wedge product

Geometric Algebra in a nutshell.

September 29, 2016 math and physics play , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

I initially thought that I might submit a problem set solution for ece1228 using Geometric Algebra. In order to justify this, I needed to add an appendix to that problem set that outlined enough of the ideas that such a solution might make sense to the grader.

I ended up changing my mind and reworked the problem entirely, removing any use of GA. Here’s the tutorial I initially considered submitting with that problem.

Geometric Algebra in a nutshell.

Geometric Algebra defines a non-commutative, associative vector product

\begin{equation}\label{eqn:gaTutorial:20}
\begin{aligned}
\Ba \Bb \Bc
&=
(\Ba \Bb) \Bc \\
&=
\Ba (\Bb \Bc),
\end{aligned}
\end{equation}

where the square of a vector equals the squared vector magnitude

\begin{equation}\label{eqn:gaTutorial:40}
\Ba^2 = \Abs{\Ba}^2,
\end{equation}

In Euclidean spaces such a squared vector is always positive, but that is not necessarily the case in the mixed signature spaces used in special relativity.

There are a number of consequences of these two simple vector multiplication rules.

  • Squared unit vectors have a unit magnitude (up to a sign). In a Euclidean space such a product is always positive

    \begin{equation}\label{eqn:gaTutorial:60}
    (\Be_1)^2 = 1.
    \end{equation}

  • Products of perpendicular vectors anticommute.

    \begin{equation}\label{eqn:gaTutorial:80}
    \begin{aligned}
    2
    &=
    (\Be_1 + \Be_2)^2 \\
    &= (\Be_1 + \Be_2)(\Be_1 + \Be_2) \\
    &= \Be_1^2 + \Be_2 \Be_1 + \Be_1 \Be_2 + \Be_2^2 \\
    &= 2 + \Be_2 \Be_1 + \Be_1 \Be_2.
    \end{aligned}
    \end{equation}

    A product of two perpendicular vectors is called a bivector, and can be used to represent an oriented plane. The last line above shows an example of a scalar and bivector sum, called a multivector. In general Geometric Algebra allows sums of scalars, vectors, bivectors, and higher degree analogues (grades) be summed.

    Comparison of the RHS and LHS of \ref{eqn:gaTutorial:80} shows that we must have

    \begin{equation}\label{eqn:gaTutorial:100}
    \Be_2 \Be_1 = -\Be_1 \Be_2.
    \end{equation}

    It is true in general that the product of two perpendicular vectors anticommutes. When, as above, such a product is a product of
    two orthonormal vectors, it behaves like a non-commutative imaginary quantity, as it has an imaginary square in Euclidean spaces

    \begin{equation}\label{eqn:gaTutorial:120}
    \begin{aligned}
    (\Be_1 \Be_2)^2
    &=
    (\Be_1 \Be_2)
    (\Be_1 \Be_2) \\
    &=
    \Be_1 (\Be_2
    \Be_1) \Be_2 \\
    &=
    -\Be_1 (\Be_1
    \Be_2) \Be_2 \\
    &=
    -(\Be_1 \Be_1)
    (\Be_2 \Be_2) \\
    &=-1.
    \end{aligned}
    \end{equation}

    Such “imaginary” (unit bivectors) have important applications describing rotations in Euclidean spaces, and boosts in Minkowski spaces.

  • The product of three perpendicular vectors, such as

    \begin{equation}\label{eqn:gaTutorial:140}
    I = \Be_1 \Be_2 \Be_3,
    \end{equation}

    is called a trivector. In \R{3}, the product of three orthonormal vectors is called a pseudoscalar for the space, and can represent an oriented volume element. The quantity \( I \) above is the typical orientation picked for the \R{3} unit pseudoscalar. This quantity also has characteristics of an imaginary number

    \begin{equation}\label{eqn:gaTutorial:160}
    \begin{aligned}
    I^2
    &=
    (\Be_1 \Be_2 \Be_3)
    (\Be_1 \Be_2 \Be_3) \\
    &=
    \Be_1 \Be_2 (\Be_3
    \Be_1) \Be_2 \Be_3 \\
    &=
    -\Be_1 \Be_2 \Be_1
    \Be_3 \Be_2 \Be_3 \\
    &=
    -\Be_1 (\Be_2 \Be_1)
    (\Be_3 \Be_2) \Be_3 \\
    &=
    -\Be_1 (\Be_1 \Be_2)
    (\Be_2 \Be_3) \Be_3 \\
    &=

    \Be_1^2
    \Be_2^2
    \Be_3^2 \\
    &=
    -1.
    \end{aligned}
    \end{equation}

  • The product of two vectors in \R{3} can be expressed as the sum of a symmetric scalar product and antisymmetric bivector product

    \begin{equation}\label{eqn:gaTutorial:480}
    \begin{aligned}
    \Ba \Bb
    &=
    \sum_{i,j = 1}^n \Be_i \Be_j a_i b_j \\
    &=
    \sum_{i = 1}^n \Be_i^2 a_i b_i
    +
    \sum_{0 < i \ne j \le n} \Be_i \Be_j a_i b_j \\ &= \sum_{i = 1}^n a_i b_i + \sum_{0 < i < j \le n} \Be_i \Be_j (a_i b_j - a_j b_i). \end{aligned} \end{equation} The first (symmetric) term is clearly the dot product. The antisymmetric term is designated the wedge product. In general these are written \begin{equation}\label{eqn:gaTutorial:500} \Ba \Bb = \Ba \cdot \Bb + \Ba \wedge \Bb, \end{equation} where \begin{equation}\label{eqn:gaTutorial:520} \begin{aligned} \Ba \cdot \Bb &\equiv \inv{2} \lr{ \Ba \Bb + \Bb \Ba } \\ \Ba \wedge \Bb &\equiv \inv{2} \lr{ \Ba \Bb - \Bb \Ba }, \end{aligned} \end{equation} The coordinate expansion of both can be seen above, but in \R{3} the wedge can also be written \begin{equation}\label{eqn:gaTutorial:540} \Ba \wedge \Bb = \Be_1 \Be_2 \Be_3 (\Ba \cross \Bb) = I (\Ba \cross \Bb). \end{equation} This allows for an handy dot plus cross product expansion of the vector product \begin{equation}\label{eqn:gaTutorial:180} \Ba \Bb = \Ba \cdot \Bb + I (\Ba \cross \Bb). \end{equation} This result should be familiar to the student of quantum spin states where one writes \begin{equation}\label{eqn:gaTutorial:200} (\Bsigma \cdot \Ba) (\Bsigma \cdot \Bb) = (\Ba \cdot \Bb) + i (\Ba \cross \Bb) \cdot \Bsigma. \end{equation} This correspondence is because the Pauli spin basis is a specific matrix representation of a Geometric Algebra, satisfying the same commutator and anticommutator relationships. A number of other algebra structures, such as complex numbers, and quaterions can also be modelled as Geometric Algebra elements.

