gradient

Does the divergence and curl uniquely determine the vector?

September 30, 2016 math and physics play , , , , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

A problem posed in the ece1228 problem set was the following

Helmholtz theorem.

Prove the first Helmholtz’s theorem, i.e. if vector \(\BM\) is defined by its divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5:20}
\spacegrad \cdot \BM = s
\end{equation}

and its curl
\begin{equation}\label{eqn:emtProblemSet1Problem5:40}
\spacegrad \cross \BM = \BC
\end{equation}

within a region and its normal component \( \BM_{\textrm{n}} \) over the boundary, then \( \BM \) is uniquely specified.

Solution.

This problem screams for an attempt using Geometric Algebra techniques, since
the gradient of this vector can be written as a single even grade multivector

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:60}
\begin{aligned}
\spacegrad \BM
&= \spacegrad \cdot \BM + I \spacegrad \cross \BM \\
&= s + I \BC.
\end{aligned}
\end{equation}

Observe that the Laplacian of \( \BM \) is vector valued

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:400}
\spacegrad^2 \BM
= \spacegrad s + I \spacegrad \BC.
\end{equation}

This means that \( \spacegrad \BC \) must be a bivector \( \spacegrad \BC = \spacegrad \wedge \BC \), or that \( \BC \) has zero divergence

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:420}
\spacegrad \cdot \BC = 0.
\end{equation}

This required constraint on \( \BC \) will show up in subsequent analysis. An equivalent problem to the one posed
is to show that the even grade multivector equation \( \spacegrad \BM = s + I \BC \) has an inverse given the constraint
specified by \ref{eqn:emtProblemSet1Problem5AppendixGA:420}.

Inverting the gradient equation.

The Green’s function for the gradient can be found in [1], where it is used to generalize the Cauchy integral equations to higher dimensions.

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:80}
\begin{aligned}
G(\Bx ; \Bx’) &= \inv{4 \pi} \frac{ \Bx – \Bx’ }{\Abs{\Bx – \Bx’}^3} \\
\spacegrad \BG(\Bx, \Bx’) &= \spacegrad \cdot \BG(\Bx, \Bx’) = \delta(\Bx – \Bx’) = -\spacegrad’ \BG(\Bx, \Bx’).
\end{aligned}
\end{equation}

The inversion equation is an application of the Fundamental Theorem of (Geometric) Calculus, with the gradient operating bidirectionally on the Green’s function and the vector function

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:100}
\begin{aligned}
\oint_{\partial V} G(\Bx, \Bx’) d^2 \Bx’ \BM(\Bx’)
&=
\int_V G(\Bx, \Bx’) d^3 \Bx \lrspacegrad’ \BM(\Bx’) \\
&=
\int_V d^3 \Bx (G(\Bx, \Bx’) \lspacegrad’) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) (\spacegrad’ \BM(\Bx’)) \\
&=
-\int_V d^3 \Bx \delta(\Bx – \By) \BM(\Bx’)
+
\int_V d^3 \Bx G(\Bx, \Bx’) \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-I \BM(\Bx)
+
\inv{4 \pi} \int_V d^3 \Bx \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

The integrals are in terms of the primed coordinates so that the end result is a function of \( \Bx \). To rearrange for \( \BM \), let \( d^3 \Bx’ = I dV’ \), and \( d^2 \Bx’ \ncap(\Bx’) = I dA’ \), then right multiply with the pseudoscalar \( I \), noting that in \R{3} the pseudoscalar commutes with any grades

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:440}
\begin{aligned}
\BM(\Bx)
&=
I \oint_{\partial V} G(\Bx, \Bx’) I dA’ \ncap \BM(\Bx’)

I \inv{4 \pi} \int_V I dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) } \\
&=
-\oint_{\partial V} dA’ G(\Bx, \Bx’) \ncap \BM(\Bx’)
+
\inv{4 \pi} \int_V dV’ \frac{ \Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \lr{ s(\Bx’) + I \BC(\Bx’) }.
\end{aligned}
\end{equation}

This can be decomposed into a vector and a trivector equation. Let \( \Br = \Bx – \Bx’ = r \rcap \), and note that

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:500}
\begin{aligned}
\gpgradeone{ \rcap I \BC }
&=
\gpgradeone{ I \rcap \BC } \\
&=
I \rcap \wedge \BC \\
&=
-\rcap \cross \BC,
\end{aligned}
\end{equation}

so this pair of equations can be written as

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:520}
\begin{aligned}
\BM(\Bx)
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) } \\
0
&=
-\inv{4 \pi} \oint_{\partial V} dA’ \frac{\rcap}{r^2} \wedge \ncap \wedge \BM(\Bx’)
+
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}.
\end{aligned}
\end{equation}

Trivector grades.

Consider the last integral in the pseudoscalar equation above. Since we expect no pseudoscalar components, this must be zero, or cancel perfectly. It’s not obvious that this is the case, but a transformation to a surface integral shows the constraints required for that to be the case. To do so note

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:540}
\begin{aligned}
\spacegrad \inv{\Bx – \Bx’}
&= -\spacegrad’ \inv{\Bx – \Bx’} \\
&=
-\frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \\
&= -\frac{\rcap}{r^2}.
\end{aligned}
\end{equation}

Using this and the chain rule we have

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:560}
\begin{aligned}
\frac{I}{4 \pi} \int_V dV’ \frac{ \rcap \cdot \BC(\Bx’) }{r^2}
&=
\frac{I}{4 \pi} \int_V dV’ \lr{ \spacegrad’ \inv{ r } } \cdot \BC(\Bx’) \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r}

\frac{I}{4 \pi} \int_V dV’ \frac{ \spacegrad’ \cdot \BC(\Bx’) }{r} \\
&=
\frac{I}{4 \pi} \int_V dV’ \spacegrad’ \cdot \frac{\BC(\Bx’)}{r} \\
&=
\frac{I}{4 \pi} \int_{\partial V} dA’ \ncap(\Bx’) \cdot \frac{\BC(\Bx’)}{r}.
\end{aligned}
\end{equation}

The divergence of \( \BC \) above was killed by recalling the constraint \ref{eqn:emtProblemSet1Problem5AppendixGA:420}. This means that we can rewrite entirely as surface integral and eventually reduced to a single triple product

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:580}
\begin{aligned}
0
&=
-\frac{I}{4 \pi} \oint_{\partial V} dA’ \lr{
\frac{\rcap}{r^2} \cdot (\ncap \cross \BM(\Bx’))
-\ncap \cdot \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\frac{\rcap}{r^2} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\lr{ \spacegrad’ \inv{r}} \cross \BM(\Bx’)
+ \frac{\BC(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’ \ncap \cdot \lr{
\spacegrad’ \cross \frac{\BM(\Bx’)}{r}
} \\
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}
&=
\frac{I}{4 \pi} \oint_{\partial V} dA’
\spacegrad’ \cdot
\frac{\BM(\Bx’) \cross \ncap}{r}.
\end{aligned}
\end{equation}

Final results.

Assembling things back into a single multivector equation, the complete inversion integral for \( \BM \) is

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:600}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\partial V} dA’
\lr{
\spacegrad’ \wedge
\frac{\BM(\Bx’) \wedge \ncap}{r}
-\frac{\gpgradeone{ \rcap \ncap \BM(\Bx’) }}{r^2}
}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) –
\frac{\rcap}{r^2} \cross \BC(\Bx’) }.
\end{equation}

This shows that vector \( \BM \) can be recovered uniquely from \( s, \BC \) when \( \Abs{\BM}/r^2 \) vanishes on an infinite surface. If we restrict attention to a finite surface, we have to add to the fixed solution a specific solution that depends on the value of \( \BM \) on that surface. The vector portion of that surface integrand contains

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:640}
\begin{aligned}
\gpgradeone{ \rcap \ncap \BM }
&=
\rcap (\ncap \cdot \BM )
+
\rcap \cdot (\ncap \wedge \BM ) \\
&=
\rcap (\ncap \cdot \BM )
+
(\rcap \cdot \ncap) \BM

(\rcap \cdot \BM ) \ncap.
\end{aligned}
\end{equation}

The constraints required by a zero triple product \( \spacegrad’ \cdot (\BM(\Bx’) \cross \ncap(\Bx’)) \) are complicated on a such a general finite surface. Consider instead, for simplicity, the case of a spherical surface, which can be analyzed more easily. In that case the outward normal of the surface centred on the test charge point \( \Bx \) is \( \ncap = -\rcap \). The pseudoscalar integrand is not generally killed unless the divergence of its tangential component on this surface is zero. One way that this can occur is for \( \BM \cross \ncap = 0 \), so that \( -\gpgradeone{ \rcap \ncap \BM } = \BM = (\BM \cdot \ncap) \ncap = \BM_{\textrm{n}} \).

This gives

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:620}
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
+
\inv{4 \pi} \int_V dV’ \lr{
\frac{\rcap}{r^2} s(\Bx’) +
\BC(\Bx’) \cross \frac{\rcap}{r^2} },
\end{equation}

or, in terms of potential functions, which is arguably tidier

\begin{equation}\label{eqn:emtProblemSet1Problem5AppendixGA:300}
\boxed{
\BM(\Bx)
=
\inv{4 \pi} \oint_{\Abs{\Bx – \Bx’} = r} dA’ \frac{\BM_{\textrm{n}}(\Bx’)}{r^2}
-\spacegrad \int_V dV’ \frac{ s(\Bx’)}{ 4 \pi r }
+\spacegrad \cross \int_V dV’ \frac{ \BC(\Bx’) }{ 4 \pi r }.
}
\end{equation}

Commentary

I attempted this problem in three different ways. My first approach (above) assembled the divergence and curl relations above into a single (Geometric Algebra) multivector gradient equation and applied the vector valued Green’s function for the gradient to invert that equation. That approach logically led from the differential equation for \( \BM \) to the solution for \( \BM \) in terms of \( s \) and \( \BC \). However, this strategy introduced some complexities that make me doubt the correctness of the associated boundary analysis.

Even if the details of the boundary handling in my multivector approach is not correct, I thought that approach was interesting enough to share.

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

Green’s function inversion of the magnetostatic equation

September 27, 2016 math and physics play , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

A previous example of inverting a gradient equation was the electrostatics equation. We can do the same for the magnetostatics equation, which has the following Geometric Algebra form in linear media

\begin{equation}\label{eqn:biotSavartGreens:20}
\spacegrad I \BB = – \mu \BJ.
\end{equation}

The Green’s inversion of this is
\begin{equation}\label{eqn:biotSavartGreens:40}
\begin{aligned}
I \BB(\Bx)
&= \int_V dV’ G(\Bx, \Bx’) \spacegrad’ I \BB(\Bx’) \\
&= \int_V dV’ G(\Bx, \Bx’) (-\mu \BJ(\Bx’)) \\
&= \inv{4\pi} \int_V dV’ \frac{\Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } (-\mu \BJ(\Bx’)).
\end{aligned}
\end{equation}

We expect the LHS to be a bivector, so the scalar component of this should be zero. That can be demonstrated with some of the usual trickery
\begin{equation}\label{eqn:biotSavartGreens:60}
\begin{aligned}
-\frac{\mu}{4\pi} \int_V dV’ \frac{\Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \cdot \BJ(\Bx’)
&= \frac{\mu}{4\pi} \int_V dV’ \lr{ \spacegrad \inv{ \Abs{\Bx – \Bx’} }} \cdot \BJ(\Bx’) \\
&= -\frac{\mu}{4\pi} \int_V dV’ \lr{ \spacegrad’ \inv{ \Abs{\Bx – \Bx’} }} \cdot \BJ(\Bx’) \\
&= -\frac{\mu}{4\pi} \int_V dV’ \lr{
\spacegrad’ \cdot \frac{\BJ(\Bx’)}{ \Abs{\Bx – \Bx’} }

\frac{\spacegrad’ \cdot \BJ(\Bx’)}{ \Abs{\Bx – \Bx’} }
}.
\end{aligned}
\end{equation}

The current \( \BJ \) is not unconstrained. This can be seen by premultiplying \ref{eqn:biotSavartGreens:20} by the gradient

\begin{equation}\label{eqn:biotSavartGreens:80}
\spacegrad^2 I \BB = -\mu \spacegrad \BJ.
\end{equation}

On the LHS we have a bivector so must have \( \spacegrad \BJ = \spacegrad \wedge \BJ \), or \( \spacegrad \cdot \BJ = 0 \). This kills the \( \spacegrad’ \cdot \BJ(\Bx’) \) integrand numerator in \ref{eqn:biotSavartGreens:60}, leaving

\begin{equation}\label{eqn:biotSavartGreens:100}
\begin{aligned}
-\frac{\mu}{4\pi} \int_V dV’ \frac{\Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 } \cdot \BJ(\Bx’)
&= -\frac{\mu}{4\pi} \int_V dV’ \spacegrad’ \cdot \frac{\BJ(\Bx’)}{ \Abs{\Bx – \Bx’} } \\
&= -\frac{\mu}{4\pi} \int_{\partial V} dA’ \ncap \cdot \frac{\BJ(\Bx’)}{ \Abs{\Bx – \Bx’} }.
\end{aligned}
\end{equation}

This shows that the scalar part of the equation is zero, provided the normal component of \( \BJ/\Abs{\Bx – \Bx’} \) vanishes on the boundary of the infinite sphere. This leaves the Biot-Savart law as a bivector equation

\begin{equation}\label{eqn:biotSavartGreens:120}
I \BB(\Bx)
= \frac{\mu}{4\pi} \int_V dV’ \BJ(\Bx’) \wedge \frac{\Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 }.
\end{equation}

Observe that the traditional vector form of the Biot-Savart law can be obtained by premultiplying both sides with \( -I \), leaving

\begin{equation}\label{eqn:biotSavartGreens:140}
\BB(\Bx)
= \frac{\mu}{4\pi} \int_V dV’ \BJ(\Bx’) \cross \frac{\Bx – \Bx’}{ \Abs{\Bx – \Bx’}^3 }.
\end{equation}

This checks against a trusted source such as [1] (eq. 5.39).

References

[1] David Jeffrey Griffiths and Reed College. Introduction to electrodynamics. Prentice hall Upper Saddle River, NJ, 3rd edition, 1999.

Green’s function for the gradient in Euclidean spaces.

September 26, 2016 math and physics play , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

In [1] it is stated that the Green’s function for the gradient is

\begin{equation}\label{eqn:gradientGreensFunction:20}
G(x, x’) = \inv{S_n} \frac{x – x’}{\Abs{x-x’}^n},
\end{equation}

where \( n \) is the dimension of the space, \( S_n \) is the area of the unit sphere, and
\begin{equation}\label{eqn:gradientGreensFunction:40}
\grad G = \grad \cdot G = \delta(x – x’).
\end{equation}

What I’d like to do here is verify that this Green’s function operates as asserted. Here, as in some parts of the text, I am following a convention where vectors are written without boldface.

Let’s start with checking that the gradient of the Green’s function is zero everywhere that \( x \ne x’ \)

\begin{equation}\label{eqn:gradientGreensFunction:100}
\begin{aligned}
\spacegrad \inv{\Abs{x – x’}^n}
&=
-\frac{n}{2} \frac{e^\nu \partial_\nu (x_\mu – x_\mu’)(x^\mu – {x^\mu}’)}{\Abs{x – x’}^{n+2}} \\
&=
-\frac{n}{2} 2 \frac{e^\nu (x_\mu – x_\mu’) \delta_\nu^\mu }{\Abs{x – x’}^{n+2}} \\
&=
-n \frac{ x – x’}{\Abs{x – x’}^{n+2}}.
\end{aligned}
\end{equation}

This means that we have, everywhere that \( x \ne x’ \)

\begin{equation}\label{eqn:gradientGreensFunction:120}
\begin{aligned}
\spacegrad \cdot G
&=
\inv{S_n} \lr{ \frac{\spacegrad \cdot \lr{x – x’}}{\Abs{x – x’}^{n}} + \lr{ \spacegrad \inv{\Abs{x – x’}^{n}} } \cdot \lr{ x – x’} } \\
&=
\inv{S_n} \lr{ \frac{n}{\Abs{x – x’}^{n}} + \lr{ -n \frac{x – x’}{\Abs{x – x’}^{n+2} } \cdot \lr{ x – x’} } } \\
= 0.
\end{aligned}
\end{equation}

Next, consider the curl of the Green’s function. Zero curl will mean that we have \( \grad G = \grad \cdot G = G \lgrad \).

\begin{equation}\label{eqn:gradientGreensFunction:140}
\begin{aligned}
S_n (\grad \wedge G)
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}
+
\grad \inv{\Abs{x – x’}^{n}} \wedge (x-x’) \\
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}
– n
\frac{x – x’}{\Abs{x – x’}^{n}} \wedge (x-x’) \\
&=
\frac{\grad \wedge (x-x’)}{\Abs{x – x’}^{n}}.
\end{aligned}
\end{equation}

However,

\begin{equation}\label{eqn:gradientGreensFunction:160}
\begin{aligned}
\grad \wedge (x-x’)
&=
\grad \wedge x \\
&=
e^\mu \wedge e_\nu \partial_\mu x^\nu \\
&=
e^\mu \wedge e_\nu \delta_\mu^\nu \\
&=
e^\mu \wedge e_\mu.
\end{aligned}
\end{equation}

For any metric where \( e_\mu \propto e^\mu \), which is the case in all the ones with physical interest (i.e. \R{3} and Minkowski space), \( \grad \wedge G \) is zero.

Having shown that the gradient of the (presumed) Green’s function is zero everywhere that \( x \ne x’ \), the guts of the
demonstration can now proceed. We wish to evaluate the gradient weighted convolution of the Green’s function using the Fundamental Theorem of (Geometric) Calculus. Here the gradient acts bidirectionally on both the gradient and the test function. Working in primed coordinates so that the final result is in terms of the unprimed, we have

\begin{equation}\label{eqn:gradientGreensFunction:60}
\int_V G(x,x’) d^n x’ \lrgrad’ F(x’)
= \int_{\partial V} G(x,x’) d^{n-1} x’ F(x’).
\end{equation}

Let \( d^n x’ = dV’ I \), \( d^{n-1} x’ n = dA’ I \), where \( n = n(x’) \) is the outward normal to the area element \( d^{n-1} x’ \). From this point on, lets restrict attention to Euclidean spaces, where \( n^2 = 1 \). In that case

\begin{equation}\label{eqn:gradientGreensFunction:80}
\begin{aligned}
\int_V dV’ G(x,x’) \lrgrad’ F(x’)
&=
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
+
\int_V dV’ G(x,x’) \lr{ \rgrad’ F(x’) } \\
&= \int_{\partial V} dA’ G(x,x’) n F(x’).
\end{aligned}
\end{equation}

Here, the pseudoscalar \( I \) has been factored out by commuting it with \( G \), using \( G I = (-1)^{n-1} I G \), and then pre-multiplication with \( 1/((-1)^{n-1} I ) \).

Each of these integrals can be considered in sequence. A convergence bound is required of the multivector test function \( F(x’) \) on the infinite surface \( \partial V \). Since it’s true that

\begin{equation}\label{eqn:gradientGreensFunction:180}
\Abs{ \int_{\partial V} dA’ G(x,x’) n F(x’) }
\ge
\int_{\partial V} dA’ \Abs{ G(x,x’) n F(x’) },
\end{equation}

then it is sufficient to require that

\begin{equation}\label{eqn:gradientGreensFunction:200}
\lim_{x’ \rightarrow \infty} \Abs{ \frac{x -x’}{\Abs{x – x’}^n} n(x’) F(x’) } \rightarrow 0,
\end{equation}

in order to kill off the surface integral. Evaluating the integral on a hypersphere centred on \( x \) where \( x’ – x = n \Abs{x – x’} \), that is

\begin{equation}\label{eqn:gradientGreensFunction:260}
\lim_{x’ \rightarrow \infty} \frac{ \Abs{F(x’)}}{\Abs{x – x’}^{n-1}} \rightarrow 0.
\end{equation}

Given such a constraint, that leaves

\begin{equation}\label{eqn:gradientGreensFunction:220}
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
=
-\int_V dV’ G(x,x’) \lr{ \rgrad’ F(x’) }.
\end{equation}

The LHS is zero everywhere that \( x \ne x’ \) so it can be restricted to a spherical ball around \( x \), which allows the test function \( F \) to be pulled out of the integral, and a second application of the Fundamental Theorem to be applied.

\begin{equation}\label{eqn:gradientGreensFunction:240}
\begin{aligned}
\int_V dV’ \lr{G(x,x’) \lgrad’} F(x’)
&=
\lim_{\epsilon \rightarrow 0}
\int_{\Abs{x – x’} < \epsilon} dV' \lr{G(x,x') \lgrad'} F(x') \\ &= \lr{ \lim_{\epsilon \rightarrow 0} I^{-1} \int_{\Abs{x - x'} < \epsilon} I dV' \lr{G(x,x') \lgrad'} } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} < \epsilon} G(x,x') d^n x' \lgrad' } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} = \epsilon} G(x,x') d^{n-1} x' } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} (-1)^{n-1} I^{-1} \int_{\Abs{x - x'} = \epsilon} G(x,x') dA' I n } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} \int_{\Abs{x - x'} = \epsilon} dA' G(x,x') n } F(x) \\ &= \lr{ \lim_{\epsilon \rightarrow 0} \int_{\Abs{x - x'} = \epsilon} dA' \frac{\epsilon (-n)}{S_n \epsilon^n} n } F(x) \\ &= -\lim_{\epsilon \rightarrow 0} \frac{F(x)}{S_n \epsilon^{n-1}} \int_{\Abs{x - x'} = \epsilon} dA' \\ &= -\lim_{\epsilon \rightarrow 0} \frac{F(x)}{S_n \epsilon^{n-1}} S_n \epsilon^{n-1} \\ &= -F(x). \end{aligned} \end{equation} This essentially calculates the divergence integral around an infinitesimal hypersphere, without assuming that the gradient commutes with the gradient in this infinitesimal region. So, provided the test function is constrained by \ref{eqn:gradientGreensFunction:260}, we have \begin{equation}\label{eqn:gradientGreensFunction:280} F(x) = \int_V dV' G(x,x') \lr{ \grad' F(x') }. \end{equation} In particular, should we have a first order gradient equation \begin{equation}\label{eqn:gradientGreensFunction:300} \spacegrad' F(x') = M(x'), \end{equation} the inverse of this equation is given by \begin{equation}\label{eqn:gradientGreensFunction:320} \boxed{ F(x) = \int_V dV' G(x,x') M(x'). } \end{equation} Note that the sign of the Green's function is explicitly tied to the definition of the convolution integral that is used. This is important since since the conventions for the sign of the Green's function or the parameters in the convolution integral often vary. What's cool about this result is that it applies not only to gradient equations in Euclidean spaces, but also to multivector (or even just vector) fields \( F \), instead of the usual scalar functions that we usually apply Green's functions to.

Example: Electrostatics

As a check of the sign consider the electrostatics equation

\begin{equation}\label{eqn:gradientGreensFunction:380}
\spacegrad \BE = \frac{\rho}{\epsilon_0},
\end{equation}

for which we have after substitution into \ref{eqn:gradientGreensFunction:320}
\begin{equation}\label{eqn:gradientGreensFunction:400}
\BE(\Bx) = \inv{4 \pi \epsilon_0} \int_V dV’ \frac{\Bx – \Bx’}{\Abs{\Bx – \Bx’}^3} \rho(\Bx’).
\end{equation}

This matches the sign found in a trusted reference such as [2].

Future thought.

Does this Green’s function also work for mixed metric spaces? If so, in such a metric, what does it mean to
calculate the surface area of a unit sphere in a mixed signature space?

References

[1] C. Doran and A.N. Lasenby. Geometric algebra for physicists. Cambridge University Press New York, Cambridge, UK, 1st edition, 2003.

[2] JD Jackson. Classical Electrodynamics. John Wiley and Sons, 2nd edition, 1975.

Maxwell equation boundary conditions

September 6, 2016 math and physics play , , , , , , , , , , , , , ,

[Click here for a PDF of this post with nicer formatting]

Motivation

boundaryConditionsTwoSurfacesFig1

fig 1. Two surfaces normal to the interface.

Most electrodynamics textbooks either start with or contain a treatment of boundary value conditions. These typically involve evaluating Maxwell’s equations over areas or volumes of decreasing height, such as those illustrated in fig. 1, and fig. 2. These represent surfaces and volumes where the height is allowed to decrease to infinitesimal levels, and are traditionally used to find the boundary value constraints of the normal and tangential components of the electric and magnetic fields.

boundaryConditionsPillBoxFig2

fig 2. A pillbox volume encompassing the interface.

More advanced topics, such as evaluation of the Fresnel reflection and transmission equations, also rely on similar consideration of boundary value constraints. I’ve wondered for a long time how the Fresnel equations could be attacked by looking at the boundary conditions for the combined field \( F = \BE + I c \BB \), instead of the considering them separately.

A unified approach.

The Geometric Algebra (and relativistic tensor) formulations of Maxwell’s equations put the electric and magnetic fields on equal footings. It is in fact possible to specify the boundary value constraints on the fields without first separating Maxwell’s equations into their traditional forms. The starting point in Geometric Algebra is Maxwell’s equation, premultiplied by a stationary observer’s timelike basis vector

\begin{equation}\label{eqn:maxwellBoundaryConditions:20}
\gamma_0 \grad F = \inv{\epsilon_0 c} \gamma_0 J,
\end{equation}

or

\begin{equation}\label{eqn:maxwellBoundaryConditions:40}
\lr{ \partial_0 + \spacegrad} F = \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0}.
\end{equation}

The electrodynamic field \(F = \BE + I c \BB\) is a multivector in this spatial domain (whereas it is a bivector in the spacetime algebra domain), and has vector and bivector components. The product of the spatial gradient and the field can still be split into dot and curl components \(\spacegrad M = \spacegrad \cdot M + \spacegrad \wedge M \). If \(M = \sum M_i \), where \(M_i\) is an grade \(i\) blade, then we give this the Hestenes’ [1] definitions

\begin{equation}\label{eqn:maxwellBoundaryConditions:60}
\begin{aligned}
\spacegrad \cdot M &= \sum_i \gpgrade{\spacegrad M_i}{i-1} \\
\spacegrad \wedge M &= \sum_i \gpgrade{\spacegrad M_i}{i+1}.
\end{aligned}
\end{equation}

With that said, Maxwell’s equation can be rearranged into a pair of multivector equations

\begin{equation}\label{eqn:maxwellBoundaryConditions:80}
\begin{aligned}
\spacegrad \cdot F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{0,1} \\
\spacegrad \wedge F &= \gpgrade{-\partial_0 F + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c}}{2,3},
\end{aligned}
\end{equation}

The latter equation can be integrated with Stokes theorem, but we need to apply a duality transformation to the latter in order to apply Stokes to it

\begin{equation}\label{eqn:maxwellBoundaryConditions:120}
\begin{aligned}
\spacegrad \cdot F
&=
-I^2 \spacegrad \cdot F \\
&=
-I^2 \gpgrade{\spacegrad F}{0,1} \\
&=
-I \gpgrade{I \spacegrad F}{2,3} \\
&=
-I \spacegrad \wedge (IF),
\end{aligned}
\end{equation}

so

\begin{equation}\label{eqn:maxwellBoundaryConditions:100}
\begin{aligned}
\spacegrad \wedge (I F) &= I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } \\
\spacegrad \wedge F &= -I \partial_t \BB.
\end{aligned}
\end{equation}

Integrating each of these over the pillbox volume gives

\begin{equation}\label{eqn:maxwellBoundaryConditions:140}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\int_{V} d^3 \Bx \cdot \lr{ I \lr{ -\inv{c} \partial_t \BE + \frac{\rho}{\epsilon_0} – \frac{\BJ}{\epsilon_0 c} } } \\
\oint_{\partial V} d^2 \Bx \cdot F
&=
– \partial_t \int_{V} d^3 \Bx \cdot \lr{ I \BB }.
\end{aligned}
\end{equation}

In the absence of charges and currents on the surface, and if the height of the volume is reduced to zero, the volume integrals vanish, and only the upper surfaces of the pillbox contribute to the surface integrals.

\begin{equation}\label{eqn:maxwellBoundaryConditions:200}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F) &= 0 \\
\oint_{\partial V} d^2 \Bx \cdot F &= 0.
\end{aligned}
\end{equation}

With a multivector \(F\) in the mix, the geometric meaning of these integrals is not terribly clear. They do describe the boundary conditions, but to see exactly what those are, we can now resort to the split of \(F\) into its electric and magnetic fields. Let’s look at the non-dual integral to start with

\begin{equation}\label{eqn:maxwellBoundaryConditions:160}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot F
&=
\oint_{\partial V} d^2 \Bx \cdot \lr{ \BE + I c \BB } \\
&=
\oint_{\partial V} d^2 \Bx \cdot \BE + I c d^2 \Bx \wedge \BB \\
&=
0.
\end{aligned}
\end{equation}

No component of \(\BE\) that is normal to the surface contributes to \(d^2 \Bx \cdot \BE \), whereas only components of \(\BB\) that are normal contribute to \(d^2 \Bx \wedge \BB \). That means that we must have tangential components of \(\BE\) and the normal components of \(\BB\) matching on the surfaces

\begin{equation}\label{eqn:maxwellBoundaryConditions:180}
\begin{aligned}
\lr{\BE_2 \wedge \ncap} \ncap – \lr{\BE_1 \wedge (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \cdot \ncap} \ncap – \lr{\BB_1 \cdot (-\ncap)} (-\ncap) &= 0 .
\end{aligned}
\end{equation}

Similarly, for the dot product of the dual field, this is

\begin{equation}\label{eqn:maxwellBoundaryConditions:220}
\begin{aligned}
\oint_{\partial V} d^2 \Bx \cdot (I F)
&=
\oint_{\partial V} d^2 \Bx \cdot (I \BE – c \BB) \\
&=
\oint_{\partial V} I d^2 \Bx \wedge \BE – c d^2 \Bx \cdot \BB.
\end{aligned}
\end{equation}

For this integral, only the normal components of \(\BE\) contribute, and only the tangential components of \(\BB\) contribute. This means that

\begin{equation}\label{eqn:maxwellBoundaryConditions:240}
\begin{aligned}
\lr{\BE_2 \cdot \ncap} \ncap – \lr{\BE_1 \cdot (-\ncap)} (-\ncap) &= 0 \\
\lr{\BB_2 \wedge \ncap} \ncap – \lr{\BB_1 \wedge (-\ncap)} (-\ncap) &= 0.
\end{aligned}
\end{equation}

This is why we end up with a seemingly strange mix of tangential and normal components of the electric and magnetic fields. These constraints can be summarized as

\begin{equation}\label{eqn:maxwellBoundaryConditions:260}
\begin{aligned}
( \BE_2 – \BE_1 ) \cdot \ncap &= 0 \\
( \BE_2 – \BE_1 ) \wedge \ncap &= 0 \\
( \BB_2 – \BB_1 ) \cdot \ncap &= 0 \\
( \BB_2 – \BB_1 ) \wedge \ncap &= 0
\end{aligned}
\end{equation}

These relationships are usually expressed in terms of all of \(\BE, \BD, \BB\) and \(\BH \). Because I’d started with Maxwell’s equations for free space, I don’t have the \( \epsilon \) and \( \mu \) factors that produce those more general relationships. Those more general boundary value relationships are usually the starting point for the Fresnel interface analysis. It is also possible to further generalize these relationships to include charges and currents on the surface.

References

[1] D. Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers, 1999.

Updated notes for ece1229 antenna theory

March 16, 2015 ece1229 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

I’ve now posted a first update of my notes for the antenna theory course that I am taking this term at UofT.

Unlike most of the other classes I have taken, I am not attempting to take comprehensive notes for this class. The class is taught on slides which go by faster than I can easily take notes for (and some of which match the textbook closely). In class I have annotated my copy of textbook with little details instead. This set of notes contains musings of details that were unclear, or in some cases, details that were provided in class, but are not in the text (and too long to pencil into my book), as well as some notes Geometric Algebra formalism for Maxwell’s equations with magnetic sources (something I’ve encountered for the first time in any real detail in this class).

The notes compilation linked above includes all of the following separate notes, some of which have been posted separately on this blog: