryConditionsInMedia:100}

In general, it is not possible to assemble these into a single Geometric Algebra equation unless specific assumptions about the permeabilities are made, but we can still use Geometric Algebra to examine the boundary condition question. First, these equations can be expressed in a more natural multivector form

\label{eqn:boundaryConditionsInMedia:140}
\spacegrad \wedge \BE = -I \lr{ \BM + \partial_t \BB }

\label{eqn:boundaryConditionsInMedia:160}
\spacegrad \wedge \BH = I \lr{ \BJ + \partial_t \BD }

\label{eqn:boundaryConditionsInMedia:180}

\label{eqn:boundaryConditionsInMedia:200}

Then duality relations can be used on the divergences to write all four equations in their curl form

\label{eqn:boundaryConditionsInMedia:240}
\spacegrad \wedge \BE = -I \lr{ \BM + \partial_t \BB }

\label{eqn:boundaryConditionsInMedia:260}
\spacegrad \wedge \BH = I \lr{ \BJ + \partial_t \BD }

\label{eqn:boundaryConditionsInMedia:280}
\spacegrad \wedge (I\BD) = \rho I

\label{eqn:boundaryConditionsInMedia:300}
\spacegrad \wedge (I\BB) = \rho_{\textrm{m}} I.

Now it is possible to employ Stokes theorem to each of these. The usual procedure is to both use the loops of fig. 2 and the pillbox of fig. 1, where in both cases the height is made infinitesimal.

fig 1. Two surfaces normal to the interface.

fig 2. A pillbox volume encompassing the interface.

With all these relations expressed in curl form as above, we can use just the pillbox configuration to evaluate the Stokes integrals.
Let the height $$h$$ be measured along the normal axis, and assume that all the charges and currents are localized to the surface

\label{eqn:boundaryConditionsInMedia:320}
\begin{aligned}
\BM &= \BM_{\textrm{s}} \delta( h ) \\
\BJ &= \BJ_{\textrm{s}} \delta( h ) \\
\rho &= \rho_{\textrm{s}} \delta( h ) \\
\rho_{\textrm{m}} &= \rho_{\textrm{m}\textrm{s}} \delta( h ),
\end{aligned}

we can enumerate the Stokes integrals $$\int d^3 \Bx \cdot \lr{ \spacegrad \wedge \BX } = \oint_{\partial V} d^2 \Bx \cdot \BX$$. The three-volume area element will be written as $$d^3 \Bx = d^2 \Bx \wedge \ncap dh$$, giving

\label{eqn:boundaryConditionsInMedia:360}
\oint_{\partial V} d^2 \Bx \cdot \BE = -\int (d^2 \Bx \wedge \ncap) \cdot \lr{ I \BM_{\textrm{s}} + \partial_t I \BB \Delta h}

\label{eqn:boundaryConditionsInMedia:380}
\oint_{\partial V} d^2 \Bx \cdot \BH = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ I \BJ_{\textrm{s}} + \partial_t I \BD \Delta h}

\label{eqn:boundaryConditionsInMedia:400}
\oint_{\partial V} d^2 \Bx \cdot (I\BD) = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ \rho_{\textrm{s}} I }

\label{eqn:boundaryConditionsInMedia:420}
\oint_{\partial V} d^2 \Bx \cdot (I\BB) = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ \rho_{\textrm{m}\textrm{s}} I }

In the limit with $$\Delta h \rightarrow 0$$, the LHS integrals are reduced to just the top and bottom surfaces, and the $$\Delta h$$ contributions on the RHS are eliminated. With $$i = I \ncap$$, and $$d^2 \Bx = dA\, i$$ on the top surface, we are left with

\label{eqn:boundaryConditionsInMedia:460}
0 = \int dA \lr{ i \cdot \Delta \BE + I \cdot \lr{ I \BM_{\textrm{s}} } }

\label{eqn:boundaryConditionsInMedia:480}
0 = \int dA \lr{ i \cdot \Delta \BH – I \cdot \lr{ I \BJ_{\textrm{s}} } }

\label{eqn:boundaryConditionsInMedia:500}
0 = \int dA \lr{ i \cdot \Delta (I\BD) + \rho_{\textrm{s}} }

\label{eqn:boundaryConditionsInMedia:520}
0 = \int dA \lr{ i \cdot \Delta (I\BB) + \rho_{\textrm{m}\textrm{s}} }

Consider the first integral. Any component of $$\BE$$ that is normal to the plane of the pillbox top (or bottom) has no contribution to the integral, so this constraint is one that effects only the tangential components $$\ncap (\ncap \wedge (\Delta \BE))$$. Writing out the vector portion of the integrand, we have

\label{eqn:boundaryConditionsInMedia:540}
\begin{aligned}
i \cdot \Delta \BE + I \cdot \lr{ I \BM_{\textrm{s}} }
&=
\gpgradeone{ i \Delta \BE + I^2 \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I \ncap \Delta \BE – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I \ncap \ncap (\ncap \wedge \Delta \BE) – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I (\ncap \wedge (\Delta \BE)) – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ -\ncap \cross (\Delta \BE) – \BM_{\textrm{s}} }.
\end{aligned}

The dot product (a scalar) in the two surface charge integrals can also be reduced

\label{eqn:boundaryConditionsInMedia:560}
\begin{aligned}
i \cdot \Delta (I\BD)
&=
\gpgradezero{ i \Delta (I\BD) } \\
&=
\gpgradezero{ I \ncap \Delta (I\BD) } \\
&=
\gpgradezero{ -\ncap \Delta \BD } \\
&=
-\ncap \cdot \Delta \BD,
\end{aligned}

so the integral equations are satisfied provided

\label{eqn:boundaryConditionsInMedia:580}
\boxed{
\begin{aligned}
\ncap \cross (\BE_2 – \BE_1) &= – \BM_{\textrm{s}} \\
\ncap \cross (\BH_2 – \BH_1) &= \BJ_{\textrm{s}} \\
\ncap \cdot (\BD_2 – \BD_1) &= \rho_{\textrm{s}} \\
\ncap \cdot (\BB_2 – \BB_1) &= \rho_{\textrm{m}\textrm{s}}.
\end{aligned}
}

It is tempting to try to assemble these into a results expressed in terms of a four-vector surface current and composite STA bivector fields like the $$F = \BE + I c \BB$$ that we can use for the free space Maxwell’s equation. Dimensionally, we need something with velocity in that mix, but what velocity should be used when the speed of the field propagation in each media is potentially different?

# References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.

## Updated notes for ece1229 antenna theory

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog:

## Notes for ece1229 antenna theory

I’ve now posted a first set of notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides that match the textbook so closely, there is little value to me taking notes that just replicate the text. Instead, I am annotating my copy of textbook with little details instead. My usual notes collection for the class will contain musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book.)

• Reading notes for chapter 2 (Fundamental Parameters of Antennas) and chapter 3 (Radiation Integrals and Auxiliary Potential Functions) of the class text.
• Geometric Algebra musings.  How to do formulate Maxwell’s equations when magnetic sources are also included (those modeling magnetic dipoles).
• Some problems for chapter 2 content.

## Dual-Maxwell’s (phasor) equations in Geometric Algebra

These notes repeat (mostly word for word) the previous notes Maxwell’s (phasor) equations in Geometric Algebra. Electric charges and currents have been replaced with magnetic charges and currents, and the appropriate relations modified accordingly.

In [1] section 3.3, treating magnetic charges and currents, and no electric charges and currents, is a demonstration of the required (curl) form for the electric field, and potential form for the electric field. Not knowing what to name this, I’ll call the associated equations the dual-Maxwell’s equations.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

## Dual-Maxwell’s equation in GA phasor form.

The dual-Maxwell’s equations, omitting electric charges and currents, are

\label{eqn:phasorDualMaxwellsGA:20}
\spacegrad \cross \boldsymbol{\mathcal{E}} = -\PD{t}{\boldsymbol{\mathcal{B}}} -\BM

\label{eqn:phasorDualMaxwellsGA:40}

\label{eqn:phasorDualMaxwellsGA:60}

\label{eqn:phasorDualMaxwellsGA:80}

Assuming linear media $$\boldsymbol{\mathcal{B}} = \mu_0 \boldsymbol{\mathcal{H}}$$, $$\boldsymbol{\mathcal{D}} = \epsilon_0 \boldsymbol{\mathcal{E}}$$, and phasor relationships of the form $$\boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}}$$ for the fields and the currents, these reduce to

\label{eqn:phasorDualMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB – \BM

\label{eqn:phasorDualMaxwellsGA:120}
\spacegrad \cross \BB = j \omega \epsilon_0 \mu_0 \BE

\label{eqn:phasorDualMaxwellsGA:140}

\label{eqn:phasorDualMaxwellsGA:160}

These four equations can be assembled into a single equation form using the GA identities

\label{eqn:phasorDualMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.

\label{eqn:phasorDualMaxwellsGA:220}
I = \xcap \ycap \zcap.

The electric and magnetic field equations, respectively, are

\label{eqn:phasorDualMaxwellsGA:260}
\spacegrad \BE = – \lr{ \BM + j k c \BB} I

\label{eqn:phasorDualMaxwellsGA:280}
\spacegrad c \BB = c \rho_m + j k \BE I

where $$\omega = k c$$, and $$1 = c^2 \epsilon_0 \mu_0$$ have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorDualMaxwellsGA:280} by $$I$$), gives Maxwell’s equation in its GA phasor form

\label{eqn:phasorDualMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \lr{c \rho – \BM} I.
}

## Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors $$\Bx, \By$$ and the right handed dual $$-\By I$$ of $$\By$$, a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar $$I$$ commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\label{eqn:phasorDualMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\label{eqn:phasorDualMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\label{eqn:phasorDualMaxwellsGA:360}
\spacegrad \cdot (-\BE I)= – j \omega \BB – \BM

\label{eqn:phasorDualMaxwellsGA:380}
\spacegrad \wedge \BH = j \omega \epsilon_0 \BE I

\label{eqn:phasorDualMaxwellsGA:400}
\spacegrad \wedge (-\BE I) = 0

\label{eqn:phasorDualMaxwellsGA:420}

## Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product $$\spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0$$ for any (sufficiently continuous) vector $$\Bx$$. This triple product is a completely antisymmetric sum, and the equivalent statement in GA is $$\spacegrad \wedge \spacegrad \wedge \Bx = 0$$ for any vector $$\Bx$$. This follows from $$\Ba \wedge \Ba = 0$$, true for any vector $$\Ba$$, including the gradient operator $$\spacegrad$$, provided those gradients are acting on a sufficiently continuous blade.

In the absence of electric charges,
\ref{eqn:phasorDualMaxwellsGA:400} shows that the divergence of the dual electric field is zero. It it therefore possible to find a potential $$\BF$$ such that

\label{eqn:phasorDualMaxwellsGA:460}
-\epsilon_0 \BE I = \spacegrad \wedge \BF.

Substituting this \ref{eqn:phasorDualMaxwellsGA:380} gives

\label{eqn:phasorDualMaxwellsGA:480}
\spacegrad \wedge \lr{ \BH + j \omega \BF } = 0.

This relation is a bivector identity with zero, so will be satisfied if

\label{eqn:phasorDualMaxwellsGA:500}
\BH + j \omega \BF = -\spacegrad \phi_m,

for some scalar $$\phi_m$$. Unlike the $$-\epsilon_0 \BE I = \spacegrad \wedge \BF$$ solution to \ref{eqn:phasorDualMaxwellsGA:400}, the grade of $$\phi_m$$ is fixed by the requirement that $$\BE + j \omega \BF$$ is unity (a vector), so
a $$\BE + j \omega \BF = \spacegrad \wedge \psi$$, for a higher grade blade $$\psi$$ would not work, despite satisfying the condition $$\spacegrad \wedge \spacegrad \wedge \psi = 0$$.

Substitution of \ref{eqn:phasorDualMaxwellsGA:500} and \ref{eqn:phasorDualMaxwellsGA:460} into \ref{eqn:phasorDualMaxwellsGA:380} gives

\label{eqn:phasorDualMaxwellsGA:520}
\begin{aligned}
\spacegrad \cdot \lr{ \spacegrad \wedge \BF } &= -\epsilon_0 \BM – j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi_m -j \omega \BF } \\
\end{aligned}

Rearranging gives

\label{eqn:phasorDualMaxwellsGA:540}
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM + \spacegrad \lr{ \spacegrad \cdot \BF + j \frac{k}{c} \phi_m }.

The fields $$\BF$$ and $$\phi_m$$ are assumed to be phasors, say $$\boldsymbol{\mathcal{A}} = \textrm{Re} \BF e^{j k c t}$$ and $$\varphi = \textrm{Re} \phi_m e^{j k c t}$$. Grouping the scalar and vector potentials into the standard four vector form
$$F^\mu = \lr{\phi_m/c, \BF}$$, and expanding the Lorentz gauge condition

\label{eqn:phasorDualMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ F^\mu e^{j k c t}} \\
&= \partial_a \lr{ F^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi_m}{c}
e^{j k c t}} \\
&= \spacegrad \cdot \BF e^{j k c t} + \inv{c} j k \phi_m e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BF + j k \phi_m/c } e^{j k c t},
\end{aligned}

shows that in
\ref{eqn:phasorDualMaxwellsGA:540}
the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\label{eqn:phasorDualMaxwellsGA:550}
\boxed{
\spacegrad^2 \BF + k^2 \BF = -\epsilon_0 \BM.
}

## Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorDualMaxwellsGA:300} after pre-multiplying by $$\gamma^0$$.

With

\label{eqn:phasorDualMaxwellsGA:620}
F = F^\mu \gamma_\mu = \lr{ \phi_m/c, \BF }

\label{eqn:phasorDualMaxwellsGA:640}
G = \grad \wedge F = – \epsilon_0 \lr{ \BE + c \BB I } I

\label{eqn:phasorDualMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }

\label{eqn:phasorDualMaxwellsGA:680}
M = M^\mu \gamma_\mu = \lr{ c \rho_m, \BM },

Maxwell’s equation is

\label{eqn:phasorDualMaxwellsGA:720}
\boxed{
}

Here $$\setlr{ \gamma_\mu }$$ is used as the basis of the four vector Minkowski space, with $$\gamma_0^2 = -\gamma_k^2 = 1$$ (i.e. $$\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu$$), and $$\gamma_a \gamma_0 = \sigma_a$$ where $$\setlr{ \sigma_a}$$ is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\label{eqn:phasorDualMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}

This allows the operator identification of \ref{eqn:phasorDualMaxwellsGA:660}. The four current portion of the equation comes from

\label{eqn:phasorDualMaxwellsGA:760}
\begin{aligned}
c \rho_m – \BM
&=
\gamma_0 \lr{ \gamma_0 c \rho_m – \gamma_0 \gamma_a \gamma_0 M^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho_m + \gamma_a M^a } \\
&=
\gamma_0 \lr{ \gamma_\mu M^\mu } \\
&= \gamma_0 M.
\end{aligned}

Taking the curl of the four potential gives

\label{eqn:phasorDualMaxwellsGA:780}
\begin{aligned}
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi_m/c +
\gamma_b F^b } \\
&=
– \sigma_a \partial_a \phi_m/c + \gamma^a \wedge \gamma_b \partial_a F^b – j k
\sigma_b F^b \\
&=
– \sigma_a \partial_a \phi_m/c + \sigma_a \wedge \sigma_b \partial_a F^b – j k
\sigma_b F^b \\
&= \inv{c} \lr{ – \spacegrad \phi_m – j \omega \BF + c \spacegrad \wedge \BF }
\\
&= \epsilon_0 \lr{ c \BB – \BE I } \\
&= – \epsilon_0 \lr{ \BE + c \BB I } I.
\end{aligned}

Substituting all of these into Maxwell’s \ref{eqn:phasorDualMaxwellsGA:300} gives

\label{eqn:phasorDualMaxwellsGA:800}

which recovers \ref{eqn:phasorDualMaxwellsGA:700} as desired.

## Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorDualMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorDualMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\label{eqn:phasorDualMaxwellsGA:820}
\begin{aligned}
&=
&=
+
&=
\end{aligned}

however, the Lorentz gauge condition $$\partial_\mu F^\mu = \grad \cdot F = 0$$ kills the latter term above. This leaves

\label{eqn:phasorDualMaxwellsGA:840}
\begin{aligned}
&=
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } F \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } F \\
&=
-\lr{ \spacegrad^2 + k^2 } F = -\epsilon_0 M.
\end{aligned}

The timelike component of this gives

\label{eqn:phasorDualMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi_m = -\epsilon_0 c \rho_m,

and the spacelike components give

\label{eqn:phasorDualMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BF = -\epsilon_0 \BM,

recovering \ref{eqn:phasorDualMaxwellsGA:550} as desired.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley \& Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

## Maxwell’s (phasor) equations in Geometric Algebra

In [1] section 3.2 is a demonstration of the required (curl) form for the magnetic field, and potential form for the electric field.

I was wondering how this derivation would proceed using the Geometric Algebra (GA) formalism.

## Maxwell’s equation in GA phasor form.

Maxwell’s equations, omitting magnetic charges and currents, are

\label{eqn:phasorMaxwellsGA:20}

\label{eqn:phasorMaxwellsGA:40}
\spacegrad \cross \boldsymbol{\mathcal{H}} = \boldsymbol{\mathcal{J}} + \PD{t}{\boldsymbol{\mathcal{D}}}

\label{eqn:phasorMaxwellsGA:60}

\label{eqn:phasorMaxwellsGA:80}

Assuming linear media $$\boldsymbol{\mathcal{B}} = \mu_0 \boldsymbol{\mathcal{H}}$$, $$\boldsymbol{\mathcal{D}} = \epsilon_0 \boldsymbol{\mathcal{E}}$$, and phasor relationships of the form $$\boldsymbol{\mathcal{E}} = \textrm{Re} \lr{ \BE(\Br) e^{j \omega t}}$$ for the fields and the currents, these reduce to

\label{eqn:phasorMaxwellsGA:100}
\spacegrad \cross \BE = – j \omega \BB

\label{eqn:phasorMaxwellsGA:120}
\spacegrad \cross \BB = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE

\label{eqn:phasorMaxwellsGA:140}

\label{eqn:phasorMaxwellsGA:160}

These four equations can be assembled into a single equation form using the GA identities

\label{eqn:phasorMaxwellsGA:200}
\Bf \Bg
= \Bf \cdot \Bg + \Bf \wedge \Bg
= \Bf \cdot \Bg + I \Bf \cross \Bg.

\label{eqn:phasorMaxwellsGA:220}
I = \xcap \ycap \zcap.

The electric and magnetic field equations, respectively, are

\label{eqn:phasorMaxwellsGA:260}
\spacegrad \BE = \rho/\epsilon_0 -j k c \BB I

\label{eqn:phasorMaxwellsGA:280}
\spacegrad c \BB = \frac{I}{\epsilon_0 c} \BJ + j k \BE I

where $$\omega = k c$$, and $$1 = c^2 \epsilon_0 \mu_0$$ have also been used to eliminate some of the mess of constants.

Summing these (first scaling \ref{eqn:phasorMaxwellsGA:280} by $$I$$), gives Maxwell’s equation in its GA phasor form

\label{eqn:phasorMaxwellsGA:300}
\boxed{
\lr{ \spacegrad + j k } \lr{ \BE + I c \BB } = \inv{\epsilon_0 c}\lr{c \rho – \BJ}.
}

## Preliminaries. Dual magnetic form of Maxwell’s equations.

The arguments of the text showing that a potential representation for the electric and magnetic fields is possible easily translates into GA. To perform this translation, some duality lemmas are required

First consider the cross product of two vectors $$\Bx, \By$$ and the right handed dual $$-\By I$$ of $$\By$$, a bivector, of one of these vectors. Noting that the Euclidean pseudoscalar $$I$$ commutes with all grade multivectors in a Euclidean geometric algebra space, the cross product can be written

\label{eqn:phasorMaxwellsGA:320}
\begin{aligned}
\lr{ \Bx \cross \By }
&=
-I \lr{ \Bx \wedge \By } \\
&=
-I \inv{2} \lr{ \Bx \By – \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) – (-\By I) \Bx } \\
&=
\Bx \cdot \lr{ -\By I }.
\end{aligned}

The last step makes use of the fact that the wedge product of a vector and vector is antisymmetric, whereas the dot product (vector grade selection) of a vector and bivector is antisymmetric. Details on grade selection operators and how to characterize symmetric and antisymmetric products of vectors with blades as either dot or wedge products can be found in [3], [2].

Similarly, the dual of the dot product can be written as

\label{eqn:phasorMaxwellsGA:440}
\begin{aligned}
-I \lr{ \Bx \cdot \By }
&=
-I \inv{2} \lr{ \Bx \By + \By \Bx } \\
&=
\inv{2} \lr{ \Bx (-\By I) + (-\By I) \Bx } \\
&=
\Bx \wedge \lr{ -\By I }.
\end{aligned}

These duality transformations are motivated by the observation that in the GA form of Maxwell’s equation the magnetic field shows up in its dual form, a bivector. Spelled out in terms of the dual magnetic field, those equations are

\label{eqn:phasorMaxwellsGA:360}
\spacegrad \wedge \BE = – j \omega \BB I

\label{eqn:phasorMaxwellsGA:380}
\spacegrad \cdot \lr{ -\BB I } = \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \BE

\label{eqn:phasorMaxwellsGA:400}

\label{eqn:phasorMaxwellsGA:420}
\spacegrad \wedge (-\BB I) = 0.

## Constructing a potential representation.

The starting point of the argument in the text was the observation that the triple product $$\spacegrad \cdot \lr{ \spacegrad \cross \Bx } = 0$$ for any (sufficiently continuous) vector $$\Bx$$. This triple product is a completely antisymmetric sum, and the equivalent statement in GA is $$\spacegrad \wedge \spacegrad \wedge \Bx = 0$$ for any vector $$\Bx$$. This follows from $$\Ba \wedge \Ba = 0$$, true for any vector $$\Ba$$, including the gradient operator $$\spacegrad$$, provided those gradients are acting on a sufficiently continuous blade.

In the absence of magnetic charges, \ref{eqn:phasorMaxwellsGA:420} shows that the divergence of the dual magnetic field is zero. It it therefore possible to find a potential $$\BA$$ such that

\label{eqn:phasorMaxwellsGA:460}
\BB I = \spacegrad \wedge \BA.

Substituting this into Maxwell-Faraday \ref{eqn:phasorMaxwellsGA:360} gives

\label{eqn:phasorMaxwellsGA:480}
\spacegrad \wedge \lr{ \BE + j \omega \BA } = 0.

This relation is a bivector identity with zero, so will be satisfied if

\label{eqn:phasorMaxwellsGA:500}
\BE + j \omega \BA = -\spacegrad \phi,

for some scalar $$\phi$$. Unlike the $$\BB I = \spacegrad \wedge \BA$$ solution to \ref{eqn:phasorMaxwellsGA:420}, the grade of $$\phi$$ is fixed by the requirement that $$\BE + j \omega \BA$$ is unity (a vector), so a $$\BE + j \omega \BA = \spacegrad \wedge \psi$$, for a higher grade blade $$\psi$$ would not work, despite satisifying the condition $$\spacegrad \wedge \spacegrad \wedge \psi = 0$$.

Substitution of \ref{eqn:phasorMaxwellsGA:500} and \ref{eqn:phasorMaxwellsGA:460} into Ampere’s law \ref{eqn:phasorMaxwellsGA:380} gives

\label{eqn:phasorMaxwellsGA:520}
\begin{aligned}
-\spacegrad \cdot \lr{ \spacegrad \wedge \BA } &= \mu_0 \BJ + j \omega \epsilon_0 \mu_0 \lr{ -\spacegrad \phi -j \omega \BA } \\
\end{aligned}

Rearranging gives

\label{eqn:phasorMaxwellsGA:540}
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ – \spacegrad \lr{ \spacegrad \cdot \BA + j \frac{k}{c} \phi }.

The fields $$\BA$$ and $$\phi$$ are assumed to be phasors, say $$\boldsymbol{\mathcal{A}} = \textrm{Re} \BA e^{j k c t}$$ and $$\varphi = \textrm{Re} \phi e^{j k c t}$$. Grouping the scalar and vector potentials into the standard four vector form $$A^\mu = \lr{\phi/c, \BA}$$, and expanding the Lorentz gauge condition

\label{eqn:phasorMaxwellsGA:580}
\begin{aligned}
0
&= \partial_\mu \lr{ A^\mu e^{j k c t}} \\
&= \partial_a \lr{ A^a e^{j k c t}} + \inv{c}\PD{t}{} \lr{ \frac{\phi}{c} e^{j k c t}} \\
&= \spacegrad \cdot \BA e^{j k c t} + \inv{c} j k \phi e^{j k c t} \\
&= \lr{ \spacegrad \cdot \BA + j k \phi/c } e^{j k c t},
\end{aligned}

shows that in \ref{eqn:phasorMaxwellsGA:540} the quantity in braces is in fact the Lorentz gauge condition, so in the Lorentz gauge, the vector potential satisfies a non-homogeneous Helmholtz equation.

\label{eqn:phasorMaxwellsGA:550}
\boxed{
\spacegrad^2 \BA + k^2 \BA = -\mu_0 \BJ.
}

## Maxwell’s equation in Four vector form

The four vector form of Maxwell’s equation follows from \ref{eqn:phasorMaxwellsGA:300} after pre-multiplying by $$\gamma^0$$.

With

\label{eqn:phasorMaxwellsGA:620}
A = A^\mu \gamma_\mu = \lr{ \phi/c, \BA }

\label{eqn:phasorMaxwellsGA:640}
F = \grad \wedge A = \inv{c} \lr{ \BE + c \BB I }

\label{eqn:phasorMaxwellsGA:660}
\grad = \gamma^\mu \partial_\mu = \gamma^0 \lr{ \spacegrad + j k }

\label{eqn:phasorMaxwellsGA:680}
J = J^\mu \gamma_\mu = \lr{ c \rho, \BJ },

Maxwell’s equation is

\label{eqn:phasorMaxwellsGA:700}
\boxed{
}

Here $$\setlr{ \gamma_\mu }$$ is used as the basis of the four vector Minkowski space, with $$\gamma_0^2 = -\gamma_k^2 = 1$$ (i.e. $$\gamma^\mu \cdot \gamma_\nu = {\delta^\mu}_\nu$$), and $$\gamma_a \gamma_0 = \sigma_a$$ where $$\setlr{ \sigma_a}$$ is the Pauli basic (i.e. standard basis vectors for \R{3}).

Let’s demonstrate this, one piece at a time. Observe that the action of the spacetime gradient on a phasor, assuming that all time dependence is in the exponential, is

\label{eqn:phasorMaxwellsGA:740}
\begin{aligned}
\gamma^\mu \partial_\mu \lr{ \psi e^{j k c t} }
&=
\lr{ \gamma^a \partial_a + \gamma_0 \partial_{c t} } \lr{ \psi e^{j k c t} }
\\
&=
\gamma_0 \lr{ \gamma_0 \gamma^a \partial_a + j k } \lr{ \psi e^{j k c t} } \\
&=
\gamma_0 \lr{ \sigma_a \partial_a + j k } \psi e^{j k c t} \\
&=
\gamma_0 \lr{ \spacegrad + j k } \psi e^{j k c t}
\end{aligned}

This allows the operator identification of \ref{eqn:phasorMaxwellsGA:660}. The four current portion of the equation comes from

\label{eqn:phasorMaxwellsGA:760}
\begin{aligned}
c \rho – \BJ
&=
\gamma_0 \lr{ \gamma_0 c \rho – \gamma_0 \gamma_a \gamma_0 J^a } \\
&=
\gamma_0 \lr{ \gamma_0 c \rho + \gamma_a J^a } \\
&=
\gamma_0 \lr{ \gamma_\mu J^\mu } \\
&= \gamma_0 J.
\end{aligned}

Taking the curl of the four potential gives

\label{eqn:phasorMaxwellsGA:780}
\begin{aligned}
&=
\lr{ \gamma^a \partial_a + \gamma_0 j k } \wedge \lr{ \gamma_0 \phi/c + \gamma_b A^b } \\
&=
– \sigma_a \partial_a \phi/c + \gamma^a \wedge \gamma_b \partial_a A^b – j k
\sigma_b A^b \\
&=
– \sigma_a \partial_a \phi/c + \sigma_a \wedge \sigma_b \partial_a A^b – j k
\sigma_b A^b \\
&= \inv{c} \lr{ – \spacegrad \phi – j \omega \BA + c \spacegrad \wedge \BA }
\\
&= \inv{c} \lr{ \BE + c \BB I }.
\end{aligned}

Substituting all of these into Maxwell’s \ref{eqn:phasorMaxwellsGA:300} gives

\label{eqn:phasorMaxwellsGA:800}
\gamma_0 \grad c F = \inv{ \epsilon_0 c } \gamma_0 J,

which recovers \ref{eqn:phasorMaxwellsGA:700} as desired.

## Helmholtz equation directly from the GA form.

It is easier to find \ref{eqn:phasorMaxwellsGA:550} from the GA form of Maxwell’s \ref{eqn:phasorMaxwellsGA:700} than the traditional curl and divergence equations. Note that

\label{eqn:phasorMaxwellsGA:820}
=
=
+
=

however, the Lorentz gauge condition $$\partial_\mu A^\mu = \grad \cdot A = 0$$ kills the latter term above. This leaves

\label{eqn:phasorMaxwellsGA:840}
\begin{aligned}
&=
&=
\gamma_0 \lr{ \spacegrad + j k }
\gamma_0 \lr{ \spacegrad + j k } A \\
&=
\gamma_0^2 \lr{ -\spacegrad + j k }
\lr{ \spacegrad + j k } A \\
&=
-\lr{ \spacegrad^2 + k^2 } A = \mu_0 J.
\end{aligned}

The timelike component of this gives

\label{eqn:phasorMaxwellsGA:860}
\lr{ \spacegrad^2 + k^2 } \phi = -\rho/\epsilon_0,

and the spacelike components give

\label{eqn:phasorMaxwellsGA:880}
\lr{ \spacegrad^2 + k^2 } \BA = -\mu_0 \BJ,

recovering \ref{eqn:phasorMaxwellsGA:550} as desired.

# References

[1] Constantine A Balanis. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition, 2005.

[2] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.