  • It is often useful to utilize the grade selection operator
    \( \gpgrade{M}{n} \) and scalar grade selection operator \( \gpgradezero{M} = \gpgrade{M}{0} \)
    to select the scalar, vector, bivector, trivector, or higher grade algebraic elements. For example, operating on vectors \( \Ba, \Bb, \Bc \), we have

    \begin{equation}\label{eqn:gaTutorial:580}
    \begin{aligned}
    \gpgradezero{ \Ba \Bb }
    &= \Ba \cdot \Bb \\
    \gpgradeone{ \Ba \Bb \Bc }
    &=
    \Ba (\Bb \cdot \Bc)
    +
    \Ba \cdot (\Bb \wedge \Bc) \\
    &=
    \Ba (\Bb \cdot \Bc)
    +
    (\Ba \cdot \Bb) \Bc

    (\Ba \cdot \Bc) \Bb \\
    \gpgradetwo{\Ba \Bb} &=
    \Ba \wedge \Bb \\
    \gpgradethree{\Ba \Bb \Bc} &=
    \Ba \wedge \Bb \wedge \Bc.
    \end{aligned}
    \end{equation}

    Note that the wedge product of any number of vectors such as \( \Ba \wedge \Bb \wedge \Bc \) is associative and can be expressed in terms of the complete antisymmetrization of the product of those vectors. A consequence of that is the fact a wedge product that includes any colinear vectors in the product is zero.

Example: Helmholz equations.

As an example of the power of \ref{eqn:gaTutorial:180}, consider the following Helmholtz equation derivation (wave equations for the electric and magnetic fields in the frequency domain.)

Application of \ref{eqn:gaTutorial:180} to
Maxwell equations in the frequency domain for source free simple media gives

\label{eqn:emtProblemSet1Problem6:340}
\begin{equation}\label{eqn:emtProblemSet1Problem6:360}
\spacegrad \BE = -j \omega I \BB
\end{equation}
\begin{equation}\label{eqn:emtProblemSet1Problem6:380}
\spacegrad I \BB = -j \omega \mu \epsilon \BE.
\end{equation}

These equations use the engineering (not physics) sign convention for the phasors where the time domain fields are of the form \( \boldsymbol{\mathcal{E}}(\Br, t) = \textrm{Re}( \BE e^{j\omega t} \).

Operation with the gradient from the left produces the Helmholtz equation for each of the fields using nothing more than multiplication and simple substitution

\label{eqn:emtProblemSet1Problem6:400}
\begin{equation}\label{eqn:emtProblemSet1Problem6:420}
\spacegrad^2 \BE = – \mu \epsilon \omega^2 \BE
\end{equation}
\begin{equation}\label{eqn:emtProblemSet1Problem6:440}
\spacegrad^2 I \BB = – \mu \epsilon \omega^2 I \BB.
\end{equation}

There was no reason to go through the headache of looking up or deriving the expansion of \( \spacegrad \cross (\spacegrad \cross \BA ) \) as is required with the traditional vector algebra demonstration of these identities.

Observe that the usual Helmholtz equation for \( \BB \) doesn’t have a pseudoscalar factor. That result can be obtained by just cancelling the factors \( I \) since the \R{3} Euclidean pseudoscalar commutes with all grades (this isn’t the case in \R{2} nor in Minkowski spaces.)

Example: Factoring the Laplacian.

There are various ways to demonstrate the identity

\begin{equation}\label{eqn:gaTutorial:660}
\spacegrad \cross \lr{ \spacegrad \cross \BA } = \spacegrad \lr{ \spacegrad \cdot \BA } – \spacegrad^2 \BA,
\end{equation}

such as the use of (somewhat obscure) tensor contraction techniques. We can also do this with Geometric Algebra (using a different set of obscure techniques) by factoring the Laplacian action on a vector

\begin{equation}\label{eqn:gaTutorial:700}
\begin{aligned}
\spacegrad^2 \BA
&=
\spacegrad (\spacegrad \BA) \\
&=
\spacegrad (\spacegrad \cdot \BA + \spacegrad \wedge \BA) \\
&=
\spacegrad (\spacegrad \cdot \BA)
+
\spacegrad \cdot (\spacegrad \wedge \BA) \\
%+
%\cancel{\spacegrad \wedge \spacegrad \wedge \BA}
&=
\spacegrad (\spacegrad \cdot \BA)
+
\spacegrad \cdot (\spacegrad \wedge \BA).
\end{aligned}
\end{equation}

Should we wish to express the last term using cross products, a grade one selection operation can be used
\begin{equation}\label{eqn:gaTutorial:680}
\begin{aligned}
\spacegrad \cdot (\spacegrad \wedge \BA)
&=
\gpgradeone{ \spacegrad (\spacegrad \wedge \BA) } \\
&=
\gpgradeone{ \spacegrad I (\spacegrad \cross \BA) } \\
&=
\gpgradeone{ I \spacegrad \wedge (\spacegrad \cross \BA) } \\
&=
\gpgradeone{ I^2 \spacegrad \cross (\spacegrad \cross \BA) } \\
&=
-\spacegrad \cross (\spacegrad \cross \BA).
\end{aligned}
\end{equation}

Here coordinate expansion was not required in any step.

Learning more.

Some references that may be helpful to learn more about Geometric Algebra are [2], [1], [4], and [3].

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Computer Science. Morgan Kaufmann, San Francisco, 2007.

[3] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

[4] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

Green’s function for the gradient in Euclidean spaces.

September 26, 2016 math and physics play , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In [1] it is stated that the Green’s function for the gradient is

\begin{equation}\label{eqn:gradientGreensFunction:20}
G(x, x’) = \inv{S_n} \frac{x – x’}{\Abs{x-x’}^n},
\end{equation}

where \( n \) is the dimension of the space, \( S_n \) is the area of the unit sphere, and
\begin{equation}\label{eqn:gradientGreensFunction:40}
\grad G = \grad \cdot G = \delta(x – x’).
\end{equation}

What I’d like to do here is verify that this Green’s function operates as asserted. Here, as in some parts of the text, I am following a convention where vectors are written without boldface.

Let’s start with checking that the gradient of the Green’s function is zero everywhere that \( x \ne x’ \)

\begin{equation}\label{eqn:gradientGreensFunction:100}
\begin{aligned}
\spacegrad \inv{\Abs{x – x’}^n}
&=
-\frac{n}{2} \frac{e^\nu \partial_\nu (x_\mu – x_\mu’)(x^\mu – {x^\mu}’)}{\Abs{x – x’}^{n+2}} \\
&=
-\frac{n}{2} 2 \frac{e^\nu (x_\mu – x_\mu’) \delta_\nu^\mu }{\Abs{x – x’}^{n+2}} \\
&=
-n \frac{ x – x’}{\Abs{x – x’}^{n+2}}.
\end{aligned}
\end{equation}

This means that we have, everywhere that \( x \ne x’ \)

\begin{equation}\label{eqn:gradientGreensFunction:120}
\begin{aligned}
\spacegrad \cdot G
&=
\inv{S_n} \lr{ \frac{\spacegrad \cdot \lr{x – x’}}{\Abs{x – x’}^{n}} + \lr{ \spacegrad \inv{\Abs{x – x’}^{n}} } \cdot \lr{ x – x’} } \\
&=
\inv{S_n} \lr{ \frac{n}{\Abs{x – x’}^{n}} + \lr{ -n \frac{x – x’}{\Abs{x – x’}^{n+2} } \cdot \lr{ x – x’} } } \\
= 0.
\end{aligned}
\end{equation}

Next, consider the curl of the Green’s function. Zero curl will mean that we have \( \grad G = \grad \cdot G = G \lgrad \).

\begin{equation}\label{eqn:gradientGreensFunction:140}
\begin{aligned}
S_n (\grad \wedge G)
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}
+
\grad \inv{\Abs{x – x’}^{n}} \wedge (x-x’) \\
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}
– n
\frac{x – x’}{\Abs{x – x’}^{n}} \wedge (x-x’) \\
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}.
\end{aligned}
\end{equation}

However,

\begin{equation}\label{eqn:gradientGreensFunction:160}
\begin{aligned}
\grad \wedge (x-x’)
&=
\grad \wedge x \\
&=
e^\mu \wedge e_\nu \partial_\mu x^\nu \\
&=
e^\mu \wedge e_\nu \delta_\mu^\nu \\
&=
e^\mu \wedge e_\mu.
\end{aligned}
\end{equation}

For any metric where \( e_\mu \propto e^\mu \), which is the case in all the ones with physical interest (i.e. \R{3} and Minkowski space), \( \grad \wedge G \) is zero.

Having shown that the gradient of the (presumed) Green’s function is zero everywhere that \( x \ne x’ \), the guts of the
demonstration can now proceed. We wish to evaluate the gradient weighted convolution of the Green’s function using the Fundamental Theorem of (Geometric) Calculus. Here the gradient acts bidirectionally on both the gradient and the test function. Working in primed coordinates so that the final result is in terms of the unprimed, we have

\begin{equation}\label{eqn:gradientGreensFunction:60}
\int_V G(x,x’) d^n x’ \lrgrad’ F(x’)
= \int_{\partial V} G(x,x’) d^{n-1} x’ F(x’).
\end{equation}

Let \( d^n x’ = dV’ I \), \( d^{n-1} x’ n = dA’ I \), where \( n = n(x’) \) is the outward normal to the area element \( d^{n-1} x’ \). From this point on, lets restrict attention to Euclidean spaces, where \( n^2 = 1 \). In that case

\begin{equation}\label{eqn:gradientGreensFunction:80}
\begin{aligned}
\int_V dV’ G(x,x’) \lrgrad’ F(x’)
&=
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
+
\int_V dV’ G(x,x’) \lr{ \rgrad’ F(x’) } \\
&= \int_{\partial V} dA’ G(x,x’) n F(x’).
\end{aligned}
\end{equation}

Here, the pseudoscalar \( I \) has been factored out by commuting it with \( G \), using \( G I = (-1)^{n-1} I G \), and then pre-multiplication with \( 1/((-1)^{n-1} I ) \).

Each of these integrals can be considered in sequence. A convergence bound is required of the multivector test function \( F(x’) \) on the infinite surface \( \partial V \). Since it’s true that

\begin{equation}\label{eqn:gradientGreensFunction:180}
\Abs{ \int_{\partial V} dA’ G(x,x’) n F(x’) }
\ge
\int_{\partial V} dA’ \Abs{ G(x,x’) n F(x’) },
\end{equation}

then it is sufficient to require that

\begin{equation}\label{eqn:gradientGreensFunction:200}
\lim_{x’ \rightarrow \infty} \Abs{ \frac{x -x’}{\Abs{x – x’}^n} n(x’) F(x’) } \rightarrow 0,
\end{equation}

in order to kill off the surface integral. Evaluating the integral on a hypersphere centred on \( x \) where \( x’ – x = n \Abs{x – x’} \), that is

\begin{equation}\label{eqn:gradientGreensFunction:260}
\lim_{x’ \rightarrow \infty} \frac{ \Abs{F(x’)}}{\Abs{x – x’}^{n-1}} \rightarrow 0.
\end{equation}

Given such a constraint, that leaves

\begin{equation}\label{eqn:gradientGreensFunction:220}
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
=
-\int_V dV’ G(x,x’) \lr{ \rgrad’ F(x’) }.
\end{equation}

The LHS is zero everywhere that \( x \ne x’ \) so it can be restricted to a spherical ball around \( x \), which allows the test function \( F \) to be pulled out of the integral, and a second application of the Fundamental Theorem to be applied.

\begin{equation}\label{eqn:gradientGreensFunction:240}
\begin{aligned}
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
&=
\lim_{\epsilon \rightarrow 0}
\int_{\Abs{x – x’} < \epsilon} dV' \lr{G(x,x') \lgrad'} F(x') \\ &= \lr{ \lim_{\epsilon \rightarrow 0} I^{-1} \int_{\Abs{x - x'} < \epsilon} I dV' \lr{G(x,x') \lgrad'} } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} < \epsilon} G(x,x') d^n x' \lgrad' } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} = \epsilon} G(x,x') d^{n-1} x' } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} = \epsilon} G(x,x') dA' I n } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} \int_{\Abs{x - x'} = \epsilon} dA' G(x,x') n } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} \int_{\Abs{x - x'} = \epsilon} dA' \frac{\epsilon (-n)}{S_n \epsilon^n} n } F(x) \\ &= -\lim_{\epsilon \rightarrow 0} \frac{F(x)}{S_n \epsilon^{n-1}} \int_{\Abs{x - x'} = \epsilon} dA' \\ &= -\lim_{\epsilon \rightarrow 0} \frac{F(x)}{S_n \epsilon^{n-1}} S_n \epsilon^{n-1} \\ &= -F(x). \end{aligned} \end{equation} This essentially calculates the divergence integral around an infinitesimal hypersphere, without assuming that the gradient commutes with the gradient in this infinitesimal region. So, provided the test function is constrained by \ref{eqn:gradientGreensFunction:260}, we have \begin{equation}\label{eqn:gradientGreensFunction:280} F(x) = \int_V dV' G(x,x') \lr{ \grad' F(x') }. \end{equation} In particular, should we have a first order gradient equation \begin{equation}\label{eqn:gradientGreensFunction:300} \spacegrad' F(x') = M(x'), \end{equation} the inverse of this equation is given by \begin{equation}\label{eqn:gradientGreensFunction:320} \boxed{ F(x) = \int_V dV' G(x,x') M(x'). } \end{equation} Note that the sign of the Green's function is explicitly tied to the definition of the convolution integral that is used. This is important since since the conventions for the sign of the Green's function or the parameters in the convolution integral often vary. What's cool about this result is that it applies not only to gradient equations in Euclidean spaces, but also to multivector (or even just vector) fields \( F \), instead of the usual scalar functions that we usually apply Green's functions to.

Example: Electrostatics

As a check of the sign consider the electrostatics equation

\begin{equation}\label{eqn:gradientGreensFunction:380}
\spacegrad \BE = \frac{\rho}{\epsilon_0},
\end{equation}

for which we have after substitution into \ref{eqn:gradientGreensFunction:320}
\begin{equation}\label{eqn:gradientGreensFunction:400}
\BE(\Bx) = \inv{4 \pi \epsilon_0} \int_V dV’ \frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \rho(\Bx’).
\end{equation}

This matches the sign found in a trusted reference such as [2].

Future thought.

Does this Green’s function also work for mixed metric spaces? If so, in such a metric, what does it mean to
calculate the surface area of a unit sphere in a mixed signature space?

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Maxwell equation boundary conditions in media

September 10, 2016 math and physics play , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Following [1], Maxwell’s equations in media, including both electric and magnetic sources and currents are

\begin{equation}\label{eqn:boundaryConditionsInMedia:40}
\spacegrad \cross \BE = -\BM – \partial_t \BB
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:60}
\spacegrad \cross \BH = \BJ + \partial_t \BD
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:80}
\spacegrad \cdot \BD = \rho
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:100}
\spacegrad \cdot \BB = \rho_{\textrm{m}}
\end{equation}

In general, it is not possible to assemble these into a single Geometric Algebra equation unless specific assumptions about the permeabilities are made, but we can still use Geometric Algebra to examine the boundary condition question. First, these equations can be expressed in a more natural multivector form

\begin{equation}\label{eqn:boundaryConditionsInMedia:140}
\spacegrad \wedge \BE = -I \lr{ \BM + \partial_t \BB }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:160}
\spacegrad \wedge \BH = I \lr{ \BJ + \partial_t \BD }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:180}
\spacegrad \cdot \BD = \rho
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:200}
\spacegrad \cdot \BB = \rho_{\textrm{m}}
\end{equation}

Then duality relations can be used on the divergences to write all four equations in their curl form

\begin{equation}\label{eqn:boundaryConditionsInMedia:240}
\spacegrad \wedge \BE = -I \lr{ \BM + \partial_t \BB }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:260}
\spacegrad \wedge \BH = I \lr{ \BJ + \partial_t \BD }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:280}
\spacegrad \wedge (I\BD) = \rho I
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:300}
\spacegrad \wedge (I\BB) = \rho_{\textrm{m}} I.
\end{equation}

Now it is possible to employ Stokes theorem to each of these. The usual procedure is to both use the loops of fig. 2 and the pillbox of fig. 1, where in both cases the height is made infinitesimal.

boundaryConditionsTwoSurfacesFig1

fig 1. Two surfaces normal to the interface.

boundaryConditionsPillBoxFig2

fig 2. A pillbox volume encompassing the interface.

With all these relations expressed in curl form as above, we can use just the pillbox configuration to evaluate the Stokes integrals.
Let the height \( h \) be measured along the normal axis, and assume that all the charges and currents are localized to the surface

\begin{equation}\label{eqn:boundaryConditionsInMedia:320}
\begin{aligned}
\BM &= \BM_{\textrm{s}} \delta( h ) \\
\BJ &= \BJ_{\textrm{s}} \delta( h ) \\
\rho &= \rho_{\textrm{s}} \delta( h ) \\
\rho_{\textrm{m}} &= \rho_{\textrm{m}\textrm{s}} \delta( h ),
\end{aligned}
\end{equation}

we can enumerate the Stokes integrals \( \int d^3 \Bx \cdot \lr{ \spacegrad \wedge \BX } = \oint_{\partial V} d^2 \Bx \cdot \BX \). The three-volume area element will be written as \( d^3 \Bx = d^2 \Bx \wedge \ncap dh \), giving

\begin{equation}\label{eqn:boundaryConditionsInMedia:360}
\oint_{\partial V} d^2 \Bx \cdot \BE = -\int (d^2 \Bx \wedge \ncap) \cdot \lr{ I \BM_{\textrm{s}} + \partial_t I \BB \Delta h}
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:380}
\oint_{\partial V} d^2 \Bx \cdot \BH = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ I \BJ_{\textrm{s}} + \partial_t I \BD \Delta h}
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:400}
\oint_{\partial V} d^2 \Bx \cdot (I\BD) = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ \rho_{\textrm{s}} I }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:420}
\oint_{\partial V} d^2 \Bx \cdot (I\BB) = \int (d^2 \Bx \wedge \ncap) \cdot \lr{ \rho_{\textrm{m}\textrm{s}} I }
\end{equation}

In the limit with \( \Delta h \rightarrow 0 \), the LHS integrals are reduced to just the top and bottom surfaces, and the \( \Delta h \) contributions on the RHS are eliminated. With \( i = I \ncap \), and \( d^2 \Bx = dA\, i \) on the top surface, we are left with

\begin{equation}\label{eqn:boundaryConditionsInMedia:460}
0 = \int dA \lr{ i \cdot \Delta \BE + I \cdot \lr{ I \BM_{\textrm{s}} } }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:480}
0 = \int dA \lr{ i \cdot \Delta \BH – I \cdot \lr{ I \BJ_{\textrm{s}} } }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:500}
0 = \int dA \lr{ i \cdot \Delta (I\BD) + \rho_{\textrm{s}} }
\end{equation}
\begin{equation}\label{eqn:boundaryConditionsInMedia:520}
0 = \int dA \lr{ i \cdot \Delta (I\BB) + \rho_{\textrm{m}\textrm{s}} }
\end{equation}

Consider the first integral. Any component of \( \BE \) that is normal to the plane of the pillbox top (or bottom) has no contribution to the integral, so this constraint is one that effects only the tangential components \( \ncap (\ncap \wedge (\Delta \BE)) \). Writing out the vector portion of the integrand, we have

\begin{equation}\label{eqn:boundaryConditionsInMedia:540}
\begin{aligned}
i \cdot \Delta \BE + I \cdot \lr{ I \BM_{\textrm{s}} }
&=
\gpgradeone{ i \Delta \BE + I^2 \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I \ncap \Delta \BE – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I \ncap \ncap (\ncap \wedge \Delta \BE) – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ I (\ncap \wedge (\Delta \BE)) – \BM_{\textrm{s}} } \\
&=
\gpgradeone{ -\ncap \cross (\Delta \BE) – \BM_{\textrm{s}} }.
\end{aligned}
\end{equation}

The dot product (a scalar) in the two surface charge integrals can also be reduced

\begin{equation}\label{eqn:boundaryConditionsInMedia:560}
\begin{aligned}
i \cdot \Delta (I\BD)
&=
\gpgradezero{ i \Delta (I\BD) } \\
&=
\gpgradezero{ I \ncap \Delta (I\BD) } \\
&=
\gpgradezero{ -\ncap \Delta \BD } \\
&=
-\ncap \cdot \Delta \BD,
\end{aligned}
\end{equation}

so the integral equations are satisfied provided

\begin{equation}\label{eqn:boundaryConditionsInMedia:580}
\boxed{
\begin{aligned}
\ncap \cross (\BE_2 – \BE_1) &= – \BM_{\textrm{s}} \\
\ncap \cross (\BH_2 – \BH_1) &= \BJ_{\textrm{s}} \\
\ncap \cdot (\BD_2 – \BD_1) &= \rho_{\textrm{s}} \\
\ncap \cdot (\BB_2 – \BB_1) &= \rho_{\textrm{m}\textrm{s}}.
\end{aligned}
}
\end{equation}

It is tempting to try to assemble these into a results expressed in terms of a four-vector surface current and composite STA bivector fields like the \( F = \BE + I c \BB \) that we can use for the free space Maxwell’s equation. Dimensionally, we need something with velocity in that mix, but what velocity should be used when the speed of the field propagation in each media is potentially different?

References

[1] Constantine A Balanis. Advanced engineering electromagnetics. Wiley New York, 1989.

Application of Stokes Theorem to the Maxwell equation

September 3, 2016 math and physics play , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

The relativistic form of Maxwell’s equation in Geometric Algebra is

\begin{equation}\label{eqn:maxwellStokes:20}
\grad F = \inv{c \epsilon_0} J,
\end{equation}

where \( \grad = \gamma^\mu \partial_\mu \) is the spacetime gradient, and \( J = (c\rho, \BJ) = J^\mu \gamma_\mu \) is the four (vector) current density. The pseudoscalar for the space is denoted \( I = \gamma_0 \gamma_1 \gamma_2 \gamma_3 \), where the basis elements satisfy \( \gamma_0^2 = 1 = -\gamma_k^2 \), and a dual basis satisfies \( \gamma_\mu \cdot \gamma^\nu = \delta_\mu^\nu \). The electromagnetic field \( F \) is a composite multivector \( F = \BE + I c \BB \). This is actually a bivector because spatial vectors have a bivector representation in the space time algebra of the form \( \BE = E^k \gamma_k \gamma_0 \).

A dual representation, with \( F = I G \) is also possible

\begin{equation}\label{eqn:maxwellStokes:60}
\grad G = \frac{I}{c \epsilon_0} J.
\end{equation}

Either form of Maxwell’s equation can be split into grade one and three components. The standard (non-dual) form is

\begin{equation}\label{eqn:maxwellStokes:40}
\begin{aligned}
\grad \cdot F &= \inv{c \epsilon_0} J \\
\grad \wedge F &= 0,
\end{aligned}
\end{equation}

and the dual form is

\begin{equation}\label{eqn:maxwellStokes:41}
\begin{aligned}
\grad \cdot G &= 0 \\
\grad \wedge G &= \frac{I}{c \epsilon_0} J.
\end{aligned}
\end{equation}

In both cases a potential representation \( F = \grad \wedge A \), where \( A \) is a four vector potential can be used to kill off the non-current equation. Such a potential representation reduces Maxwell’s equation to

\begin{equation}\label{eqn:maxwellStokes:80}
\grad \cdot F = \inv{c \epsilon_0} J,
\end{equation}

or
\begin{equation}\label{eqn:maxwellStokes:100}
\grad \wedge G = \frac{I}{c \epsilon_0} J.
\end{equation}

In both cases, these reduce to
\begin{equation}\label{eqn:maxwellStokes:120}
\grad^2 A – \grad \lr{ \grad \cdot A } = \inv{c \epsilon_0} J.
\end{equation}

This can clearly be further simplified by using the Lorentz gauge, where \( \grad \cdot A = 0 \). However, the aim for now is to try applying Stokes theorem to Maxwell’s equation. The dual form \ref{eqn:maxwellStokes:100} has the curl structure required for the application of Stokes. Suppose that we evaluate this curl over the three parameter volume element \( d^3 x = i\, dx^0 dx^1 dx^2 \), where \( i = \gamma_0 \gamma_1 \gamma_2 \) is the unit pseudoscalar for the spacetime volume element.

\begin{equation}\label{eqn:maxwellStokes:101}
\begin{aligned}
\int_V d^3 x \cdot \lr{ \grad \wedge G }
&=
\int_V d^3 x \cdot \lr{ \gamma^\mu \wedge \partial_\mu G } \\
&=
\int_V \lr{ d^3 x \cdot \gamma^\mu } \cdot \partial_\mu G \\
&=
\sum_{\mu \ne 3} \int_V \lr{ d^3 x \cdot \gamma^\mu } \cdot \partial_\mu G.
\end{aligned}
\end{equation}

This uses the distibution identity \( A_s \cdot (a \wedge A_r) = (A_s \cdot a) \cdot A_r \) which holds for blades \( A_s, A_r \) provided \( s > r > 0 \). Observe that only the component of the gradient that lies in the tangent space of the three volume manifold contributes to the integral, allowing the gradient to be used in the Stokes integral instead of the vector derivative (see: [1]).
Defining the the surface area element

\begin{equation}\label{eqn:maxwellStokes:140}
\begin{aligned}
d^2 x
&= \sum_{\mu \ne 3} i \cdot \gamma^\mu \inv{dx^\mu} d^3 x \\
&= \gamma_1 \gamma_2 dx dy
+ c \gamma_2 \gamma_0 dt dy
+ c \gamma_0 \gamma_1 dt dx,
\end{aligned}
\end{equation}

Stokes theorem for this volume element is now completely specified

\begin{equation}\label{eqn:maxwellStokes:200}
\int_V d^3 x \cdot \lr{ \grad \wedge G }
=
\int_{\partial V} d^2 \cdot G.
\end{equation}

Application to the dual Maxwell equation gives

\begin{equation}\label{eqn:maxwellStokes:160}
\int_{\partial V} d^2 x \cdot G
= \inv{c \epsilon_0} \int_V d^3 x \cdot (I J).
\end{equation}

After some manipulation, this can be restated in the non-dual form

\begin{equation}\label{eqn:maxwellStokes:180}
\boxed{
\int_{\partial V} \inv{I} d^2 x \wedge F
= \frac{1}{c \epsilon_0 I} \int_V d^3 x \wedge J.
}
\end{equation}

It can be demonstrated that using this with each of the standard basis spacetime 3-volume elements recovers Gauss’s law and the Ampere-Maxwell equation. So, what happened to Faraday’s law and Gauss’s law for magnetism? With application of Stokes to the curl equation from \ref{eqn:maxwellStokes:40}, those equations take the form

\begin{equation}\label{eqn:maxwellStokes:240}
\boxed{
\int_{\partial V} d^2 x \cdot F = 0.
}
\end{equation}

Problem 1:

Demonstrate that the Ampere-Maxwell equation and Gauss’s law can be recovered from the trivector (curl) equation \ref{eqn:maxwellStokes:100}.

Answer

The curl equation is a trivector on each side, so dotting it with each of the four possible trivectors \( \gamma_0 \gamma_1 \gamma_2, \gamma_0 \gamma_2 \gamma_3, \gamma_0 \gamma_1 \gamma_3, \gamma_1 \gamma_2 \gamma_3 \) will give four different scalar equations. For example, dotting with \( \gamma_0 \gamma_1 \gamma_2 \), we have for the curl side

\begin{equation}\label{eqn:maxwellStokes:460}
\begin{aligned}
\lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \lr{ \gamma^\mu \wedge \partial_\mu G }
&=
\lr{ \lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \gamma^\mu } \cdot \partial_\mu G \\
&=
(\gamma_0 \gamma_1) \cdot \partial_2 G
+(\gamma_2 \gamma_0) \cdot \partial_1 G
+(\gamma_1 \gamma_2) \cdot \partial_0 G,
\end{aligned}
\end{equation}

and for the current side, we have

\begin{equation}\label{eqn:maxwellStokes:480}
\begin{aligned}
\inv{\epsilon_0 c} \lr{ \gamma_0 \gamma_1 \gamma_2 } \cdot \lr{ I J }
&=
\inv{\epsilon_0 c} \gpgradezero{ \gamma_0 \gamma_1 \gamma_2 (\gamma_0 \gamma_1 \gamma_2 \gamma_3) J } \\
&=
\inv{\epsilon_0 c} \gpgradezero{ -\gamma_3 J } \\
&=
\inv{\epsilon_0 c} \gamma^3 \cdot J \\
&=
\inv{\epsilon_0 c} J^3,
\end{aligned}
\end{equation}

so we have
\begin{equation}\label{eqn:maxwellStokes:500}
(\gamma_0 \gamma_1) \cdot \partial_2 G
+(\gamma_2 \gamma_0) \cdot \partial_1 G
+(\gamma_1 \gamma_2) \cdot \partial_0 G
=
\inv{\epsilon_0 c} J^3.
\end{equation}

Similarily, dotting with \( \gamma_{013}, \gamma_{023}, and \gamma_{123} \) respectively yields
\begin{equation}\label{eqn:maxwellStokes:620}
\begin{aligned}
\gamma_{01} \cdot \partial_3 G + \gamma_{30} \partial_1 G + \gamma_{13} \partial_0 G &= – \inv{\epsilon_0 c} J^2 \\
\gamma_{02} \cdot \partial_3 G + \gamma_{30} \partial_2 G + \gamma_{23} \partial_0 G &= \inv{\epsilon_0 c} J^1 \\
\gamma_{12} \cdot \partial_3 G + \gamma_{31} \partial_2 G + \gamma_{23} \partial_1 G &= -\inv{\epsilon_0} \rho.
\end{aligned}
\end{equation}

Expanding the dual electromagnetic field, first in terms of the spatial vectors, and then in the space time basis, we have
\begin{equation}\label{eqn:maxwellStokes:520}
\begin{aligned}
G
&= -I F \\
&= -I \lr{ \BE + I c \BB } \\
&= -I \BE + c \BB. \\
&= -I \BE + c B^k \gamma_k \gamma_0 \\
&= \inv{2} \epsilon^{r s t} \gamma_r \gamma_s E^t + c B^k \gamma_k \gamma_0.
\end{aligned}
\end{equation}

So, dotting with a spatial vector will pick up a component of \( \BB \), we have
\begin{equation}\label{eqn:maxwellStokes:540}
\begin{aligned}
\lr{ \gamma_m \wedge \gamma_0 } \cdot \partial_\mu G
&=
\lr{ \gamma_m \wedge \gamma_0 } \cdot \partial_\mu \lr{
\inv{2} \epsilon^{r s t} \gamma_r \gamma_s E^t + c B^k \gamma_k \gamma_0
} \\
&=
c \partial_\mu B^k
\gpgradezero{
\gamma_m \gamma_0 \gamma_k \gamma_0
} \\
&=
c \partial_\mu B^k
\gpgradezero{
\gamma_m \gamma_0 \gamma_0 \gamma^k
} \\
&=
c \partial_\mu B^k
\delta_m^k \\
&=
c \partial_\mu B^m.
\end{aligned}
\end{equation}

Written out explicitly the electric field contributions to \( G \) are

\begin{equation}\label{eqn:maxwellStokes:560}
\begin{aligned}
-I \BE
&=
-\gamma_{0123k0} E^k \\
&=
-\gamma_{123k} E^k \\
&=
\left\{
\begin{array}{l l}
\gamma_{12} E^3 & \quad \mbox{\( k = 3 \)} \\
\gamma_{31} E^2 & \quad \mbox{\( k = 2 \)} \\
\gamma_{23} E^1 & \quad \mbox{\( k = 1 \)} \\
\end{array}
\right.,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:maxwellStokes:580}
\begin{aligned}
\gamma_{23} \cdot G &= -E^1 \\
\gamma_{31} \cdot G &= -E^2 \\
\gamma_{12} \cdot G &= -E^3.
\end{aligned}
\end{equation}

We now have the pieces required to expand \ref{eqn:maxwellStokes:500} and \ref{eqn:maxwellStokes:620}, which are respectively

\begin{equation}\label{eqn:maxwellStokes:501}
\begin{aligned}
– c \partial_2 B^1 + c \partial_1 B^2 – \partial_0 E^3 &= \inv{\epsilon_0 c} J^3 \\
– c \partial_3 B^1 + c \partial_1 B^3 + \partial_0 E^2 &= -\inv{\epsilon_0 c} J^2 \\
– c \partial_3 B^2 + c \partial_2 B^3 – \partial_0 E^1 &= \inv{\epsilon_0 c} J^1 \\
– \partial_3 E^3 – \partial_2 E^2 – \partial_1 E^1 &= – \inv{\epsilon_0} \rho
\end{aligned}
\end{equation}

which are the components of the Ampere-Maxwell equation, and Gauss’s law

\begin{equation}\label{eqn:maxwellStokes:600}
\begin{aligned}
\inv{\mu_0} \spacegrad \cross \BB – \epsilon_0 \PD{t}{\BE} &= \BJ \\
\spacegrad \cdot \BE &= \frac{\rho}{\epsilon_0}.
\end{aligned}
\end{equation}

Problem 2:

Prove \ref{eqn:maxwellStokes:180}.

Answer

The proof just requires the expansion of the dot products using scalar selection

\begin{equation}\label{eqn:maxwellStokes:260}
\begin{aligned}
d^2 x \cdot G
&=
\gpgradezero{ d^2 x (-I) F } \\
&=
-\gpgradezero{ I d^2 x F } \\
&=
-I \lr{ d^2 x \wedge F },
\end{aligned}
\end{equation}

and
for the three volume dot product

\begin{equation}\label{eqn:maxwellStokes:280}
\begin{aligned}
d^3 x \cdot (I J)
&=
\gpgradezero{
d^3 x\, I J
} \\
&=
-\gpgradezero{
I d^3 x\, J
} \\
&=
-I \lr{ d^3 x \wedge J }.
\end{aligned}
\end{equation}

Problem 3:

Using each of the four possible spacetime volume elements, write out the components of the Stokes integral
\ref{eqn:maxwellStokes:180}.

Answer

The four possible volume and associated area elements are
\begin{equation}\label{eqn:maxwellStokes:220}
\begin{aligned}
d^3 x = c \gamma_0 \gamma_1 \gamma_2 dt dx dy & \qquad d^2 x = \gamma_1 \gamma_2 dx dy + c \gamma_2 \gamma_0 dy dt + c \gamma_0 \gamma_1 dt dx \\
d^3 x = c \gamma_0 \gamma_1 \gamma_3 dt dx dz & \qquad d^2 x = \gamma_1 \gamma_3 dx dz + c \gamma_3 \gamma_0 dz dt + c \gamma_0 \gamma_1 dt dx \\
d^3 x = c \gamma_0 \gamma_2 \gamma_3 dt dy dz & \qquad d^2 x = \gamma_2 \gamma_3 dy dz + c \gamma_3 \gamma_0 dz dt + c \gamma_0 \gamma_2 dt dy \\
d^3 x = \gamma_1 \gamma_2 \gamma_3 dx dy dz & \qquad d^2 x = \gamma_1 \gamma_2 dx dy + \gamma_2 \gamma_3 dy dz + c \gamma_3 \gamma_1 dz dx \\
\end{aligned}
\end{equation}

Wedging the area element with \( F \) will produce pseudoscalar multiples of the various \( \BE \) and \( \BB \) components, but a recipe for these components is required.

First note that for \( k \ne 0 \), the wedge \( \gamma_k \wedge \gamma_0 \wedge F \) will just select components of \( \BB \). This can be seen first by simplifying

\begin{equation}\label{eqn:maxwellStokes:300}
\begin{aligned}
I \BB
&=
\gamma_{0 1 2 3} B^m \gamma_{m 0} \\
&=
\left\{
\begin{array}{l l}
\gamma_{3 2} B^1 & \quad \mbox{\( m = 1 \)} \\
\gamma_{1 3} B^2 & \quad \mbox{\( m = 2 \)} \\
\gamma_{2 1} B^3 & \quad \mbox{\( m = 3 \)}
\end{array}
\right.,
\end{aligned}
\end{equation}

or

\begin{equation}\label{eqn:maxwellStokes:320}
I \BB = – \epsilon_{a b c} \gamma_{a b} B^c.
\end{equation}

From this it follows that

\begin{equation}\label{eqn:maxwellStokes:340}
\gamma_k \wedge \gamma_0 \wedge F = I c B^k.
\end{equation}

The electric field components are easier to pick out. Those are selected by

\begin{equation}\label{eqn:maxwellStokes:360}
\begin{aligned}
\gamma_m \wedge \gamma_n \wedge F
&= \gamma_m \wedge \gamma_n \wedge \gamma_k \wedge \gamma_0 E^k \\
&= -I E^k \epsilon_{m n k}.
\end{aligned}
\end{equation}

The respective volume element wedge products with \( J \) are

\begin{equation}\label{eqn:maxwellStokes:400}
\begin{aligned}
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^3
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^2
\inv{I} d^3 x \wedge J = \inv{c \epsilon_0} J^1,
\end{aligned}
\end{equation}

and the respective sum of surface area elements wedged with the electromagnetic field are

\begin{equation}\label{eqn:maxwellStokes:380}
\begin{aligned}
\inv{I} d^2 x \wedge F &= – \evalbar{E^3}{c \Delta t} dx dy + c \lr{ \evalbar{B^2}{\Delta x} dy – \evalbar{B^1}{\Delta y} dx } dt \\
\inv{I} d^2 x \wedge F &= \evalbar{E^2}{c \Delta t} dx dz + c \lr{ \evalbar{B^3}{\Delta x} dz – \evalbar{B^1}{\Delta z} dx } dt \\
\inv{I} d^2 x \wedge F &= – \evalbar{E^1}{c \Delta t} dy dz + c \lr{ \evalbar{B^3}{\Delta y} dz – \evalbar{B^2}{\Delta z} dy } dt \\
\inv{I} d^2 x \wedge F &= – \evalbar{E^3}{\Delta z} dy dx – \evalbar{E^2}{\Delta y} dx dz – \evalbar{E^1}{\Delta x} dz dy,
\end{aligned}
\end{equation}

so
\begin{equation}\label{eqn:maxwellStokes:381}
\begin{aligned}
\int_{\partial V} – \evalbar{E^3}{c \Delta t} dx dy + c \lr{ \evalbar{B^2}{\Delta x} dy – \evalbar{B^1}{\Delta y} dx } dt &=
c \int_V dx dy dt \inv{c \epsilon_0} J^3 \\
\int_{\partial V} \evalbar{E^2}{c \Delta t} dx dz + c \lr{ \evalbar{B^3}{\Delta x} dz – \evalbar{B^1}{\Delta z} dx } dt &=
-c \int_V dx dy dt \inv{c \epsilon_0} J^2 \\
\int_{\partial V} – \evalbar{E^1}{c \Delta t} dy dz + c \lr{ \evalbar{B^3}{\Delta y} dz – \evalbar{B^2}{\Delta z} dy } dt &=
c \int_V dx dy dt \inv{c \epsilon_0} J^1 \\
\int_{\partial V} – \evalbar{E^3}{\Delta z} dy dx – \evalbar{E^2}{\Delta y} dx dz – \evalbar{E^1}{\Delta x} dz dy &=
-\int_V dx dy dz \inv{\epsilon_0} \rho.
\end{aligned}
\end{equation}

Observe that if the volume elements are taken to their infinesimal limits, we recover the traditional differential forms of the Ampere-Maxwell and Gauss’s law equations.

References

[1] A. Macdonald. Vector and Geometric Calculus. CreateSpace Independent Publishing Platform, 2012.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog: